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Recent results for the total and inelastic hadronic cross-sections from LHC experiments are com-
pared with predictions from a single channel PDF driven eikonal mini-jet model and from an empir-
ical model. The role of soft gluon resummation in the infrared region in taming the rise of mini-jets
and their contribution to the increase of the total cross-sections at high energies are discussed. Sur-
vival probabilities at LHC, whose theoretical estimates range from circa 10% to a few per mille,
will be estimated in this model and compared with results from QCD inspired models and from
multichannel eikonal models. We revisit a previous calculation and examine the origin of these
discrepancies.

I. INTRODUCTION

In this paper we present an estimate of Survival Prob-
abilties in hadronic collisions, obtained with the eikonal
mini-jet model [1] implemented with soft gluon resumma-
tion in [2–4]. We shall make use of latest measurements
by the TOTEM Collaboration [5], at 7 TeV for all 3 cross-
sections, and at 8 TeV in the Coulomb region and with
luminosity independent measurements [6, 7], by CMS [8]
and LHCb [9] for the inelastic cross-section at 7 TeV, by
the ALICE Collaboration for the inelastic cross section
at 2.76 and 7 TeV [10], by the ATLAS Collaboration for
the total, inelastic and elastic pp cross-sections at 7 [11]
and 8 TeV[12], and by measurements of the inelastic part
at 13 TeV by CMS [13] and ATLAS [14].

Survival probabilities were originally discussed in [15,
16] to estimate the probability associated with a hard
process when no low transverse momentum particle pro-
duction is present in the central region. In [16], such a
probability was estimated to be around 5% at the SSC
(
√
s = 40 TeV), but with an overall possible uncertainty

of a factor three in either direction. Presently, for LHC
data up to

√
s = 13 TeV, estimates vary between those of

a QCD inspired model [17] where the survival probability
is calculated to be 13 %, to calculations within the Regge-
Pomeron approach which range between (0.7÷2)% in [18]
and between (0.25 ÷ 3)% in [19]. Such large discrepan-
cies arise due to (i) the choice of the impact parameter
distribution of partons involved in the scattering and, to
a lesser extent, to (ii) the estimate of the inelastic total
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cross-section. As for data on rapidity gaps, LHC mea-
surements at 7 TeV by ATLAS [20] and CMS [21] Col-
laborations are affected by rather large errors and cannot
yet discriminate between models.

In the following, in the quest for a clearer definition of
Survival Probabilities (SP), we shall employ eikonal mini-
jet models to clarify and sharpen the physical meaning of
the survival probability concept. Comparison with other
models will also be made.

Mini-jets were first introduced in estimates of hadronic
physics in [1, 22–24] but were not yet recognized as dom-
inant in proton-proton collisions when the earlier esti-
mates of survival probabilities (SP) appeared [16]. Since
then a better understanding of the role played by mini-
jets in high energy collisions has been achieved, including
proposal for beyond the leading power calculations [25].

In the following, after a brief summary of the main
features of the PDF (Parton Density Function) driven
mini-jet model that we employ, we examine the most re-
cent data for the total cross-sections, and address the
question of the inelastic cross-section in single channel
eikonal models. We then apply our model to discuss Sur-
vival Probabilities for hard and soft distributions of par-
tons in the protons and clarify the difference arising from
using different impact parameter distributions.

Rivisiting a previous calculation in [26], we put forward
a new proposal, which reduces the estimate of ' 10% at
LHC energies by almost an order of magnitude. This
proposal is based on the physical meaning of the survival
probability concept in mini-jet models and on explicit in-
clusion in the calculation of the soft gluon effects accom-
panying mini-jet processes. Our resummation procedure
is based on Poisson distributed soft gluon distributions
and on an hypothesis of maximal singularity of the soft
gluon spectrum.
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II. ACCELERATOR DATA AND THE TOTAL pp
CROSS-SECTION IN A PDF DRIVEN EIKONAL

MODEL

We consider an eikonal model, such as

σtotal = 2

∫
d2b[1− e−χI(b,s)] (1)

where the eikonal function is taken to be purely imagi-
nary for small values of −t and large energies, and con-
tains contributions from both soft and semi-hard colli-
sions.

For the imaginary part of the eikonal χI(b, s) we write

2χI(b, s) = n̄soft(b, s) + n̄hard(b, s)

= AFF (b)σsoft(s) +ABN (b, s)σmini−jet(s, ptmin) (2)

where 2χI(b, s) can be seen to correspond to the average
number of Poisson distributed parton-parton collisions
[1, 27, 28].The distinction between the two terms at the
right hand side of Eq. (2) is done on the basis of using
a perturbative QCD (pQCD) calculation for the mini-jet
cross-section, i.e. for all interacting partons with pt ≥
ptmin [3]. Namely, ptmin is the scale of O(1-2 GeV) which
phenomenologically separates collisions between partons
exiting the scattering with final momenta pt > ptmin, aka
mini-jets.

Hadronic activity not associated to mini-jet production
can be included in n̄soft(b, s), such as collisions leading
to final partons with pt < ptmin. However, notice that
the hadronic activity with partons with pt < ptmin can
come both through n̄hard(b, s) and n̄soft(b, s), because
of the soft gluon emission accompanying the hard (mini-
jet) processes, as we shall describe below. We should also
point out that the two-component separation of Eq. (2)
misses to include Single Diffraction, which has an energy
dependence different from the mini-jet cross-section. We
shall return to this point later in the paper.

The term, n̄hard(b, s), is obtained from QCD, with the
distribution ABN (b, s) to describe the contribution of soft
gluon emission accompanying collisions between partons
with final momenta pt > ptmin. The subscript BN refers
to our choice of exploiting the full range of soft gluon
momenta, down to kt = 0, in the spirit of the Bloch and
Nordsieck description of soft quanta emission in QED
[29]. Our application to QCD has been described in a
number of previous publications, starting from [30] until
recently in [28]. where we provide details about our calcu-
lation of n̄hard(b, s). In Eq. (2) both AFF and ABN (b, s)
are normalized to 1.

