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the forward direction becomes proportional to the square
of the total cross-section. Thus, discussions about total
cross-sections become entwined with that of elastic cross-
sections. Hence, in this review considerable attention is
also paid both to experimental and theoretical aspects of
the elastic cross-sections.

As this rather lengthy review discusses many subjects,
we provide below a quick overview to help a reader choose
sections of the review that may be of particular interest.
Serving mostly as a guide through the large material we
shall deal with, no references are included in this general
introduction, but they are of course available in the in-
dividual sections, at the beginning of which we provide a
description of contents and a brief guide to the subsec-
tions.

In Section [1} kinematics and partial wave expansions
are obtained for the elastic amplitude and general princi-
ples, such as unitarity, are employed to derive the optical
theorem. An introduction to the asymptotic behavior is
provided via the Regge formalism, the Pomeranchuk the-
orem and finite energy sum rules. Through analyticity,
Martin-Froissart rigorous upper bounds are established
for the total cross-sections. For charged particles, the EM
(Coulomb) amplitude is mostly real (and large near the
forward direction) and hence measurements of the needed
real part of the “strong” forward amplitude (and measure-
ment of the ratio of the real to the imaginary part of the
forward scattering amplitude, the so-called p(s) parame-
ter) often involve Coulomb interference and soft radiation.
We discuss it in some detail and supplement it with a pro-
posal to employ soft radiation as a tool to measure total
cross-sections.

In Section |2, we discuss how cosmic radiation is em-
ployed as a non-accelerator method to measure total cross-
sections and provide valuable information at energies sub-
stantially larger than those of earth bound accelerators
such as the Large Hadron Collider (LHC). Along with
some history of the subject beginning with Heisenberg,
a description of the Glauber formalism for nuclei is pre-
sented for the extraction of pp cross-sections from data and
corresponding uncertainties in the models are discussed.
We follow the historical path which led to the advances
in experimental techniques and theoretical methods that
continue to provide a unique window towards fundamen-
tal physics and astrophysics, at energies otherwise un-
reachable through accelerators in the foreseeable future.
Recent theoretical results about the power law spectra in
the cosmic ray energy distribution both for fermions (elec-
trons/positrons) and bosons (Helium and other nuclei) are
briefly discussed and shown to agree with high precision
data from AMS, Auger and other Collaborations.

Section [3] deals with pre-LHC measurements of o1,
the total pp and pp cross-section, such as those made at
the CERN Intersecting Storage Rings (ISR), the CERN
SppSand the FermiLab Tevatron. These pioneering exper-
iments verified the rise with energy of oiutq; - suspected
from experiments with cosmic rays - and of the slope pa-
rameter B(s), which defines the behaviour of the elastic
differential cross-section in the forward region, as well as

discovered considerable variations in the p parameter. The
black disk limit and how close we may be to it are also
discussed herein.

In Section 4] we provide theoretical scenarios and phe-
nomenology of the elastic amplitude and hadronic cross-
sections, that span over 80 years, beginning with the origi-
nal Moliere theory of multiple scattering, followed by Heisen-
berg’s considerations about the energy behavior of oyotai,
and culminating in various QCD inspired models. Eikonal
and Regge models are discussed along with hadronic mat-
ter distribution. We recall the development in QED of
the need for soft-photon re-summation to avoid the infra-
red (IR) catastrophe, and the semi-classical, but Lorentz
covariant, methods for soft radiation subsequently devel-
oped. As a corollary, a Regge trajectory for the photon
is obtained. These methods are extended to discuss soft
QCD radiation and the divergent nature of of strong cou-
pling constant for small transverse momenta (k). Asymp-
totic behavior of scattering amplitudes in QCD, the Bal-
itsky, Fadin, Kuraev and Lipatov (BFKL) equation and
spontaneously broken gauge theories are discussed along
with the Reggeization of the gauge particles therein. Next,
eikonal mini-jet models for o44te; and their phenomenol-
ogy are developed. A brief description of the AdS/CFT
correspondence for o;.:q; is presented. Also, some details
of the phenomenology of otytq; by the COMPETE and
COMPASS collaborations are provided.

Details of the energy and momentum transfer depen-
dence, the slope, the dip, the real and the imaginary parts
of the elastic (and diffractive) amplitude are discussed in
Section[f} Early models and their updates such as Durham,
Tel Aviv, mini-jet and multi-pomeron models, are pre-
sented as required by more refined data. A concise sum-
mary of the model results are also provided.

Photon processes are discussed in Section [6] beginning
with kinematics of interest for real versus virtual photons
and the relevant parton model variables. Sakurai’s vector
meson dominance, Gribov’s model and photo-production
at HERA is taken up next, along with vy and vy* pro-
cesses at LEP and factorization. The transition from real
to virtual photon processes is discussed and models such
as Haidt’s are presented. The results of the Tel Aviv and
mini-jet models with soft gluon resummation are discussed.
The Balitsky-Kovchegov (BK) equation and its various
applications such as geometrical scaling are considered
and directions beyond into Pomeron loops, explored.

Section [7] discusses the layout of the LHC experimen-
tal areas as had been planned before its start. Expecta-
tions were to produce total cross-section data with 5%
accuracy after a 3 year run. It is gratifying to note that
forward physics data with 3% accuracy have already been
achieved. The highest energy physics results are shown for
the total, elastic and inelastic pp cross-sections at presently
reached LHC energies, /s = 7, 8 and 13 TeV, obtained
by the TOTEM, ATLAS and CMS groups. Predictions at
Vs = 14 TeV are indicated.

