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Abstract
The PADME experiment, hosted at the LNF Beam Test Facility, is searching for

a dark photon that decays into dark matter particles. This search is performed looking
for the reaction e+ + e− → A′ + γ, where A′ is the dark photon, which cannot be
observed directly or via its decay products. A key role in the experiment is played by the
electromagnetic calorimeter, which measures the energy and the position of the γ in the
final state. From this, the missing four-momentum carried away by theA′ can be evaluated
and the particle mass can be inferred. This article will present the process followed for
the construction and calibration of the electromagnetic calorimeter of the experiment. The
results achieved in terms of equalisation, detection efficiency and energy resolution during
the first phase of the experiment, demonstrate the effectiveness of the various devices used
to improve the calorimeter performance with respect to first prototypes.
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1 Introduction

A possible explanation of the elusiveness of Dark Matter (DM) is that it interacts with
Standard Model (SM) particles only by means of a mediator. Among the possible mediators,
the Dark Photon (DP) is one of the best motivated. One of the simplest DP models, known
as kinetic mixing, introduces a new U(1) symmetry which implies the existence of a new
vector boson mediator, namely the A′ [ 1, 2]. SM particles are neutral under this new
symmetry, but theA′ could interact with them faintly thanks to a mixing with the ordinary
photon. The intensity of this interaction is given by an effective charge εq, where q is the
electric charge of the particle and εαe.m. is the DP coupling constant to the SM. In this
simple model, the DP is completely described by ε and its mass mA′ .

In addition, depending on the model, the DP could partially or completely explain
the discrepancy between measurements and theory of the muon anomalous magnetic
moment [ 3] (kinetic mixing has been discarded as the only explanation of this difference
[ 4, 5]) and the results known as the 8Be and 4He anomalies [ 6, 7].

References [ 8] and [ 9] present a more complete DP scenario, the various experimental
approaches and the current research status.

2 The PADME experiment

The Positron Annihilation into Dark Matter Experiment (PADME) is hosted at the Beam
Test Facility of the Laboratori Nazionali di Frascati, in Italy [ 10, 11]. It looks for a DP
produced via the reaction:

e+ + e− → A′ + γ.

The positrons, accelerated at 550 MeV by the laboratory’s LINAC, impinge on the
electrons of an active diamond target of 100 μm thickness, which gives average information
about the beam position and intensity [ 12]. The adopted experimental technique relies on
the measurement of the missing mass in the final state, which is due to the A′ that leaves
the detector unseen. Knowing the initial conditions, given by an electron at rest (P e−) and
a 550 MeV positron (P e+), and measuring the photon in the final state (P γ), by means of
a granular electromagnetic calorimeter (ECal), it is possible to measure m2

A′ as the square
of the missing mass Mmiss:

m2
A′ = M2

miss =
(
P e+ + P e− − P γ

)2
where the notation P indicates the relativistic four-momentum of each particle. The

beam energy allowsmA′ to be probed up to 23.7 MeV. It is important to underline that this
experimental approach is almost independent of the specific theoretical model selected to
describe the DP, requiring only that it interacts with leptons.

In addition to the target and ECal, the setup consists of a magnetic dipole, to deflect
the beam out of the calorimeter; a charged particle veto system (made of a positron veto,
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Figure 1: The PADME detector seen from above, not to scale. From right to left: the
active target, the dipole magnet, with the e+/e− vetoes inside, the high energy positron
veto and the TimePix3 array both at the beam exit and, 3.463 m away from the target, the
electromagnetic calorimeter and, behind it, the small angle calorimeters.

an electron veto and a high energy positron veto [ 13, 14]), to identify e+ + e− →
e+ + e− events and positrons that loose part of their energy through Bremsstrahlung,
and lastly, a fast Small Angle Calorimeter (SAC) [ 15], which is able to sustain the rate of
Bremsstrahlung photons in the forward direction. A schematic of the detector is shown in
fig.1.