Together with soft gluon resummation, to which we
shall turn shortly, the distinctive element of our model
is that the mini-jet cross-section is not parametrized but
calculated (at Leading Order (LO)) from the QCD stan-
dard expression, and with standard Parton Density Func-
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FIG. 1. The figure shows how the mini-jet cross-section com-
pares with presently available data for σtotal. The continuous,
dashed and dotted curves correspond to three different par-
ton density functions, such as GRV [33, 34], MRST [35] and
MSTW [36]. The corresponding curves over the total cross-
section data are obtained with the BN-model referred to in
the text.

tions (PDFs), DGLAP evoluted, fi|A(x1, p
2
t ), i.e.

σABjet (s; ptmin
) =

∫ √s/2
ptmin

dpt

∫ 1

4p2t/s

dx1

∫ 1

4p2t/(x1s)

dx2

∑
i,j,k,l

fi|A(x1, p
2
t )fj|B(x2, p

2
t )

dσ̂klij (ŝ)

dpt
.(3)

with i, j, k, l to denote the partons and x1, x2 the frac-
tions of the parent particle momentum carried by the
parton.

√
ŝ =
√
x1x2s, σ̂ are the center of mass energy

of the two parton system and the hard parton scattering
cross–section respectively. Following the argument given
above, this expression sums only collisions with outgoing
partons of momentum with pt > ptmin, where ptmin is de-
fined as the region of validity of perturbative QCD, i.e.
the coupling is given by the asymptotic freedom expres-
sion for running αs(p

2
t ). When the cut-off ptmin & 1− 2

GeV, it is usual to refer to these type of processes as
mini-jets [22].

The result of our calculation is shown in Fig. 1 for
three different LO PDF sets, together with presently
available data for the total cross-section [6, 11, 12, 31, 32].
The comparison between the energy rise of σjet(s; ptmin)
and the actual total cross-section highlights the well
known fact that, around ISR energies, hard QCD coll-
sions, as calculated to LO, start becoming important,
but then rising too much. This difficulty is solved in
the BN model by dressing the mini-jet cross-section with
the phenomenon of soft gluon emission which dampens
the rise of the parton-parton cross-sections, and embed-
ding them in the formalism of eikonalization, which en-
sures unitarity. Soft gluon emission in impact parameter
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space then provides the large distance cut-off which al-
lows satisfaction of the Froissart bound [37]. For partial
completeness, we shall outline here the main points of
our approach to resummation of soft gluon emission in
hadronic process.

A. Soft gluon resummation in the infrared region

Together with the PDF driven mini-jet contribution,
the core feature of our working model lies in the impact
parameter distribution of the pQCD term, ABN (b, s),
which was obtained as the Fourier transform of the re-
summed probability for soft gluon emissions accompa-
nying any QCD scattering process. As we discuss next,
the subscript BN refers to our choice of exploiting the
full range of soft gluon momenta, down to kt = 0, in
the spirit of the Bloch and Nordsieck description of soft
quanta emission.

For the resummed soft gluon distribution, we had pro-
posed [2] to start from the semi-classical expression [38]

Π(Kt, s) = d2Kt

∫
d2be−iKt·b−h(b,s) (4)

h(b, s) =

∫
d3n̄(k, s)[1− eik⊥·b] (5)

with d3n̄(k) being the single soft quantum spectrum,
which is exponentiated and regularized through resum-
mation. Eqs. (4) and (5) exhibit a crucial result of
the resummation technique developed in [38], i.e. the
cancellation at semi-classical level of the QED singu-
larities arising from infrared emission and virtual ex-
changes. Such cancellation follows from imposing energy-
momentum conservation to resummation of soft quanta
emitted through Poisson distributions, as we outline in
Appendix A.

Unlike Π(Kt, s), which can be obtained through a semi-
classical calculation, the application of the above tech-
nique to elementary particle processes requires the spec-
trum d3n̄(k) to be determined from quantum field theory,
in particular from QCD, in the case of soft gluon emis-
sion.

Within the context of the Bloch-Nordsieck approach,
one can find an early discussion of the probability distri-
bution Π(Kt, s) for particle production in strong inter-
actions with a constant large coupling in [39]. Applied
to Drell-Yan production processes, the QCD case of run-
ning αs was examined in [40] and [41] in the Leading
Logarithmic Approximation, and in [42] (PP) within the
context of the Bloch-Nordsieck approach. In particular,
the expression proposed in [42] for the function h(b, s)
reads:

h(PP )(b, s) =
4

3π2

∫ Q2

M2

d2k⊥[1−eik⊥·b]αs(k
2
⊥)

ln(Q2/k2
⊥)

k2
⊥

(6)
with a lower limit of integration M2 6= 0 and using the
asymptotic freedom expression for αs. The contribution

of the infrared region, k2
⊥ ≤ M2 was incorporated in an

intrinsic transverse momentum factor, with the assump-
tion that the neglected terms coming from this region
would not have a singular behavior which could affect
the result.

On the other hand, our long held proposal [2, 43] is to
calculate the probability resummation function Π(Kt, s)
down into the infrared region, as relevant to the large b-
behaviour of the total cross-section, since this is a region
where a singular behavior might manifest itself, through
a confining potential. Thus, in our approach the single
gluon spectrum depends on the coupling αIR(kt) in the
infrared region. Our modeling of such behavior has been
discussed in many papers, in particular we have a thor-
ough discussion in [3] and [44].

Let Λ be an infrared scale separating the asymptotic
freedom QCD regime from the non perturbative one,
then our phenomenological ansatz for the coupling as
kt → 0 [2, 43], leads to

αIR(kt) ∝ [
Λ

kt
]2p kt << Λ (7)

The above limit can be justified by a semi-classical argu-
ment about confining potentials [3, 43], and the param-
eter p could be considered as parametrizing such com-
plex processes as resummation of multi soft gluon cou-
plings. For integrability of the rhs in Eq. (5) on the
one hand, and for a correspondence to a rising poten-
tial on the other, the parameter p is limited to the range
1/2 < p < 1 [37].

With such ansatz for αs(kt → 0), one can calculate the
function h(b, s) down into the infrared region. The final
calculation of the normalized function ABN (b, s), with
the subscript BN to indicate the resummation approach
we follow, is done by choosing an appropriate value for
the singularity parameter p and specifying the upper
limit of integration in Eq. (5), appropriate to the per-
turbative QCD processes of mini-jets. Calling it qmax,
it represents the maximum momentum allowed to single
gluon emission; it depends on the energy distribution of
the emitting partons (hence on the PDFs), and the per-
turtbative parton-parton cross-section (it was Drell-Yan
in [42]), and ultimately from ptmin. In our simplified
realization of this model, qmax is obtained from the ex-
pression proposed in [45] as discussed in [3].