The review closes with some final observations and ac-
knowledgements.
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1 The theoretical framework from unitarity
and analyticity

This chapter is devoted to a review of the basic formalism
pertaining to elastic scattering and to the well-established
theorems on total, elastic and inelastic cross-sections. Here
analyticity and unitarity play a crucial role for the scat-
tering of hadrons, protons and mesons, such as pions and
kaons, while scattering of their QCD constituents and
their contribution to total cross-section dynamics will be
introduced when dealing with QCD models.

For this material, there exist both books and reviews,
nonetheless we reproduce most of the relevant material
to introduce, in a modern language, the necessary nota-
tion and put together all the theorems which are impor-
tant for our present understanding of hadronic physics
or for optimal fitting of the existing data. One case at
hand is whether the limitations imposed by the Froissart
bound are satisfied and another case is the application to
very high energy data fitting by Finite Energy Sum Rules
(FESR), derived from analyticity and crossing.

We shall discuss the early formalism of the partial wave
expansion of the elastic scattering amplitude, needed to
understand the Martin-Froissart theorem, and relate it to
the Regge pole expansion which played a major role in
phenomenological description of inclusive and total cross-
sections in the ’60s and '70s. To accommodate such a de-
scription and the rise of 0¢yt4;, the Pomeron trajectory cor-
responding to the exchange of a state with the quantum
numbers of the vacuum was introduced. Thus, a picture of
Ototal, With a Regge and a Pomeron exchange, unrelated to
the underlying parton dynamics of scattering, was one of
the first and still very successful descriptions. Finally, from
the partial wave expansion for the amplitude, and through
the optical theorem, we shall introduce the eikonal repre-
sentation of the total cross-section. This representation is
at present the major formalism, into which QCD mod-
els for the energy behaviour of oy, are embedded. This
chapter is divided with section and subsection headings as
indicated in the following:

— General principles behind relativistic scattering ampli-
tudes in [LT.1]

— Kinematics and analyticity of elastic amplitudes in[T.2]

— Probability conservation and unitarity in|1.3

— The optical theorem and total cross-section in

— Partial wave expansion of elastic amplitudes in [1.5

— Regge expansion and asymptotic behaviour of ampli-
tudes in

— Finite energy sum rules and duality for the elastic am-
plitudes in

— Various derivations of the Martin-Froissart bound in
.S

— The Pomeranchuk theorem in [[.9]

— Determination of p through Coulomb interference in
[LT0 with considerations about Coulomb interference

and soft radiation in [1.10.1l and [1.10.2

1.1 General principles

Strong interactions are presently understood in terms of
interactions between quarks and gluons. Quantum chro-
modynamics (QCD) can give remarkably accurate results
within perturbation theory, when dealing with very high
energy collisions and their final products in the large mo-
mentum transfer processes. However, the bulk of collisions
among high energy particles involves low momentum par-
tons which escape the perturbative treatment. For this
purpose, we have to resort to some general principles -
valid beyond perturbation theory- to establish the neces-
sary formalism and derive some general theorems. Later
we shall develop some tools to include QCD phenomena
in this general picture.

These general principles were established in the late
’50s and consist of unitarity, analyticity and crossing sym-
metry. Each of them is related to basic axioms:

— unitarity to the conservation of probability in scatter-
ing processes;

— analyticity to causality and

— crossing symmetry to the relativistic nature of the in-
teraction.

These basic principles are also at the foundations of rela-
tivistic Quantum Field Theory (QFT) [2].

We shall describe in detail how one obtains the so-
called Froissart bound, which imposes limits to the asymp-
totic behavior of the total cross-section in two particle
scattering. This limit was obtained first by Froissart [3]
and successively reformulated by Martin [4] and Lukaszuk
[5]. The importance of this limit cannot be understimated,
as most efforts to describe theoretically the total cross-
section behaviour or most fits to present data must con-
template the asymptotic satisfaction of the Froissart bound.
For this reason we shall describe how this limit is obtained
in several different derivations, pointing out in all cases
the common hypothesis, which is always the presence of a
finite mass in final state scattering.

The basic quantity to study in particle physics is the
probability that a certain set of particles in a given initial
state |¢ > undergo a collision and scatter into a final state

|f>.
To this effect, the process is described by the quantity

Sy =< f|S]i > (1.1.1)

where S is called the S-matrix (S for scattering) and Sy;
are the matrix elements. Since the scattering must also
include the possibility that nothing occurs, the S-matrix
is written in terms of the T-matrix, namely

Spi =0y +i(2m)*6*(Pr — P)Tyi (1.12)

where the 4-dimensional §-function imposes energy-momen—
tum conservation on all particle momenta p;, and, with
obvious notation, P; y = ), pi,s- The relevant matrix
elements define the scattering and are functions of the
momenta of the scattering particles, in particular of the
various invariants which can be constructed with the mo-
menta. Let us then turn to the kinematics before going
further into the dynamics.
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1.2 Kinematics of elastic scattering

Let us consider the two body process

a(p1) + b(p2) = c(p3) + d(pa) (1.2.1)
Usually, two different set-ups are most frequently encoun-
tered: center of mass collisions, as in most if not all present
day accelerator experiments at high energies; and fixed
target collisions, as is the case for cosmic ray proton-air
collisions or low energy photo-production experiments. It
is usual to call Laboratory frame where fixed target colli-
sions take place. However, there is another frequently en-
countered possibility, namely the kinematic configuration
of two collinear particles of different momentum. This sit-
uation is found in electron and photon proton collisions at
HERA and generally speaking is typical of parton-parton
collisions. We shall present in the following the kinematics
of all these three different possibilities.
In the c.m. frame of particles a and b, we write

Py = (E,,0,0,p) (1.2.2)

ph = (Ey,0,0,—p) (1.2.3)

ph = (E¢,qsinb,0,qcos0) (1.2.4)