With this design, a DP event would appear as a single photon energy deposit in the
ECal and nothing else in the vetoes and in the SAC.

A more detailed description of the PADME concept can be found in [ 16].

3 The PADME electromagnetic calorimeter

Together with the active target, the ECal is a key component of the experiment, since it
is fundamental to evaluate the four-momentum of the recoil photon, measuring its energy
and its impact position. The segmented calorimeter was built reshaping crystals recovered
from the endcaps of the electromagnetic calorimeter of the L3 experiment [ 17]. The
following sub-sections present first the production of the Scintillating Units (SUs), i.e.
the assembly made by a crystal and its PhotoMultiplier Tube (PMT), and then introduce
the calorimeter itself, together with its signal digitisation and trigger systems.

3.1 Scintillating units production

As a first step, the old reflective paint and photodiodes were removed from the original L3
crystals. To recover possible performance deterioration due to radiation damage, such as
transparency loss, crystals then underwent an accelerated annealing at LAB 27 at CERN.
The procedure was as follows:

1. the crystals were heated from room temperature up to 200 °C over 3 h;
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2. they were kept at constant temperature at 200 °C for 6 h;

3. finally they were cooled from 200 °C to room temperature by switching off the
oven, in about 1 day.

A measurement was performed to check the new transparency. The cut from the original
truncated pyramid shape of the crystals, from the projective L3 calorimeter barrel, to a
square face parallelepiped was performed at Gestione SILO (Italy) [ 18]. The same firm
also performed the PMT gluing, using the ELJEN EJ-500 optical cement [ 19], and the
crystal coating, with three layers (≈ 60 μm) of ELJEN EJ-510, a bright white diffusive
paint with titanium dioxide pigments [ 20].

The PMTs used are a revised version of the HZC XP1911 type B [ 21], whose
quantum efficiency at 480 nm, the BGO maximum emittance wavelength, is 21% and
whose dimensions (19 mm in diameter) matches very well the square face of the crystals.
The gain curve of each PMT was studied before the gluing, by means of a blu led flashing
in front of the glass window. The curve is obtained varying the PMT HV and measuring
the tube response.

3.2 The detector

The ECal consists of 616 bismuth germanate (BGO) crystals, each of 2.1×2.1×23.0 cm3,
arranged in a cylindrical shape of ≈ 29 cm external radius with a central square hole of
5 × 5 crystals. Since the maximum gap of the PADME magnet is 23 cm, and the target
has to be placed sufficiently far from the magnet poles in order to minimize the deflection
of the incoming beam due to the fringe field, the maximum photon angle is ≈ 100 mrad,
which however does not reduce the DP acceptance significantly.

The size of the calorimeter is then chosen by compromising between acceptance
and angular resolution. Given the practical limit to the lateral size of the detector (the
number of needed crystals scales with the square of the radius), the larger the distance
the smaller the coverage. In any case the maximum distance of the calorimeter from the
target is limited by the available length in the experimental hall to a maximum of ≈ 4 m.

Considering its current distance from the target of 3.463 m and its diameter, the ECal
angular coverage is in the interval [15.66, 82.11] mrad, while the SAC covers the region
[0, 18.92] mrad. These angles are defined by the radii of the minimum and maximum
circumferences completely contained within each calorimeter.

The ECal main requirements are a small Moliére radius for a good spatial resolution
and an energy resolution of the order of 2%/

√
E. Given the opportunity to reuse crystals

from the L3 experiment and that BGO fulfills these conditions [ 17], the choice was made
to use this material.

The size of the crystals’ square faces has been chosen to leave some free space
around the glued light detector, without worsening the granularity and the energy and
position resolutions of the detector. This is to allow mechanical operations on single units
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Figure 2: CAD drawing of the ECal, seen from the back and without the rear closing
panel. The blue structure is the mechanical support, while the black is the cover of the
PMTs and their cables. PMT dividers and cables (HV and signal) are shown only for few
units. The purple components are the plastic fillers (see text for more details).

and to avoid an excessive heating of the system. The longitudinal dimension of the crystal
was chosen to maximise the shower containment and corresponds to slightly more than
20 radiation lengths, being X0 = 1.118 cm for the BGO.