One can then proceed to calculate the average number
of hard collisions for the BN model as

n̄hard(b, s) = ABN (b, s)σppjet(s; ptmin) =

=
e−h(b,s)∫
d2be−h(b,s)

σppjet(s; ptmin) (8)

In Fig. 2 we show the distribution ABN (b, s) for dif-
ferent c.m.energies of the pp system, and compare it
with an often used impact parameter distribution in to-
tal cross-section calculation, namely the convolution of
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rameter distribution obtained from the convolution of proton
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the distributions in the MSTW case (black dashes) shift more
and more towards b = 0, whereas GRV curves (full red) flatten
out, with 8 and 14 TeV curves practically indistinguishable.

proton form factors

AFF (b) =
µ2

96π
(µb)3K3(µb) (9)

(10)

with µ2 = 0.7 GeV. In the figure, two different
parametrizations of the PDFs are used to calculate qmax
(and hence ABN (b, s)), MSTW and GRV. The point of
interest is two-fold here : for central collisions, i.e. b ' 0,
the form factor type distribution (dot-dashed curve) is
much lower than for the mini-jet process, whereas only a
proton form factor type distribution survives at large b
values.

B. The total cross-section in the BN model

As well known, and as apparent from Fig. 1, the mini-
jet contributions, with their energy dependence, are not
sufficient to describe the normalization of the total cross-
section. Total cross-section data at low energy, i.e.

√
s ≤

5÷10 GeV, suggest to include an additional contribution
which can be given, in this model, by the term n̄soft as
in Eq. (2), with σsoft(s) parametrized through a best

fit to the total cross-section, as

σsoft(s) = 48.2 +
101.66

E0.99
lab

− 27.89

E0.59
lab

(mb) (11)

The reader would note that in [4] a different
parametrization of n̄soft had been proposed. We leave
to a forthcoming paper a discussion of these two differ-
ent approaches.

We now see that the calculation of the total cross-
section in the BN model, depends on two different sets of
parameters: those extracted from the low-energy regime,
with σsoft described by a constant and one or more de-
creasing powers in energy, and those for the high en-
ergy region, the latter being: (i) the choice of the PDFs,
(ii) the separation scale between hard and soft processes,
ptmin, and (iii) the infrared parameter p. The high energy
set characterizes the energy behavior of the total cross-
section as it increases with energy, a behavior driven
by QCD mini-jets but regulated by soft gluon emission,

modeled by the parameter p, as ksingle−gluont → 0.

We also notice, in Fig. 1, that the different trend of
the mini-jet cross-sections in the high energy region, due
to the small-x behavior of the parton-parton cross-section
from different PDFs, is much smoothed down in the total
cross-section. This is due to the interplay between mini-
jet rise and the accompanying soft gluon emission which
dampens it. Such interplay enters through the maximum
single gluon momentum qmax which is proportional to
ptmin, the fixed mini-jet scale. The dependence on densi-
ties and ptmin however is not eliminated completely. This
appears clearly in Fig. 3, where the actual calculation
of the total cross-section from Eq. (1) is presented in a
linear-log scale (rather than log-log as in Fig. 1).

As discussed and seen in [28], tuning the parameters
leads to an optimal description of the total cross-section
data up to

√
s = 7 and 8 TeV, both using “old” densities,

such as GRV, as well as using more recent parametriza-
tions such as MSTW. However, the small-x behavior of
the parton-parton cross-section still leads to (10÷ 20)%
uncertainties when extrapolation is done to higher ener-
gies such as those reachable through cosmic ray experi-
ments.

In the next subsection, we shall discuss the other data
and curves appearing in this figure.

C. The inelastic cross-sections

For estimates of the survival probabilities [16], the
quantity of interest is the inelastic cross-section in im-
pact parameter space. In single channel models this can
be obtained through the elastic amplitude

F(s, t) = i

∫
bdbJo(qb)[1− e−χI(b,s)] (12)
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band to guide the eye.

with q2 = −t,namely from the equation

σinelastic =

∫
d2b[1−e−2χI(b,s)] ≡

∫
d2b[1−Pno−inel(b, s)]

(13)
with

Pno−inel(b, s) = e−n̄(b,s) ≡ e−n̄soft(b,s)−n̄hard(b,s) (14)

in a two-component eikonal as described before. However
one problem arises: as discussed in [28] and clearly seen in
Fig. 3 the inelastic cross-section obtained from Eqs. (13)
and (14), and estimated with the parameters leading to
the good description of σtotal, reproduces LHC inelastic
data only in a limited range, ξ = M2

X/s & 5×10−6 falling
short of the full phase space extrapolated data.

A model independent estimate of the inelastic cross-
section is shown by the dotted lines in Fig.3. This esti-

mate is obtained as σinel = σemptot − σ
emp
el by mean of an

empirical parametrization of all the differential pp cross-
section data from ISR to LHC, based on the elastic am-
plitude

A(s, t) = i[F 2
P (t/t0)

√
A(s)eB(s)t/2+eiφ(s)

√
C(s)eD(s)t/2]

(15)
where F 2

P (t) is the square of the proton form factor, i.e.
FP (t/t0) = 1/[(1 + |t|/t0)]2. Details of this model, which
is a modified version of the 1974 Phillips and Barger
proposal[47], can be found in [46] and are reproduced
here in the Appendix B. For a new version of the model,
now augmented to describe the ρ parameter, see [48].

Thus, the empirical model applied to the inelastic
cross-section confirms the extrapolations to the full phase
space as obtained through MC simulations or other mod-
els. At the same time, the single channel two-component
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BN-model, we just described, has so far not included en-
ergy dependent diffraction processes. Data for these type
of events are displayed in Fig. 3, respectively from ISR
[49], UA5 [50], UA4 [51], CDF[52], [10] and CMS[53].