Py = (FEq,—gqsin0,0, —qcos0) (1.2.5)

which can be described by two independent variables, to
be chosen among three relativistic invariants, the so called
Mandelstam variables, i.e.

s=(p1+p2)’ =5=(p3+ps)° (1.2.6)
t=(p1—p3)’s = (p2 —pa)® (1.2.7)
u=(p1 —pa)*s = (p2 — p3)* (1.2.8)
For general processes, we have
s+t+u=m>+mi+m2+mi=h (1.2.9)
and thus for elastic scattering, namely
a+b—a+b (1.2.10)
we have p = ¢ with
2 2 _ 02V2 _ 9g(m?2 2
pr = Sl mmy)” = 2s(my £1m) g5 g
4s
_[s—(mat mb)i][s — (Mg — mp)? (12.12)
S

and

s=m?2+mi+2p* + 2\/ml2) +p2\/m§ + p?(1.2.13)
t = —2p?[1 — cos ](1.2.14)

where 0 is the scattering angle in the c.m. frame.

For collisions not taking place in the center of mass, the
kinematics reads differently. While pp and pp scattering in
present day accelerators take place through center of mass
collisions, this was not true for early experiments, where
typically a proton or antiproton was directed to a fixed

hydrogen target, and it is also not true for meson proton
scattering, such as mp, Kp or vp, where pions, kaons or
photons are directed to a fixed hydrogen target. In such
cases, for the kinematics in the laboratory frame we get

s=m2+mj +2m.Ep (1.2.15)
so that
Spp = 2m2 + 2myp Ejqp (1.2.16)
Srp = M2 +m2 + 2my E)w (1.2.17)
Syp = m + 2mp B, (1.2.18)

In all the above cases, the proton is at rest in the labo-
ratory. A different case is the one encountered at HERA,
where the two beams, photons and protons, collide with
different momenta. For real photons of momentum ¢ col-
liding with a proton of energy FE,, one has

s —m? m?2

Kinematics is still different for virtual photon scattering
and will be described in Sect. [

Because of energy momentum conservation and of the
condition imposed by Eq. (1.2.9), physical processes can
take place only for those values of the variables s, t and u
which lie in the so called physical region. Such a region is
defined as [2]

stu < as + bt + cu (1.2.20)

where

ah = (m2m3 — m2m32)(m3 + m3 — m% —m?3)1.2.21)
bh = (m3m3 — mam3)(m3 + m2 —m3 — m?3)1.2.22)
ch = (mimi — m3m3)(mi + mj — mj — m3)1.2.23)
For the equal mass case, this reduces to the condition
stu < 0 and the allowed regions are shown in the dashed

areas of Fig. [1.2

1.3 Unitarity and the scattering amplitude

The measurement of the total cross-section is based on
two complementary methods: counting the number of col-
lisions and, measuring the very forward scattering proba-
bility. The second method is based on a fundamental phys-
ical property i.e., the conservation of probability, which
is embedded in the unitarity property of the S-matrix,
namely

Sst =1 (1.3.1)

In terms of the matrix elements, we have

(SSN) g = SpnSy; = 05 (1.3.2)

where n runs on all possible intermediate states. This
condition ensures the normalization and orthogonality of
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Fig. 1.1. Physical region for equal mass elastic scattering.

states in the reaction. In particular, for the i = f case,
Eq. ensures that the sum over all allowed transitions
from a given state | > to any possible final state, is one,

namely
Z | Sni | 2=
n

Eq. (1.3.3) is the statement of conservation of probability
in the scattering.
We can now proceed to derive the optical theorem, by

using Egs. and - to obtain

v = (2m) 254 (P — P,

Because the left hand side of this equation is linear in T,
while the right hand side is quadratic, if the T-matrix can
be expanded in a small parameter (say a coupling con-
stant), then unitarity ensures that the T-matrix elements
are hermitian. In the general case, one uses Eq. to
obtain the optical theorem, namely

(1.3.3)

Ty; — VTen Ty, (1.3.4)

2ImT;; = (27T)4 254(Pz - Pn)|Tin|2 (135)

where the amplitude T;; indicates elastic scattering in the
forward direction and where the right hand side, a part
from a normalization factor, gives the total cross-section
for scattering from an initial state |¢ > into any possible fi-
nal state, as shown in the following subsection. The reader
is warned that different authors use different normaliza-
tions for the elastic scattering amplitudes and hence due
care must be taken in using various unitarity expressions.

1.4 The optical theorem and the total cross-section
We follow here the definitions and normalizations as in

[6]. Let us start with the general definition of total cross-
section, by first introducing the probability that a given

two particle initial state |i > scatters into all possible final
states |f >, namely

> P = z/

where the sun runs over all final states and all possible
quantum numbers « of all possible final states. Next we
use the S-matrix definition in terms of the T-matrix

> Py = Z/H

x|Tyi|*(2m)* 54(Pf — P)(2m)* " (Py — P) (1.4.2)

dpn,

271_ 32E (S sz)]

(1.4.1)

dpy,
(2n)32E,,

and define the probability of the scattering per unit vol-
ume and unit time, by using the conventional way to in-
terpret (2m)16 (P — P;) as the four-dmensional scattering
volume VT. Using the language of the laboratory frame,
where the initial state consists of a target particle (T) and
a projectile (P), a further step is taken by considering the
scattering per target particle, dividing by the target parti-
cle density 2FE 1, and obtaining the cross-section by further
dividing this probability by the flux of incoming particles,
2Epvp,qp. We then have

Otot =
Z (Probability per target particle per unit time)

flux of incoming particles

fa
Z (Prob. per target particle per unit time)
> 2Epvpiab
D / H Ton 1,250 Py — Pi1AB)
4ETEP'UP lab (2m)32E,

The next step is to use Eq. ((1.3.5]) to relate the total cross-
section to the imaginary part of the forward scattering
amplitude so as to obtain, in the cm frame,

2%/5

where k is the center of mass momentum of the incoming
particles and /s the c.m. energy. We then see that the
total cross-section can be measured in two different ways,
either through the total count of all the final states hitting
the detector or through the imaginary part of the forward
elastic amplitude. In the next section, we will establish
some definitions and properties of the elastic scattering
amplitude.