The central square hole is needed to let forward Bremsstrahlung radiation pass and
be detected by the SAC. The high rate of small-angle Bremsstrahlung photons would
indeed flood the inner ECal crystals. The SAC is an additional, fast calorimeter, based
on Cherenkov radiation, has a signal duration of about 3 ns and is able to sustain particle
rates up to hundreds of MHz, more than 100 times higher than the ECal. In fact 10% of
the BGO scintillation light has a decay time of 60 ns, while that of the remaining 90%

employs 300 ns [ 22].
Since the beginning of PADME operations in October 2018, only 4 SUs did not

work properly (0.65% of the total). Currently, there are plans to recover these channels
for future data acquisitions.

A scheme of the calorimeter is presented in fig.2. The metal support structure has
a square shape due to ease of assembly. The remaining free space between the frame and
the crystals is filled with plastic elements. This also puts BGO in contact with low density
material instead of metal. All the HV and signal cables exit from the rear of the ECal in
groups of 64, passing through two holders, the inner of which is light-tight.

Due to the relatively small energies released in the calorimeter, SUs are not inserted
in a rigid honeycomb structure, since this would have spoiled the energy resolution as a
consequence of the large dead space between crystals. In assemblying the calorimeter
without any holding structure, it is of fundamental importance to control the differences
with respect to the nominal crystals’ size. In order to have a flat surface on which layers
of crystals are piled one on top of the other, two precautions were taken: crystals were
individually selected on the basis of their actual transverse dimensions and 50 μm black
Tedlarr strips were used to compensate gaps between crystal heights.

With the aim of reducing the light crosstalk, Tedlarr has been inserted as vertical
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Figure 3: A typical ECal signal digitised with a sampling frequency of 1 GS/s.

strips between crystals of the same layer and as horizontal foils between consecutive
layers. Additionally, to improve the energy resolution, SUs on each layer have been
placed with the least well performing ones at the borders of the calorimeter and the best
ones where the majority of the photons are expected.

3.3 Signal readout and trigger

The ECal analog signals are digitised using CAEN V1742 boards [ 23, 24]. These boards
host 4 DRS4 ASICs, a switched-capacitor array sampling chip, providing a total of 32

channels. Each channel has a dynamic range of 1 V with a 12-bit precision. Due to the
PMT negative signals, the voltage interval used is [−1, 0] V. A single channel of the
board has 1024 capacitors that continuously sample the analog input with a selectable
frequency of 1 GS/s, 2.5 GS/s or 5 GS/s. The selected one is 1 GS/s, to obtain a long
enough digitisation window able to match the long decay time of the BGO scintillation
light. Fig.3 shows a typical pulse.

In every digitised signal there are some samples before the leading edge of the pulse.
This pre-pulse region is needed to evaluate the charge collected by the SU, as described
in sec.4.2, which in turn is proportional to the energy deposited by an interacting particle.
During the PADME data-taking, the number samples in the pre-pulse varies depending
on the type of trigger.

A Cosmic Ray (CR) trigger is provided by two scintillating slabs, positioned one
above and one under the ECal (see sec.4.2 for more details). The beam trigger signal is
generated by the accelerator complex for each bunch. It has a digitally adjustable delay
(in 1 ns steps), which allows the synchronisation with the experiment data acquisition.

The number of the pre-pulse samples in the CR case is ≈ 100, while it ranges from
≈ 200 to ≈ 400 in the beam trigger condition, due to a bunch length of about 200 ns. As
a consequence, there are always 2 or 3 decay times for a pulse in an acquired window.
Since the integral of the charge is used as indication of the energy release in the crystal,
this variability is taken into account and corrected for in the offline analysis.
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Figure 4: Setup for SU calibration. Left: scheme of the test stand (image not to scale),
with the 22Na source indicated with a yellow disk, whose movements are also drawn; a
LYSO crystal is placed on the opposite side of the source to provide the trigger signal.
Right: a photograph of the real test stand, where the SUs are visible.