One obvious missing element in the single channel
model we have proposed is Single Diffraction. As seen
from Fig. 3, this process, unlike Double Diffraction,
shows an energy dependence characteristic of QCD pro-
cesses, namely its contribution increases with energy.
Indeed, while the BN model so far includes QCD pro-
cesses such as gluon-gluon collisions and the accompa-
nying resummed soft gluon emission, it misses one more
process which can give energy dependence to the cross-
section through perturbative QCD, namely hard gluon
bremsstrahlung from the proton and its accompanying
soft gluon emission, as well. This process, at the ori-
gin of Single Diffraction contributions, is correlated to
the emitting proton and its inclusion in a single-channel
model has so far been difficult.

However, lacking a clear understanding of diffraction
in mini-jet type models, we propose that the quantity
Pno−inel thus calculated can be used to estimate survival
probabilities when Single Diffractive events are not ex-
cluded, and proceed to do so in the next section.

We conclude this section with a comparison of our sin-
gle channel BN model with recent experimental results
for the inelastic cross-section, in the measured phase re-
gions, as shown in Table I.

III. SURVIVAL PROBABILITIES

Let us recall early discussions of survival probability
[15, 16] that arose in considerations of a hadronic col-
lision at an impact parameter b producing a final state
characterized by energy scales much larger than those of
the soft and semi-hard background of hadronic collision.
Such a final state can be high pt jet pair production, or
Higgs production, for instance, and, we look for events
with no hadronic activity in the central region.

Let S2(b, s) be the distribution for observing one such
high pt process with cross-section σhard−scale(s) and no
additional inelastic collisions [16]. A simplified factorized
model for such distribution can be written as

S2(b, s) = σABhard−scale(s)H(b, s)Pno−collisions(b, s) (16)

where H(b, s) is the distribution in impact parameter
space of those partons participating to the collision lead-
ing to the production of H (the hard-scale process). Then
the distribution S2(b) can be integrated and normalized
and the average survival probability distribution is ob-
tained from the simplified expression

S(s) ≡< |S(b, s)|2 >=

∫
d2bA(b, s)e−n̄(b,s) (17)

having used Eq. (14) and with

A(b, s) =
H(b, s)∫
d2bH(b, s)

(18)

Leaving aside for the time being the question of the miss-
ing piece of the inelastic cross-section in single channel
eikonal minjet models such as the one described earlier,
we can write

Pno−collisions(b, s) =

Pno−soft−collisions(b, s)Pno−mini−jets(b, s) (19)

where the first factor on the r.h.s. excludes the presence
of soft partons from events for which the cross-section
is either constant or decreasing. This term alone does
not exclude production of mini-jets. Instead, these pro-
cesses, which can be described by perturbative QCD, as
we have seen, and constitute the hadronic background
for which partons exit the collision with pt > pmin '
1 GeV accompanied by the infrared initial state emission,
are suppressed through the factor Pno−mini−jets(b, s) =
exp[−n̄mini−jets(b, s)].

In cases where one puts a pt-cut (say, 1 GeV) to elim-
inate the mini-jet emission (as when the hard process to
select is production of a color singlet, for instance), one
would have to consider

S2(b, s) = σABhard−scale(s)Hmini−jets(b, s)Pno−mini−jets(b, s)
(20)

but notice that not all low pt activity is excluded, since
some hadronic activity from n̄soft(b, s) has not been ex-
cluded.

If absence of both soft collisions and mini-jets is
required, then one should use the full probability
Pno−collisions(b, s) as in Eq. (16). We shall now address
the question as to which impact parameter distribution
is appropriate to a given measurement. In what follows,
we shall see what is involved in such calculations and
compare with existing model predictions.

A. SP results from BN-2008 and Block et al.-2015
estimate from QCD inspired models

Let us start with SP estimates from the BN model,
as done originally in 2008 [26] and revisit it in order to
compare with (2015) results from Block and collabora-
tors [17]. For quark initiated processes, the total sur-
vival probability of the gap in this QCD inspired model
is obtained from the expression

< |S(b)|2 >=

∫
d2bA(b, µqq)e

−2χI(b,s) (21)

with A(b, µqq) the distribution of quarks in the proton,
for which the relative parton-parton cross-section is de-
creasing. In this single channel eikonal model [56, 57],
χI(b, s) is obtained as the contribution from three terms:
gluon-gluon; quark-gluon and quark-quark collisions , i.e.

χI(b, s) = W (µgg)σgg(s)+W (µqg)σqg(s)+W (µqq)σqq(s)
(22)
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TABLE I. The inelastic cross-section at LHC obtained from the single channel two-component BN model, and its comparison
with existing data at LHC and cosmic ray energies. The last column shows the estimate obtained (by subtraction) from the
empirical model of [46].

√
s σinel Kinematic range Experiment σBN

inel Emp.

TeV mb ξX = M2
X/s mb mb

and ξY = M2
Y /s GRV-MSTW [46]

2.76 62.8±+2.7
−4.2 full- sim. ALICE [10]

7 no SD 59.8-60.5

60.3± 0.5(syst)± 2.1(lum) ξX > 5 10−6 ATLAS [54]

60.2± 0.2(stat)± 0.5(sys)± 2.1(lum) ξX > 5 10−6 CMS [8]

62.1+1.0
−0.9(sys)± 2.2(lum) ξX > 5 10−6 ALICE [10]

55.0± 2.4 pT > 0.2GeV/c, 2.0 < η < 4.5 LHCb [9]

71.34± 0.36(stat)± 0.83(syst) full-by subtraction ATLAS [11] 74.8

72.9± 1.5 lum-independent -full TOTEM [5]

68.0± 4.0(model)± 2.0(sys)± 2.4(lum) full-MC simu; CMS [55] a

66.9± 2.9(exp)± 4.4(extr) full-Pythia 6 LHCb [9]

73.2+2.0
−4.6(model)± 2.6(lum) full -diff model ALICE [10]

8 no SD 60.7-62.1

74.7± 1.7 full-MC simul. TOTEM [7]

71.73± 0.15(stat)± 0.69(sys) full-by subtraction ATLAS [12] 76.6

13 no SD 64.3- 66.6

65.77± 0.03(stat)± 0.76(sys)± 1.78(lum) HF ξ > 10−6 CMS [13]

68.1± 0.6(exp)± 1.3(lum) ξ > 10−6 ATLAS [14]

66.85± 0.06(stat)± 0.44(sys)± 1.96(lum) HF+CASTOR ξX > 10−7, ξY > 10−6 CMS [13]