(1.4.4)

Ototal =

1.5 The elastic scattering amplitude and its partial
wave expansion

For two equal-mass particle scattering in the c.m. sys-
tem, the Mandelstam invariants s, ¢, u take a particularly
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simple form and the physical region for the s-channel is
defined as

2
9 s—4m

t
G;=——>0, cosl,=1+-— <1; (1.5.1)
4 : 2¢?

or s>4m*t<0,u<0 (1.5.2)

Let then the elastic scattering amplitude A(s,cosf;) be
expanded in a series of Legendre polynomials

G

7“]9

AF (s,cos0,)

Z (20 + 1)Py(cos B,)al (s), (1.5.3)

where the subscript F' refers to the normalization used
by Froissart. Martin’s normalization differs by a factor =,
namely

\[Z 2l + 1) P(cos 0)a (s) (1.5.4)

AM (s, cosb,)

For simplicity, we shall now use 65 = 6. Using elastic uni-
tarity, it is rather simple to obtain some limits on the
partial wave amplitudes a; .

1.6 Asymptotic behaviour and Regge theory

We present here a brief description of the Regge expansion
which has been very useful in molding our ideas about the
behavior of elastic and total cross-sections as a function
of energy. The Regge picture forms the backbone of high
energy phenomenology of cross-sections. To illustrate its
central theme, let us consider the partial wave expansion
of an elastic scattering between two equal mass spinless
particles of mass m

(s,c080,) = > (21 + 1)Pi(2s)a(l, 5), (1.6.1)
=0

where the partial wave amplitude a(l, s) = (ﬂ—*{i)af(s) and
zs = cos 0. This expansion, for physical s-channel scatter-
ing (s > 4m?) certainly converges for |zs| < 1. The Regge
expansion consists in obtaining a representation valid for
large z; through a continuation from integral values of [
to continuous (complex) values of [ via the Sommerfeld-
Watson (W-S) transformation. In non-relativistic poten-
tial scattering, Regge was able to prove that for a super-
position of Yukawa potentials, the amplitude a(l, s) is an
analytic function of [ and its only singularities are poles
[the famous Regge poles, I = a(s))] and that bound states
and resonances are simply related to them. The situation
in the relativistic case is less clear and technically more
involved[7,8] For integral values of I, Eq. can be

inverted to give
1 /L
_1 / A(s, 2)Pi(2)
2/,

While the above equation permits an analytic continua-
tion of the function a(l,s) to complex values of I, it is

(1.6.2)

not suitable for completing the W-S transformation due
to the bad asymptotic behavior of P(I, z) for complex [[7].
Hence, a technical nicety, the Froissart-Gribov projection,
is required. Assume that A(s, z) is polynomially bounded
so that that a fixed s-dispersion relation (with N subtrac-
tions) can be written down in the variable z:

N-1
z) = Z 2" +

7/ dthsz)
Nz —2z)
% dz' Dy (s, 7))
7 L 2N —2)

, (1.6.3)
where D; and D, are the t and u channel discontinuities

of the amplitude. Substituting the above in Eq. (1.6.2)),
we find that

a(l, s) = %[/m dzDy (s, x)Ql(xH/:m dzDy(s,7)Qi(x)],

’ l (1.6.4)
obtained upon using the identity
1t Pi(z)
= - . 1.6.
Q)= [ ()2 (165)
Since for positive integral values of [, Q;(—2) = (—1)"*1Q;(2),

we may rewrite Eq. (1.6.4) as

ol.s) = 2 [ delDils. ) + (-1! Dl Q1)

(1.6.6)
where z, is the smaller of z; and z,. To avoid obtaining
dangerous factors such as e’ for complex [ when we an-
alytlcally continue Eq. ( -, it is useful to define the

“signatured” Froissart-Gribov amplitudes a® (1, s)

at(l,s) = %/OO dx[Dy(s, ) £ Dy (s, 2)|Qi(z), (1.6.7)

o

which can be continued for all e [ > N, since in this
region, the above integrals converge. The positive signa-
ture amplitude a*(l,s) = a(l, s) for even [ and the nega-
tive signature a= (I, s) = a(l,s) for odd I. Thus, the W-S
transformation is to be performed on the signatured total
amplitudes

i
8

A*(s,2) = (2 4 1)a*

=0

(1, s)P(2), (1.6.8)

~

separately. The physical amplitude is then given by the
combination

A(s, z) = z)— A" (s, —2)].

(1.6.9)

%W(s, 2+ AT (s, —2) + A (s,
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\ N
g

-1/2

Fig. 1.2. Graphical representation of the Sommerfeld-Watson
transformation contour in the angular momentum plane.