4 Scintillating unit calibration and equalisation

The SUs were calibrated by means of a 22Na source before being mounted in the calorimeter.
This was done in order to determine the charge vs HV curve and to set the SU voltages
to get the desired pC/MeV gain. Starting from the middle of November 2018, the CR
trigger was also implemented to check the response of the units to minimum ionizing
particles (MIPs). Using this type of event it is possible to validate the 22Na calibration
and to assess and improve the equalisation of the SUs. In the following the relative results
of the process are presented.

4.1 Pre-assembly calibration with 22Na

To select and to equalise the response of each SU, a dedicated setup was built, exploiting
the two back-to-back 511 keV photons emitted by a 22Na source. This setup was used in
the pre-assembly phase to characterize all the SUs: it allows to scan a 5 × 5 SU matrix,
with the source moving in front of each crystal. Fig.4 left shows a drawing with the
sodium path highlighted, while in fig.4 right there is a photograph of the test stand. A
3 × 3 × 20 mm3 LYSO crystal readout by a SiPM, placed in front of the source on the
opposite side with respect to the BGO, constitutes the trigger: when a photon is detected,
the signal of the facing SU is taken, regardless of its content. SUs are measured at 10

different voltages in the interval [1100, 1550] V, in steps of 50 V, acquiring about 5000

events per HV value.
An example of the charge distribution obtained for a unit at 1400 V is presented in

fig.5 left: the pedestal and the 511 keV signal are clearly visible and both are fitted with a
Gaussian, while the approximately flat continuum is taken into account using a constant
function.

For each event, charge is evaluated as the integral of the corresponding pulse.
Integrals are obtained considering the area between the pulse and a flat line, which, in
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Figure 5: Left: charge distribution of a SU at 1400 V with a double Gaussian plus a flat
function to fit the pedestal, the 511 keV peak and the constant background; see the text
for the pedestal offset explanation. Right: Charge as a function of the HV with the gain
curve fit of the kind Q = A · V s superimposed, with Q charge, V voltage and A and s fit
parameters; only statistical errors are shown.

general is not the pulse baseline. Therefore pedestals are generally not peaked at zero,
as in fig.5 left. Using all the distributions for a given SU and evaluating the charge as
the difference between the 511 keV peak position and the pedestal position, it is possible
to determine the charge as a function of the HV. Fig.5 right presents the gain behaviour
with the best fit curve superimposed, for the same SU as fig.5 left. This is of the form
Q = A · V s, where Q is charge, V voltage and A and s are free parameters. Exploiting
these curves and the knowledge that the peak energy is 511 keV, it is possible to perform
the ECal pC/MeV equalisation.

In fig.6 the distribution of the voltages needed to obtain a gain of 15.3 pC/MeV
is displayed, for each of the 616 PADME SUs. The distribution mean is 1186 V with
a standard deviation of approximately 53 V, meaning that the units’ variability is small.
Even the largest value, 1411 V, is well below the safety operational maximum of 1700 V
[ 21]. The gain is chosen to be at the centre of the linearity range of the PMTs and to
ensure a complete containment for signals with an energy of 1 GeV, which is almost two
times the beam energy. This possibility is taken into account because several photons may
release their energy in the same crystal at the same time.

To evaluate the reproducibility of the calibration results, 135 SUs (22% of the total)
underwent a second, identical, measurement campaign. Performing a fit on this second
data set and requiring the same gain equalisation, it is possible to obtain a second voltage
to compare with the first one. The relative difference between the two HVs, given by
V1−V2

(V1+V2)/2
, shows changes that always remain below a few percent, as visible in fig.7. This

difference also incorporates the variation due to the day/night temperature and sunlight
environmental fluctuations, which are not kept completely under control in the test area,
in contrast to the experimental hall where the detector is installed.