71.26± 0.06(stat)± 0.47(sys)± 2.09(lum)± 2.72(ext) extr. all models CMS [13]

78.1± 0.6(exp)± 1.3(lum)± 2.6(ext) extr. - full ATLAS [14] 82.9

14 No SD 64.8- 67.4

14 83.9

57 No SD 75.6-85.4

57 b 92±13.4
14.8 full-from Glauber and other effects AUGER [31] 103.8

a also in CMS-PAS-FWD-11-001, superseded by [8].
b with error ±0.3(stat)± 6(sys).

with W (µ) obtained from a convolution of dipoles, and
different scales µij in correspondence with three basic
cross-sections σij , with different energy behaviors. These
parameters were tuned to the large set of elastic and to-
tal cross-section data available before the LHC opera-
tion. As we shall see in more detail later, this model
predicts rather large survival probabilities at LHC when
compared with recent estimates from the Durham-St.
Petersburg group, Khoze, Martin and Ryskin (KMR) in
[18] and Gotsman, Levin and Maor (GLM) in [19]. In the
following, we shall attempt to understand this difference.

Our earlier estimate of survival probabilities [26] was
similar to a previous one by Block and Halzen [58], but we
now believe that such estimates should be reconsidered.
To understand why (and how), we notice that in [26] our
estimate was done using

< |S(b)|2 >=

∫
d2bAsoft(b, s)e

−2χI(b,s) (23)

with Asoft(b, s) obtained as the distribution of partons
with final pt < ptmin in correspondance with non mini-
jet collisions. Following our present parametrization of
n̄soft(b, s), we now evaluate Eq. (23) using the convo-
lution of proton form factors as discussed in the previ-
ous section, and the updated parametrization for χI(b, s)

which led to the curves for the total cross-section in Fig.
3. With this procedure, which we can call the BN-2008
model for the survival probability, we show in Fig. 4 the
agreement between the recent Block and collaborators
results and the estimate from Eq. (23).

The reason for the approximate agreement between our
calculation and the recent Block et al. result, lies in the
very similar role played by the two distributions A(b, µqq)
and Asoft(b) entering Eqs. (21) and (23): they both cor-
respond to parton processes whose cross-section is not
rising with energy. At the same time, in both models,
Pno−inel is constructed with contributions from both ris-
ing and constant parton cross sections, with an eikonal
such as to reproduce the total cross-section. In the BN
model, the decomposition of collisions corresponds to two
types of soft hadronic activity, one coming from processes
in which the production of soft partons is energy inde-
pendent or decreasing, and one with mini-jet production
[dressed with infra-red gluons whose number is increasing
with energy] that drives the rise of the total cross-section.
In a similar way, the Aspen model, used for the estimate
in [17], includes three types of contributions, with gg and
gq rising with energy, and qq constant or decreasing.

However, this way to estimate the survival probability
certainly needs revision for the following reason. To ex-
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clude all hadronic background processes which at high en-
ergy show an increase with energy, one needs to take into
account the rising contribution from mini-jets or semi-
hard collisions from partons whose b-distribution is very
different, as shown in Figs. 2 for the BN model.

These estimates are also compared in Fig. 4 with the
result by Bjorken at

√
s = 40 TeV [16], where the lowest

value was obtained with a multiplicative model (red line),
as we summarize below.

Considering only independent collisions, and an ex-
pression as in Eq. (21), Bjorken estimated the survival
probability to be about 10%, with numerical estimates
from [56], and under the assumption of uncorrelated par-
ton distributions.

However, when Bjorken included the possibility of
hadronic activity clustered around the valence quarks,
he suggested instead the following:

< |S|2 >Bj'
∫
d2 ~BF (B)|Spp(B)|2

∫
d2~b σHardqq |Sqq(b)|2∫

d2~bF (B)
∫
d2~b σHardqq (b)

=< |S|2 >pp< |S|2 >qq,
(24)

where < |S|2 >pp is the survival probability estimated
before, whereas < |S|2 >qq is an extra factor. The ad-
ditional term could exclude collisions rising with energy
and hadronic activity correlated with the valence quarks
alone. In any case, an additional diminution of the sur-
vival probability was expected and a figure of 5% was
considered more likely (red dot in the figure), with a fac-
tor 3 uncertainty in either direction. This is what we
have shown in the figure.

A comparison is also shown with the LO result by the
CMS collaboration [21] for the survival probability in the
measurement of the diffractive contribution to dijet pro-
duction at

√
s = 7. CMS gives an estimated of 0.12±0.05

at LO, and a lower value of S2 = 0.08 ± 0.04 at NLO.
A similar more recent (2015) measurement by the AT-
LAS collaboration [20], not shown in the plot, uses an
estimate of S2 = 0.16 ± 0.04(stat) ± 0.08(exp.syst) for
dijet production in

√
s = 7 TeV pp collisions with large

rapidity gaps, this estimate being considered to be also
consistent with a central value of 0.15.

In the next subsection, we shall present a different pro-
posal, in which first a split is made between soft and hard
contributions and then, the fractioned (lack of) hadronic
activity from each is summed to construct the SP. We
shall compare -with plots and tables- our calculation with
the Telaviv and Durham-St Petersburg models, labelled
here, for short, as GLM and KMR.

B. Our proposalwith all order resummation of soft
gluons

Let us approach the calculation of the survival prob-
ability in a single channel two-component eikonal model
such as our BN model, in which one splits the eikonal into
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CMS LO

Bjorken 1993 estimated value
with  NLO  range

Block, Durand,Ha and  Halzen 2015
 MSTW BN-2008  model
GRV BN-2008 model

FIG. 4. We show the survival probabilities obtained with the
soft process impact parameter distributions from [17] (full
line) and the BN model in [26], compared with the Bjorken’s
estimate at 40 TeV [16], based on an impact parameter using
a soft distribution first and then a multiplicative model for
hard processes. We also show the LO estimate by CMS [21].

a component rising with energy, and another component
either constant or decreasing.