For each of the amplitudes in Eq. ([L.6.8]), one first replaces
the sum by a contour C which encircles all the integers in
the sum

Ai(&z) — 1 / <2Z + 1)ai(l’ S)Pl(_z)7 (1.6.10)
c

2 sin 7l

since the function sin 7l has poles at all the integers with
residue (—1)!/7 and use has been made of the property
that for integers P;(—z) = (—1)!P;(z). The next step is
to open the contour as in Fig. and one finds a large
semi-circle in the positive quadrant, a background integral
running vertically at Re [ = —1/2 and the contributions
from any singularities in a® (I, s). We expect Regge poles
and perhaps Regge cuts. Ignoring the cuts for the moment,
we may write

A= 5
2

where the sum includes all poles with Re «;(s) > —1/2
and the corresponding ﬁ]i(s) denote their residue. For
large z (which is synonymous with large ¢ for fixed s),
P,(z) — 2% and thus, in this limit A*(s,2) would be
controlled by the Regge pole to the farthest right (called
the leading Regge pole). Hence, one arrives at the Regge
asymptotic behavior result that

AR (s,t) = xF(s)1= ),

(20 4+ 1)a* (1, 8)Pi(—2)
sin 7l
87 (205 +1)P,+(—2)

[e3%

. . (1.6.11)

sin 7TOé;-t

(1.6.12)

in the limit ¢ — oo for fixed s. Of course, had we made the
Regge expansion in the ¢ channel, we would have obtained
the result

At (s,t) = xT(t)s*=W, (1.6.13)

in the limit s — oo for ¢ fixed. Putting in the proper
phases, we obtain for the pole contribution to the am-
plitude (which dominates the background integral for all

Regge poles with Re a(t) > —1/2) to be of the form

PN P
A(s, t) = —y (UW P

B efiﬂa_(t)_l 5 o
) 2y

sinma—(t) " so
. (1.6.14)

Using the form -valid for large s (i.e. ignoring masses)-

16
Trot(s) = (%)%m A(s,0), (1.6.15)
we have
167 S \at(0)— B S 0 (0)_
Trot(s) = — [T (0)(=)* O~ 447 (0) (=) O],
S0 S0 So

(1.6.16)
If a*(0) = 1, then the total cross-section would go to a
constant value. This is the celebrated Pomeron pole. It
has the added virtue that the ratio of the real part to the
imaginary part of the forward elastic amplitude would be
strictly zero, i.e.

Re A(s,0)

S A(s.0) (1.6.17)

la+©)=1 = 0,

exhibiting the limiting feature of diffraction scattering.
Hence, the early excitement about the Pomeron.

By contrast, were a~ (0) = 1, not only would the rela-
tive roles of the real and the imaginary parts be reversed
but there would be a genuine spin 1 massless physical
particle pole (analogous to the photon) in the elastic am-
plitude. Since in the hadronic spectrum we have have no
massless particles -of any spin- we would conclude that
v~ (0) =0 if &= (0) = 1. Hence, there would be no contri-
bution to the total cross-section from an o~ (0) = 1 Regge
pole (since it would have a vanishing residue). However,
the real part may be finite then.

Experimental data clearly indicate that (i) all total
cross-sections increase at high energies and that (ii) the
“rho” parameter

~ e A(s,0)

—_— 1. 1.6.1
Sm A(s,0) < (16.18)

p(s,0)]

Question then arises as to how to implement these facts
phenomenologically in a Regge picture. Some theoretical
progress has been made regarding the imaginary part in
QCD. In the BFKL Pomeron[9] model, one finds that the
Pomeron intercept is slightly greater than 1, i.e., a™(0) =
1 + €, where € = (4dasN./7)In2, where a; is the QCD
coupling constant and N, is the number of colours (3
for QCD). Thus, ot &~ (8/s0)¢ would rise with energy.
While for small enough €, this may work for some energy
band, it would eventually be in conflict with the Froissart
bound discussed at length in the subsequent sections. The
Froissart upper bound only permits a maximum increase
Ot < op In?(s/s0).

Powers of logarithms can arise due to the confluence
of two (or more) pole singularities. For example, if in the
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angular momentum plane, there occurs a double pole at
I = af(t), its contribution to the W-S integral would be
through a derivative (in [ evaluated at I = «) [10]. Asymp-
totically then, if a simple pole gave A(s,t) =~ (s/s0)%, a
double pole would give A(s,t) =~ (s/so)%In(s/so). To sat-
urate the Froissart bound, we need two derivatives in «
i.e., a third order pole, with of course «(0) = 1. On the
other hand, the more general case, i.e., generation of a
fractal power such as

SmA(s.t) — (s/s0)[In(s/s0)]"P (with 1/2 < p < 1)

(1.6.19)
(as found in a phenomenologically successful model for
total cross-section to be discussed later in [L9.4] of this
review) would require a confluence of an indefinite num-
ber of pole trajectories all converging at «(0) = 1. We
remark here in passing that, near a threshold, due to uni-
tarity, a confluence of an infinite number of trajectories
(the “threshold poles”) does occur and it has been well
studied [I0]. It is an open problem to deduce what hap-
pens in the vacuum channel of QCD with (almost mass-
less) quarks and gluons. This problem is particularly diffi-
cult in QCD because it can only be answered satisfactorily
after unitarity is imposed -a daunting task indeed.

The spectrum of mesonic masses leads one to conclude
that there are four almost-degenerate Regge trajectories
with intercepts close to 1/2 [8] Hence, in a total cross-
section for the scattering of particle a with b, these terms
provide the next to the leading contribution (about half a
unit lower than the Pomeron) of the form o(ab) gegge(s) =
Z?=1 oi(ab)(s/s0)(*~1 with the sum running over the p,
w, f and Ay Regge trajectories. This nomenclature recalls
the lowest spin resonance associated with a given Regge
trajectory. As discussed in the FESR and duality section,
the approximate degeneracy a; ~ 1/2 is deduced from
the absence of resonances in “exotic” channels.