To keep the calibration under control during the next period of data-taking, the ECal
will be equipped with an automated system that is capable of positioning a 22Na source in
front of each crystal.
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Figure 6: Distribution of the PMT voltages to set the corresponding SU at 15.3 pC/MeV.

Mean   0.5878

Std Dev    0.6724

HV relative difference [%]
3− 2− 1− 0 1 2 3

C
ou

nt
s/

(0
.1

 %
)

0

2

4

6

8

10

12
Mean   0.5878

Std Dev    0.6724

Figure 7: Relative difference between the first and the second voltage value for the 135
SUs that were tested a second time to check the gain curve reproducibility. The required
gain is 15.3 pC/MeV in both cases.
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Figure 8: Structure and logic of the ECal CR trigger. It consists of two plastic scintillator
slabs, one above and one below the ECal. Each bar is read by a couple of PMTs, one per
side, set in logic AND. The logic OR of the two ANDs gives the trigger signal.

4.2 Cosmic rays

After the calibration, all the SUs were assembled to build the ECal. Since the start of
data taking, the calorimeter has been operated with voltages corresponding to a gain of
15.3 pC/MeV. As shown in fig.8, the calorimeter is equipped with a CR trigger, made by
two plastic scintillator slabs, one above and one below the ECal, both read by two PMTs
(one per side). The PMTs on the same slab are set in logic AND. To increase the event
rate and to include CRs which traverse the ECal diagonally and cross a single slab, the
trigger is given by the logic OR of the two ANDs. Being monolithic bars, the position
where the CR crosses a BGO crystal is not known.

Fig.9 gives an example of a CR passing through the whole calorimeter. Here, the
numbers in the various positions indicate the charge collected by each SU.

Studying the charge distribution obtained from CRs in the various SUs, it is possible
to check the calorimeter equalisation resulting from the selected HVs. To have a more
precise evaluation, only CRs crossing a crystal vertically are considered. The verticality
is defined by the fulfillment of three conditions:

• the passage of a CR through three SUs aligned in a column;

• no other signal in the three rows which the considered three SUs belong to;

• only the pulse coming from the central SU of the three is considered for the calculation.

This ensures that the CR releases no energy in adjoining crystals. For example in fig.9
only SUs in position (15, 21) and (20, 9) respect these requirements. For peripheral units
with no SU directly above or below (68, corresponding to 11% of the total, see white SUs
in fig.11 left) the two crystals below or above are used, respectively.

Contrary to the situation of the 22Na source, in the case of CRs there are no triggered
empty events with which to build the pedestal peak, as shown in fig.5 left. Consequently,
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Figure 9: A cosmic ray passing through the ECal. The color scale and the numbers inside
the squares represent the charge collected by the SU.

the charge is evaluated subtracting from the mean of the first 50 pre-pulse samples each
sample amplitude (pulses are negative, as shown in fig.3) and then summing over all the
samples.

Fig.10 presents an example of the Most Probable Values (MPVs) coming from
Landau fits performed on charge distributions of SUs for data taken over three days,
when these are crossed vertically by CRs. On the left there is the 2D distribution, with a
colour scale and the value inside each cell, while on the right there are two superimposed
histograms: one in blue, considering all the active SUs and one in red, excluding the 68

with no units on top of or below them. The means of the two Gaussian fits are compatible,
being (266.3 ± 1.4) pC for all of the SUs and (266.0 ± 1.4) pC for the innermost ones.
Taking into account the Gaussian for all the units, the ECal equalisation achieved using
the gain curves from the 22Na source corresponds to (10.99± 0.48)%.

The left plot of fig.10 also shows in white the positions of the 4 non-working
channels. If one of these belongs to the triplet of crystals needed for the condition of
verticality, it is skipped and the one above or below is used.

As a result of this study it is also possible to improve the calorimeter energy resolution.
Assuming that, on average, CRs release the same amount of energy in all the crystals, the
MPVs of the charge distribution can be used as a normalisation term, simply dividing
each pulse integral by the MPV of the corresponding ECal channel.