To exclude all hadronic uncorrelated activity, one can
distinguish between soft and hard collisions as partici-
pating with different weights to the survival probability,

wsoft/hard(s) ≡
σsoft/jet(s)

σsoft(s) + σjet(s)
≡
σsoft/jet(s)

σB(s)
(25)

with σB to represent the “Born term” of the total cross-
section, σjet being obtained from Eq. (3 )and σsoft '
48 mb. As one can see from Fig. 1 , at low energy,
wsoft >> whard, while their roles are exchanged at high
energy. Then the contribution to the survival probability
will depend on the relative weights as follows:

• in the case of emission coming from processes with
a cross-section not rising with energy and final
hadrons with pt < ptmin, in our phenomenological
approach

– (i) the b−distribution is given by AFF (b),
namely follows the form factor distribution,
with no extra energy dependence,

– (ii) the probability of no such emission is given
by e−n̄soft ,
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TABLE II. Survival probabilities, soft, hard and total, in the
TeV region, in the additive model we propose, using MSTW
densities (ptmin = 1.3 GeV and p = 0.66), and GRV (ptmin =
1.2 GeV and p = 0.69). All values are given in percentages,
with the values taken by S̄2

total plotted Fig. 5.
√
s S̄2

soft S̄2
hard S̄2

total

TeV GRV MSTW GRV MSTW GRV MSTW

1.8 3.17 4.77 1.53 2.70 4.70 7.47

2.76 2.15 3.38 1.06 1.95 3.21 5.33

7.0 0.942 1.32 0.490 0.810 1.43 2.13

8.0 0.839 1.17 0.440 0.722 1.28 1.89

13 0.554 0.681 0.297 0.433 0.851 1.11

14 0.526 0.669 0.282 0.425 0.808 1.03

40 0.222 0.182 0.124 0.121 0.346 0.303

– (iii) the survival probability is obtained as

< |S(b)|2 >soft=
∫
d2bAFF (b, s)e−n̄soft(b,s)

• in the case of QCD mini-jet processes, for which
final hadrons have pt > ptmin and an increas-
ing rising cross-section, the b-distribution is ob-
tained through soft gluon emission accompanying
the mini-jet collision, and

< |S(b)|2 >hard=
∫
d2bABN (b, s)e−n̄hard(b,s)

Our proposal is that the survival probability -to exclude
hadronic activity in the central region- is given by

S̄2
total(s) = S̄2

soft(s) + S̄2
hard(s)

≡ wsoft(s) < |S(b)|2 >soft +whard(s) < |S(b)|2 >hard
(26)

With the caveat that diffractive events are either poorly
or not at all described by the single channel model and
hence are not excluded by Pno−inel, we now proceed to
calculate the survival probabilities and compare it with
other models.

We present the results of our proposal in Table II for
the two types of densities used to describe the inelastic
(and hence the total) cross-section, and show in Fig. 5 the
values taken by by S̄2

total for GRV and MSTW densities,
in comparison with GLM and KMR estimated ranges.
We also show comparison the NLO 2012 CMS estimate.
Since our present proposal is obtained by resummation
of soft gluons to all orders, the comparison with NLO
result is the appropriate one. Please notice the change in
scales.

These results are now summarized in Table III, and
Fig. 6, where we compare our proposal with the exper-
imental estimates by ATLAS and CMS collaborations,
with those by Block, Durand, Ha and Halzen, the two
Reggon-Pomeron models we have mentioned, and the 40

10
-1

1

10

1 10
3s ( TeV )

s2 (%
) CMS NLO KMR favored

KMR
GLM

 GLM Model II
 (new)

GRV in BN  all order SG resummation

MSTW in BN  all order SG resummation

FIG. 5. The (black and red) curves indicate the estimated
Survival Probabily Rapidity Gaps (in percentage) in the LHC
region, in the additive model we propose in Eq. (26), using
impact parameter distributions obtained from the BN-model
for the mini-jet component, with MSTW (dashes) or GRV
(dots) LO PDFs, with all order Soft Gluon (SG) resumma-
tion. Comparison with ranges estimated in the models by
GLM (yellow band) and KMR (cyan band), and with LHC
measurements at 7 TeV by CMS at NLO [21] is also shown.

TABLE III. Survival probability predictions of the mod-
els by Block-Durand-Ha-Halzen (BDHH) [17], Khoze-Martin-
Ryskin (KMR) [18] and Gotsman-Levin-Maor (GLM) [19],
and the range of prediction by Bjorken (BJ) [16]. All val-
ues are given in percentages.The BN model range includes
calculation with two different PDFs.

√
s S̄2

BDHH S̄2
KMR S̄2

GLM S̄2
BN (I) S̄2

BJ

TeV GRV-MSTW

0.063 38.7 ± 0.6 8.7− 20.8 (10) −
0.546 28.6 ± 0.5 4.1− 10.3 (4.7) −
0.630 27.8 ± 0.5 − −
1.8 22.2 ± 0.5 2.3− 6.3 (2.8) 0.86− 7.6 (3.34) 4.70 - 7.47

7.0 − 1.1− 3.2 (1.5) 0.3− 3.63 (3.1) 1.43-2.13

13 0.851-1.11

14 13.1 ± 0.3 0.7− 2.2 (1.0) 0.25− 2.3 (3.05) 0.808-1.03

40 9.8 ± 0.2 − − 0.346 - 0.303 1.5-15 (5)

TeV range of values estimated by Bjorken [16]. For the
BN model, we also show the separate estimates for S̄2

soft

and S̄2
hard.

As already discussed our estimate is close to Block’s
only when the soft distribution, which we take to be the
folding of two proton form factors, is used. On the other
hand, we find our results to be consistent with the range
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FIG. 6. Comparison of the predictions for the survival probability gaps estimates (in percentage) in the context of the BN
model, with other models described in the text and with CMS [21] and ATLAS [20] measurements at LHC7.

of values coming from different models by the Durham
[18] and Telaviv group [19].

In the table, the Durham model results are obtained
using the GW formalism in a two channel eikonal model,
which includes low mass diffractive dissociation, and is
able to predict both elastic and diffractive cross-sections.
Four different models are discussed, all of which give sim-
ilar good fit to the various cross-sections, but have differ-
ent values for |S|2. The difference is ascribed to depend
on the details of the Good and Walker splitting and hence
to the impact parameter density of the GW states. The
authors’ favored model is indicated between parenthe-
ses and corresponds to energy dependent coupling of the
triple Pomeron.