Thus, a phenomenological parametrization based on
the Regge picure for the high energy total cross-section of
particles a and b may be formulated as [11]

Orot(ab) = ap(ab)(in(s/s0)]*'? + o,(ab)
+Zgi(ab)(3/so)(ai71)’

(1.6.20)

where the constants op(ab), o,(ab), and o;(ab) are the re-
spective coefficients of the “Pomeron”, an overall constant
and the various Regge terms for the scattering process a
on b. The constant p obeys the condition (1/2 < p < 1)
and o; = 0.5.

Regarding the asymptotic behavior of the p parame-
ter, defined in Eq., let us use the generic fractal

amplitude as given in Eq.(|1.6.19)

Sefiﬂ'/Q 8677'.7‘-/2

)[In

]1/17
S0 S0 ’

Afractal(sa O) = AO(

(1.6.21)

where Ag is a real constant and we have employed the
phase rule s — se~""/2 for crossing-even amplitudes[1Z].

This would give for the asymptotic form for p

s

7T (1.6.22)

pfractal(sa O) —

This generalizes for arbtrary p a rigorous result[I3], valid
for an amplitude saturating the Froissart bound (here
achieved for p = 1/2).

While it may be difficult to distinguish between a to-
tal cross-section increasing as ([In(s/s0)]?) or [In(s/so)]
[or some power in-between for 1/2 < p < 1], it may be
easier to use experimental measurements of p and employ
Eq. to decipher the value of p, since p depends
on (1/p) linearly. In any event, one has two consistency
conditions provided by Eqs. and for the
parameter p.

In the next section, we discuss an important off-shoot
from the Regge expansion which goes under the names of
finite energy sum rules and duality.

1.7 Constraints from FESR and Duality for the total
cross-sections

Analyticity in the complex (energy) plane for a function
(say a form factor or an elastic scattering amplitude) quite
generally implies that its values in the “low” and “high”
parts of the complex plane must be intricately related.
This obvious fact has been used successfully to relate in-
tegrals over the low energy parts of amplitudes to those
over their asymptotic high energy (Regge) parts.

To illustrate what is involved, consider the simplest
but physically quite important example of the charge form-
factor F'(s) of the proton normalized as F(0) = 1. Un-
der the usual hypothesis that for space-like values s =
—@? < 0, the function is real and that it has a right hand
cut beginning at the physical charged particle-antiparticle
thresholds, s, = 4m?2,s; = 4m%(,52 = 47711277...7 we may
write a dispersion relation

fe'e) /C\l ’
F(s):lJri/ ds SmF(s)

. (1.7.1)

s'(s' — s —ie)

Let us use the extra (experimental) information that for

large (space-like) Q% — oo, F(Q?) — 0. Then, Eq.(1.7.1])
gives us a sum rule

1 /°° dsSmF(s)

™ S

=1, (1.7.2)

o

which provides a relationship between the integrals over
the low and high energy parts of (the imaginary parts) of
the form factor. Since also, the neutron charge form facor
goes to zero for large Q?, we would obtain an expression
analogous to Eq.(1.7.2)) also for the neutron except that
the right hand side would be zero. In vector meson dom-
inance (VMD) models, the couplings of the p, w and the
¢ to the nucleons get constrained accordingly.

Actually experimental data regarding form factors are
much more stringent: it appears that the fall off of the
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proton form factor is of the “dipole” type. For purposes of of the integration to be v = N and include the left over

illustration, let us assume that Q>F(Q?) — 0 as Q? — oco.
Then, we can derive a “superconvergence” relation

/:O(ds)%mF

o

(s) = 0. (1.7.3)

Eq. tells us that SmF(s) must change sign at least
once. To meet this exigency then, a generalized vector
meson (GVMD) model with other vector mesons p’,w’, ¢’
etc. with their couplings (of reversed signs) to the nucleons
have to be introduced. It is not our purpose here to ad-
vocate GVMD models but to illustrate very simply that
dispersion relations with some knowledge -be it experi-
mental or theoretical- about the behaviour of an ampli-
tude at some value, allows us to put constraints at other
values.

Let us now turn to a specific case that of the elastic
meson-baryon amplitudes, with an eye towards their later
applications to photon-nucleon total cross sections. For
fixed ¢, in order to exploit the crossing symmetry between
the s and the u channels, one defines the variable[8]

s—u

t
= = — 1.74
v y- w+4m, (1.7.4)

so that w denotes the energy of the meson in the rest frame
of the baryon and m denotes the mass of the baryon. For a

crossing-odd scattering amplitude[8] T'(v,t) = T*(—v,t),
we may write a fixed-t dispersion relation
w [ . SmT( ¢t
T(v,t) = (possible poles) + ?V/O \M7
(1.7.5)

Let us assume generic asymptotic Regge terms of the form

Zﬂz

Using arguments previously given, if all the a(t) <
would obtain a superconvergence relation

Amum%mT

Instead, we can subtract the contributions from all «;(t) >
—1 to obtain a superconvergence relation of the form

/mwmﬁm SO R— R )
(1.7.8)

a;(t)>— 1]“041 t)+1)
Since asymptotically -by construction- the integrand in
Eq.(1.7.8) goes to zero, we may replace the upper limit

:|:1 —e —ima (t)
() + Dsinma (t)

TRegge v, t ]Vai(t)7

(1.7.6)

—1, we

(v,1) = 0. (1.7.7)

! Sergio Fubini, the discoverer of superconvergence rela-
tions, made an analogy between the knowledge of an ampli-
tude locally and some knowledge about the amplitude through
sum rules (e.g., superconvergence integrals) to that between
Coulomb’s law giving the local value of a field and Gauss’ law
providing an integrated statement about the field.