CRs are also used to evaluate the efficiency of the SUs. Performing calculations
exclusively with pulses that passed the zero-suppression (approximately 1 MeV threshold),
ensures that only signals from CRs are used. Using the same triplets defined in the
previous analysis, the central SU efficiency is evaluated by checking if a signal is present
when the crystals above and below have one. Efficiency is given by the ratio between the
number of times all the three cells have an occurrence and the number of times only the
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Figure 10: Examples of MPVs obtained from the Landau fits to the charge distributions of
SUs when considering only CRs passing vertically through them (see text for verticality
definition). Left: 2D distribution of values across the ECal; this plot highlights the
presence of 4 non-working SUs. Right: MPV distributions considering (blue) and not
considering (red) the 68 crystals with no other units above or below them, with Gaussian
fits; the two distributions are well in agreement (in both the 4 non-working SUs are not
included).

two external ones have it.
Due to its evaluation algorithm, efficiency is estimated only for internal SUs, because

it is not possible to measure it with the same accuracy for channels on the ECal borders.
Fig.11 left shows the 2D distribution of ECal efficiencies, represented by a colour scale
and a value inside each cell, for a CR data taken over three days. Units with no number
are the excluded ones. In fig.11 right there is the histogram of the measured efficiencies
with a zoom in the interval [97, 101]% in a inset. A reverse Landau fit is superimposed
on both distributions, given by the formula A · L(−ε+MPV

σ
), where A is the amplitude, L

the Landau (with its MPV and σ) and ε the efficiency. Efficiency on photons is expected
to be similar to the one obtained with muons, which are MIPs and approximately release
energies in the interval [15, 30] MeV.

With reference to fig.11 right, fig.12 reports the cumulative of the SUs as a function
of the efficiency. Percentage is given not considering the four non-working units and the
68 on the border.

4.3 Calorimeter tests with BTF positron beam

Several tests were performed on a prototype of 5 × 5 crystals of dimensions 2.0 × 2.0 ×
22.0 cm3 (slightly smaller than the final ones), before the ECal construction. In particular,
single positron beams of different energies were fired on the central crystal of the matrix.
These measurements showed an energy resolution in line with the desired performance,
being σ(E)

E
= 2.0%√

E[GeV]
⊕ 0.003%

E[GeV]
⊕ 1.1% [ 25]. The experimental points (red and blue

squares) together with the fit line are presented in fig.13. Here, blue squares identify
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Figure 11: Efficiency of SUs, evaluated using CR data taken over three days, after
applying a selection on the charge, which corresponds to a minimum energy of about
1 MeV. Left: 2D distribution across the ECal. Right: efficiency distribution with a
reversed Landau fit superimposed (see text); in the inset there is a zoom in the region
[97, 101]%. In both graphics neither the 4 non-working units nor the 68 ones that doesn’t
have a crystal above or below are included.
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Figure 12: Cumulative in % of the efficiency distribution of fig.11. The percentage of the
cumulative is given not considering the four non-working units.
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Figure 13: Energy resolution of the prototype, given by the squares and the black fit
line (from [ 25]), compared to the ECal results, indicated with a black circle. The two
colours for the squares identify results coming from beams of different energies: blue for
250 MeV (single and multiple) positrons, red for 450 MeV (single and multiple) positrons.

results produced using a 250 MeV beam, while red squares identify results produced with
a beam of 450 MeV. Furthermore, the test showed that for particles of energy up to 1 GeV
the discrepancy from linearity always remains within 2%. Since its gain is comparable to
that of the prototype and its PMTs have a larger gain linearity interval with respect to the
ones used for the test matrix, an improved linearity is expected for the ECal.