The table also displays a band of prediction for GLM,
such as given by the values in Table 3 of Ref. [19]. In
this case the values in parenthesis represent the model
for which new parameters of their model were provided
(Model IIn) - the ones describing the total, elastic and
diffractive cross sections (low and high mass) at LHC. As
emphasized by them that model gives higher values for
the survival probability. The spread in values given by
the Telaviv group depends on the impact parameter dis-

tribution of the hard amplitude, with a Gaussian e−b
2/4B

behaviour , which leads to the correct Froissart limit, and
on different sets of parameters (called “new” and “old”),
and also on the inclusion of kinematics corrections. This
work develops in the context of a CGC/saturation ap-
proach for soft interactions at high energy and is detailed
in Ref.[19].

On the other hand, it is rather clear what our present
single-channel model can predict. The integrand in
Eq. (17) depends on two quantities:

1. Pno−inelastic which is fixed by the fit to the total
cross-section, i.e. in single channel by the func-
tion χI(b, s) which describes σtotal(s); in our in-
terpretation, missing part or all of diffraction,
Pno−inelastic ≡ Ponly−diffractive−events

2. the impact parameter distribution of partons which
can come from either soft collisions, with AFF (b)
or hard, mini-jet collisions, with ABN (b, s). In our
single channel eikonal, we have seen in [37] that

ABN (b, s) ∼ e−(bλ̄)2p . With the singularity param-
eter 1/2 < p < 1 [our phenomenology indicates
p ' (0.6 ÷ 0.7)], one can see that the cut off in
b-space is midway between a gaussian and an ex-
ponential, leading to an asymptotic behavior of the
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total cross-section σtotal . [ln s]1/p, satisfying the
Froissart bound. Please notice that an improve-
ment of the Froissart limit in the context of the
AdS/CFT correspondence has recently been pro-
posed in [59].

From this discussion, it is not completely clear which
model gives the best representation for the survival prob-
abilities. While we are convinced that previous esti-
mates of survival probabilities through mini-jet or QCD
inspired models should be calculated using our proposal
Eq. (26) rather than Eq. (21) or (23), at the same time we
are aware of the limitations of the single-channel model.
We expect that full exclusion of the hadronic background
may further reduce the survival probability.

IV. FINAL COMMENTS AND CONCLUSIONS

The survival probability concept implies the need to
be able to select processes which are unaccompanied by
the usual hadronic activity. This may be useful for a
selected process such as Higgs production, high pt jets,
or any hard process which one wants to isolate from the
background. The quantity to look for is therefore a no-
collision probability which is characterized by the pres-
ence of rapidity gaps, around the central region. Such
quantity is easily calculated in the eikonal formulation.
However, the single channel formulation of the inelastic
cross-section given in Eq. (13) fails to reproduce the total-
ity of the inelastic cross-section, as the energy increases
towards LHC regime. At energies lower than those at-
tained at LHC, data for the full inelastic cross-section are
obtained by subtraction from two well measured quanti-
ties, the total and the elastic, i.e. σinel = σtotal − σel.
This quantity includes events with different topologies,
distinguished in various groups, such as soft, hard diffrac-
tion, and central diffraction. The contribution from pro-
cesses in the very forward direction is not uniquely mea-
surable by the different experiments, and data are pro-
vided in terms of the covered phase space or through
model extrapolations.

Here we propose that the least ambiguous way to use
the concept of survival probability is through select-
ing events which do not have hadronic activity outside
the diffractive region. In early release of elastic cross-
section data at LHC, a common phase space limitation
ξ = M2

X/s ≥ 5×10−6 was shown to be well described by
a single channel model such as ours. Therefore one can
now turn this fact around and define this region as the
one for which the present single channel BN model can
provide an estimate for the survival rapidity gaps in the
central region. Namely, if n̄(b, s) ≡ 2χI(b, s) is chosen so
as to describe the total cross-section, then

Pno−inel(b, s) = e−n̄(b,s) (27)

gives the probability distribution for no independently
distributed collisions at impact parameter value b, and

given c.m. energy. The survival probability at any given
impact value b is then dependent on the density of par-
tons in the overlapping area in b-space. For central colli-
sions, the hadronic matter is denser (confinement dilutes
gluonic matter in the peripheral regions) and vice versa
for the peripheral collisions. By integrating the probabil-
ity of no collisions with the hadronic matter distribution
in the hadron, we have calculated the survival probability
[for the case in which Single Diffraction is not excluded]
and found an estimate of ∼ 1% at LHC8 and LHC13.

The result we have presented obtains through an all
order resummation procedure applied to soft gluon emis-
sion in mini-jet collisions.

Finally, we notice that results similar to the ones we
are proposing for the BN model, can be expected in the
model of Block et al. [58] when this model is applied
using our prescription.

ACKNOWLEDGMENTS

One of us, G.P., acknowledges hospitality at the MIT
Center for Theoretical Physics, and is grateful to Earle
Lomon for stimulating discussions and drawing our atten-
tion to the comparison with experimental data. Enlight-
ing discussions with Rohini Godbole are gratefully ac-
knowledged. Y.S. thanks the Department of Physics and
Geology at the University of Perugia for the continued
hospitality and acknowledges interesting discussions with
O. Panella, L. Fano’ and S. Pacetti. A.G. acknowledges
partial support by the Ministry of Economy and Com-
petitiveness (MINECO) under grant number FPA2016-
78220-C3-3-P, and by Junta de Andalućıa(Grants FQM
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Appendix A: Derivation of semi-classical
resummation formula

In this Appendix, we present a derivation of Eq. (4)
following [38]. In the scattering of high energy charged
particles, a considerable portion of the energy is radiated
away in the form of of either hard or soft radiation, pho-
tons in QED, gluons in QCD. In this appendix, we shall
outline the method of soft quanta resummation we use
in QCD.