Regge terms with a < —1, and find

N .
/o (dv)|SmT (v, t) — (z): Z_w%%yai(t)]
ﬁji(t) > v I/Oéj(t) —
* 2 T+ f, @ =o
(1.7.9)

Doing the integral, we have the finite energy sum rule
(FESR)

1 N
So = N/o (dv)SmT(

Also. higher moment sum rules may be written. For even
integer n, we have

(1.7.10)

=3 T

all

1 N
NarT / (dv)v"SImT (v, t)

BN
(a(t)+n+ 1) (a(t)+1)

S, =

(1.7.11)

all «

FESR can also be constructed for crossing even ampli-
tudes and we shall return to them later.

As emphasized in [§], the relative importance of suc-
cessive terms in a FESR is the same as in the usual Regge
expansion: if a secondary pole is unimportant at a high
energy above v = N then this term would be unimpor-
tant to exactly the same instant in the sum rule. For 7NV
elastic scattering in the t-channel iso-spin I; = 1, FESR
have been exploited with much success to obtain infor-
mation about the p and the p’ trajectories [14]. Different
variants of the idea have been used, see for example [15]

In FESR, the scattering amplitude is multiplied by an
integral power of the laboratory energy. This was general-
ized to continuous moment sum rules(CMSR) [16]. In con-
trast to FESR, in CMSR, the multiplicative energy factor
is non-integral. However, CMSR turn out to be simply a
superposition of FESR, if the real part of the amplitude
is calculated using dispersion relations [I7]. For a review
of the applications of these ideas to specific processes, see
[18].

An interesting fall out from FESR was the concept
of duality[T9] which in its final form may be phrased as
follows. Consider a generic amplitude A(s,t) and decom-
pose its imaginary part (in the s-channel) in terms of the
s-channel resonances and a smooth background. Then,
the assertion is that “direct”(s) channel resonances are
“dual” to the crossed (t) channel Regge trajectories and
the Pomeron term(s) is(are) dual to the background. Ex-
plicitly, it means that in Eq. the integral over the
left hand side would contain contributions from s (and u)
channel (baryonic)resonances whereas the right hand side
would contain contributions from mesonic Regge trajec-
tories.

Let us give a practical example of FESR for total
cross-section. Suppose experimental data are available for
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a certain total cross-section oy, within a given energy
range. Optical theorem then allows us to convert this into
a knowledge about the imaginary part of the forward elas-
tic amplitude in the same energy range. Integrals of this
amplitude over the available energy range must match a
similar integral for a model describing the same asymp-
totic amplitude (ergo the asymtotic total cross-section).
Thus, unknown parameters in the model, usually Regge
residues and intercepts, can be fixed.

For the phenomenolgy of high energy pp and pp to-
tal cross-sections of interest at the Tevatron and LHC,
one forms combinations of the sum and difference of the
two cross-sections, thus focusing attention on crossing-
even A, (v) and crossing-odd A_(v) forward amplitudes.
For the odd amplitude A_(v), the procedure described
above is applicable. For the even amplitude Ay (v), one
constructs an odd amplitude vA, (v), to which the above
arguments again apply. We shall discuss how it works in
practice when we discuss models for total cross-sections.

1.8 The Froissart-Martin bound

We shall now derive the Froissart bound following three
slightly different methods, the original one by Froissart [3],
the one by Martin in [4] and [1], and Gribov’s derivation
in [20]. These different derivations expose the different as-
sumptions underlying them.

1.8.1 Froissart's derivation of the asymptotic behaviour of
the scattering amplitude

In [3], the bound on the total cross-section is given an in-
tuitive explanation. It must be noted (in hindsight) that
this intuitive explanation relies upon the existence of con-
finement. Indeed, the whole description applies not to
parton scatterings but to hadronic scattering. Let us go
through Froissart’s intuitive explanation. Let the two par-
ticles (hadrons) see each other at large distances through a
Yukawa-type potential, namely ge™"*" /r, where « is some
momentum cut-off. Let a be the impact parameter, then
the total interaction seen by a particle for large a is pro-
portional to ge™"*. When ge™"® is very small, there will
be practically no interaction, while, when ge™"" is close
to 1, there will be maximal probability for the interaction.
For such values of a, ka = In |g| one then can write for the
cross-section o ~ (7/k%)In?|g|. If g is a function of en-
ergy and we assume that it can grow with energy at most
like a power of s, then one immediately obtains that the
large energy behaviour of the total cross-section is bound
by In? s. What  is remains undefined for the time being,
except that it has dimensions of a mass.

Following this heuristic argument, Froissart’s paper
proceeds to the actual derivation of the bound. The deriva-
tion is based on the validity of the Mandelstam represen-
tation and the optical theorem. From the validity of the
Mandelstam representation for the scattering amplitude
and the convergence of the partial wave expansion, he de-
rives an upper limit on each partial wave, which depends

on the value L of angular momentum, after which the par-
tial wave amplitudes become negligible. All the a; are then
put equal to their maximum value a; = 1 and, then, in the
forward direction, one has

o0

> @+ Da

0

= L? + negligible terms < L*>  (1.8.1)

The value of L is determined as being such that for [ < L

qsB(s) { 1
V(L= N) “@o + (zg — 1)1/
where N —1 is the minimum number of subtractions needed
for the validity of the Mandelstam fixed-s dispersion rela-

tions and B(s) behaves at most like a polynomial in s, q
being the c.m.momentum. Eq. (1.8.2)) leads to

L~ (gs/r)In(B(s)))

and from this through the optical theorem to the bound

}L—N — 1

] < (1.8.2)

(1.8.3)

(1.8.4)

2
Ototal S In” s

1.8.2 André Martin's derivation

Martin’s derivation does not require the existence of the
Mandelstam representation and is thus more general. Also,
it provides an estimate of the constant pre factor to the
maximum square of the logarthimic growth. We shall write
s = 4k? ignoring all particle masses except when necessary
and use his normalization of the elastic amplitude.

oror(s Z 20+ 1) Imfi(s) = (167”)145(5,0),
= (1.8.5)
wherein
S 6261(5) o
fls) = ML i) = ()lL-m(s)eos(261(5))]

(1.8.6)
0 < mi(s) < 1 is the inelasticity and &;(s) is the real part
of the phase shift and

2t

i A+ D)Imfi(s)Pi(x); o= (1+7), (187)
=0

denotes the s-channel absorptive part of the elastic am-
plitude. This partial wave series should converge upto
t > 4m?2.