The effectiveness of the procedure explained in sec.4.2 for the energy resolution was
tested firing a 490 MeV positron beam of multiplicity ≈ 1 directly on the calorimeter. To
have comparable results, a 5× 5 cluster around the crystal with the largest energy deposit
was again considered, to simulate the prototype condition (other clusterisation algorithms
implemented for PADME are given in [ 26]). At this energy, the resolution improved,
becoming (2.62± 0.05 (stat))%, as shown by the black circle in fig.13.

Furthermore, during this test, the probability of having multiple photons in the same
SU is higher that in the standard condition, since the beam is directed always to the same
region of the ECal. This lead to a spoiling of the energy resolution, due to a worse pulse
charge evaluation in a multi-interaction environment with respect to the single-interaction
condition. Consequently, an additional improvement in energy resolution during normal
data taking is expected.

Apart from a more refined analysis, the reasons for such an improvement in the
energy resolution has two origins: the SUs development and the beam optimisation (beam
related components are not factorised from the ECal ones).

Relatively to the SUs, in addition to the smaller dimensions of the crystals, which
have a lower energy containment, there are other important differences that make the
prototype ones perform less well with respect to the final ones:

• PMTs were different and not optimised (HZC XP1912 instead of the revised HZC
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XP1911);

• PMTs were connected to the BGO by means of optical grease (not glued);

• crystals were wrapped with two layers of PTFE tape (not painted);

• SUs were not equalised, with a voltage of 1100 V for all of them.

Concerning the beam, it contributes to the measured energy resolution, with different
factors for the two cases. The beam used for the prototype test was not as optimised as
in the ECal case. In order to have the possibility to change the energy during the test-
beam, secondary electrons were produced on the BTF target from the LINAC primary
beam. This is necessary because the primary beam has a well defined energy, needed
for the DAΦNE operations. Consequently, to obtain electrons of a certain energy, the
beam is sent towards a target and then particles with the desired energy and charge are
selected between the emerging ones by means of a dipole. In addition, because of the
DAΦNE collider operations, the primary LINAC beam was switching between electrons
and positrons production, with different parameters, at intervals of about 10 minutes.

Conversely, in the ECal test the beam was an optimisated primary beam consisting
only of 490 MeV positrons. Moreover, in this second case the LINAC gun was off and
only few electrons were accelerated (the ones produced by the gun dark current in phase
with the accelerating field), while in the prototype case the primary beam was consisting
of approximately 109 particles.

This extreme reduction in the number of primary accelerated particles and the
absence of a conversion target allowed for a significant diminution of the energy deposited
in the calorimeter thanks to the disappearance of the background photons produced at the
BTF target. In turn, this reflected in an improvement of the ECal energy resolution.

5 Conclusions

The PADME experiment is designed to search for a dark photon (A′) that decays into dark
matter particles, possibly produced in the reaction e+ + e− → A′ + γ. The experimental
approach is based on the missing mass technique: knowing the initial kinematics and
measuring the final photon four-momentum, by means of an electromagnetic calorimeter,
it is possible to evaluate theA′mass, consequently the electromagnetic calorimeter represents
one of the most important components of the experiment and its energy calibration is of
fundamental importance.

This article reviews each step followed during the construction of the PADME
electromagnetic calorimeter, from the initial L3 experiment crystal recovery and annealing
to the final assembly of the 616 scintillating units. The trigger and the DAQ system are
contextually described.

Energy calibration was performed individually for each unit by means of a 22Na
source, exploiting its back-to-back 511 keV photons. During data taking the gain was
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set to 15.3 pC/MeV, at the centre of the linearity response interval. In data taken over
three days the resulting overall ECal equalisation and the scintillating unit efficiency were
(10.99± 0.48)% and ≥ 98% for 99.1% of the channels, respectively.

Finally, to check the effect of the calibration and equalisation on the energy resolution,
a measurement was performed directing a 490 MeV positron beam of multiplicity ≈ 1

directly on the calorimeter. The obtained resolution is (2.62 ± 0.05 (stat))%, an evident
improvement with respect to the calorimeter prototype result at the same energy, demonstrating
the effectiveness of the various procedures here described.
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