When a charged particle is bent in its path by the
electromagnetic field, the cloud of soft photons accompa-
nying the motion of the charged particle is not affected
by the external field and continues its path, tangent to
the trajectory at the point when the charged particle en-
tered the bending field. This is true in QED where the
external field has no effect on the soft photons surround-
ing the traveling electron, but it is more difficult to see
it in QCD. However, this is true also in this case, be-
cause of the infrared catastrophe, as can be seen through
a reading of the Block and Nordsieck theorem [29] which
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demonstrates that only the emission of an infinite num-
ber of soft photons has a finite probability. This argu-
ment can be applied as well to soft gluon emission, being
based on ignoring the recoil of the emitting particles and
summing of all the Poisson distributed number of soft
quanta. Thus in the emission, when the gluon energy
goes to zero, the number of emitted gluons is infinite and
the emitted energy accompanying this infinite number of
gluons is color neutral and the soft gluon cohort does not
interact with the external field.

In the language of quantum field theory, we can de-
scribe the process of soft gluon emission as a process in
which straightforward perturbation theory does not ap-
ply in the sense that only the emitted energy-momentum
is a finite quantity, not the single soft gluons. In order to
resum this infinite number of soft gluons (or soft quanta
emitted by a charged source) we can start from the the-
ory of emission from a classical source as given by Bloch
and Nordsieck, in which the distribution of soft photons
is shown to be given by a Poisson distribution, i.e.

P ({nk}) = Πnk

[n̄k]nk

nk!
e−n̄k (A1)

where P ({nk}) can now be taken to corresponds to the
probability that the emitted massless quanta are emitted
with nk1

gluons with momentum k1, nk2
gluons with mo-

mentum k2, etc. The next step is to consider the overall
energy-momentum loss K accompanying the scattering
and impose energy-momentum conservation to the sum
of all the possible Poisson distributions, i.e.

d4P (K) =
∑
k

P ({nk})δ4(
∑
k′

k′nk′ −K)d4K (A2)

The sum over all the distributions runs again along the
lines of a classical derivation, using the four-dimension
integral representation of the δ function, which allows to
exchange the order of product of distributions and their
summation. One thus reaches the expression

d4P (K) =
1

(2π)4

∫
d4x e−h(x)−iK·x (A3)

with

h(x) =
∑
k

(1− eik·x)n̄k (A4)

Going from the discrete to the continuous limit and inte-
grating Eqs. (A3) and(A4) on the unobserved variables
of energy K0 and longitudinal momentum K3, one ob-
tains Eq. (4). The derivation can be applied to gluons or
photons, provided the resulting integrand in Eq. (6) be
an integrable function. In QED this quantity is not just
integrable but is also finite. The QCD limit is discussed
in the text, with the proposal, put forward in [43], that
the integrand in Eq. (6) be singular but integrable. This
leads to the condition that the infrared limit of the soft
gluon coupling to the emitting source be no more singu-
lar than (k2

⊥)−p with p < 1 and to the adoption of this
limit in the phenomenological approach, which we have
called the BN model.

Appendix B: The full inelastic cross-section from
the empirical model

For the case when background emission in a wider
phase space has to be excluded, a simple way to esti-
mate the full inelastic cross-section can be obtained from
the empirical model of [46]. We present here the results
of this model, although we shall not use it to estimate
the survival probabilities, in absence of a clear indica-
tion of how calculate the impact parameter distribution
of partons to associate to this model. We consider an
empirical model based on the improved parametrization
of the elastic amplitude following the Phillips and Barger
[47] proposal. As TOTEM data [60] for the differential
elastic cross-section appeared, we discussed the validity
of this model in [61] and, in [46], we revised it, proposing
two different modifications, labelled mBP1 and mBP2,
aimed to ameliorate the description of the amplitude at
t = 0, and obtain a better fit of the total cross-section.

Our improved expression is based on a best fit to all
pp differential cross-section data from ISR energies up
to
√
s = 7 TeV, using a parametrization of the elastic

amplitude, which, in the mBP2 version of the empirical
model, was proposed to be

A(s, t) = i[F 2
P (t/t0)

√
A(s)eB(s)t/2+eiφ(s)

√
C(s)eD(s)t/2]

(B1)
where F 2

P (t) is the square of the proton form factor, i.e.
FP (t/t0) = 1/[(1 + |t|/t0)]2 with t0 a parameter with
weak energy dependence, approaching 0.7 GeV 2 at high
energies. The introduction of this factor in the first term
at the right hand side of Eq. (B1) modifies the Phillips
and Barger proposal to give a better agreement with total
cross-section data.

This model has 6 real parameters: two amplitudes,
A(s) and C(s), two slopes, B(s) and D(s), one phase
φ and one scale t0. The model was able to give an
excellent description of available data up to

√
s = 7

TeV, and can be used to extrapolate to higher ener-
gies. Using the full range of ISR and LHC7 data, we
can make predictions for the two amplitudes and the
two slopes at higher energies by means of asymptotic
theorems. As for the phase and the scale, while the
phase was kept constant, for the energy dependence of
t0(s) we use the interpolation/extrapolation fit result:
t0 = 0.66 + 15.4/ log2(s/1 GeV2), which gives a good
description of the t0 parameter in [46]. The values we
propose to be used for the parameters in the LHC en-
ergy range are given in Table IV.

Using the amplitude of Eq. (B1) and the asymptotic
projections for the two amplitudes A(s), C(s) and the
two slopes B(s) and D(s), we calculate the total cross-
section at much higher than present energies, and com-
pare it with data. And then, always from the above am-
plitude, one can also calculate and predict values for the
elastic total cross-section, and, by default, for the inelas-
tic, σempinel = σemptot − σ

emp
el . These expectations are shown

as dotted lines in Fig. 3.
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We see that both the elastic and the total cross-section
are well described by the empirical model parametriza-
tion at all energies - in fact the 8 TeV TOTEM values for
the total cross-section is correctly predicted to be 103 mb
vs. the TOTEM value at 102.9 mb - while the inelastic
cross-section appears slightly higher than the TOTEM
data and clearly higher than CMS.

TABLE IV. Energy evolution of the mBP2 empirical model
parameters used in Fig. 3. We have assumed a nearly constant
phase, φ ' 2.9 rad, throughout in our calculations.

√
s (TeV) A (mbGeV2) B (GeV−2) C (mbGeV2) D (GeV−2) t0 (GeV2)

0.5 197 4.83 0.217 3.19 0.760

2.0 344 6.50 0.693 4.00 0.727

8.0 597 8.78 1.30 4.80 0.708

13 719 9.71 1.51 5.08 0.703

20 846 10.6 1.69 5.33 0.699

50 1180 12.6 2.06 5.87 0.693
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