For the Froissart bound, Martin uses the majorization
scheme

Imfi(s)=1 for | < Lr; (1.8.8)
Imfi(s) =€ forl=Lr+1; (1.8.9)
Imfi(s) =0 for l > Lt + 2. (1.8.10)

Few remarks:
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— (i) The first statement, Eq., assumes that even
for large s, the partial wave amplitude is elastic and
a maximum i.e., n;(s) = 1 and &;(s) = w/2. This is
a gross overestimate since we expect that at large s,
M (s) — 0, so realistically we should take 1/2 and not
1 for low [. This then would get the heuristic result
Martin obtains towards the end of a recent paper [21]
improving the total cross-section bound by a factor 2.

— (ii) Let us also note that Eq.(I.8.8) assumes that the
partial wave amplitudes have a sharp cutoff, i.e., its
value is exactly 1 for all [ up to Ly, then brusquely it
drops to € for | = Ly+1 and then identically to 0 for all
higher [. Clearly, this is a very unphysical assumption
for a partial wave amplitude and can not be true in
any theory which enjoys analyticity in the variable [.

— (iii) The more reasonable behavior for large I, through
the convergence of the partial expansion in the Lehmann
ellipse leads to Imfi(s) — el7/(3/50)] times a very
smooth function of I and s. [Eq.(3.4) et sec in Mar-
tin’s book [1]]. This is also the p > (1/2) discussed in
[11] in the context of our BN (Bloch and Nordsieck)
inspired model discussed later in[£.9.4] and is the mini-
mum realistic dropoff. However, in obtaining the upper
bound, Martin assumes it is identically zero beyond a
certain [ which is certainly true but again unrealistic.

Now to a derivation of the upper bound. Clearly from

Eq.(1.8.7) and Eq.([1.8.8), we have that

Lr
Ag(s,x) > Y 2L+ V)P (x) = Ppp (@) + Pr,(2)
0
(1.8.11)
To prove the last identity in Eq.(1.8.11]), use the recursion
identity (20 +1)P;(z) = P, ,(z) — P,_,(x) and then write

141
the sum to be performed in the opposite order (beginning

from the end)

Lt

> @+ 1)P() = [Pl (@) = Pry ()]
0

+ [PLy(@) = Plya(@)]

All terms cancel, leaving only two terms

Lt

> @+1)P(x) = Py, (2)+ P, (z). Q.E.D. (1.8.13)
0

For large L, using Eq.(1.8.7) and Eq.(1.8.13]), we have
A(s,x) > 2P, (x) (1.8.14)

Use the Laplace integral for the Legendre function to bound
the right hand side:

P(z) = i/ow(dx)[a: + MCosx}l,

(1.8.15)

13

so that we can write for the derivative in a useful form

-1

771_@?_ 0 /Oﬂ(dx) [m +Va? - ]_COSX} X

1
[az ——+ V22— 1608Xj|
x
(1.8.16)
Since x > 1, we can bound the above

’ lx

P (z) > ) /Ow(dx)[x + Va2 — leosx]! (1.8.17)

m(ax? -1
Using the mean value theorem, we can impose the bound

/ l$¢o

P (z) > @2 —1) [z 4+ V22 — 1cosp,), (1.8.18)

for any 0 < ¢, < 7. Since z — 1 and (2% — 1) — (4t/s),

2PLT (z) > (Constcmt)LT(i)[x + Va2 — leosg,| ™
(1.8.19)
and hence using Eq.(|1.8.14]), we have

{(C’onstant)(z)As(s,t)] >

Lt [x 4+ xz? — 1cos¢o} tr > {1 +x2 — lcosqbo} tr .
(1.8.20)

Taking logarithms of both sides we have
t
In {(Constant)(s)As(s,t)] >

Lrin [1 +Vx? - lcosqﬁo} — Lp\/4t/s cosd,

(1.8.21)

We need only two subtractions in A(s,t) and so Ag(s,t) <
(8/50)%/In(s/s,). Using it in the above, we arrive finally
to the maximum value allowed to Lt

(s/4t) [M], (1.8.22)

Ly <
r oS},

Now the Froissart bound for the total cross-section follows
from

16m 5,  Ax(in(s/s,)]?

< —1IL%2 = 1.8.23
oror s T tcos2¢, ( )

Letting ¢t = 4m2 and ¢, = 7, we have the Froissart-Martin

result
oror < [%][ln(s/so)]Z. (1.8.24)

All of this can be duplicated in the eikonal scheme and of
course much more simply as shown below.
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1.8.3 Eikonal Picture derivation

In the limit of large s and fixed t > 0, the eikonal picture
emerges under the hypothesis of identifying the impact
parameter b formally as (I + 1/2) — by/s/2, so that

P(1+ %) — L(bV1), (1.8.25)

where I, is the Bessel function of the “imaginary argu-
ment”. With this identification, Eq.(1.8.7)) reads

Auls,2)= (3) /0 " (bab) ImF (b, $)L(0VD),  (1.8.26)

where the “b-wave amplitude” reads

(b, 8)e* ) 1

Flb,s) = T2

(1.8.27)

We may now impose a similar majorization scheme as be-
fore

ImF(b,s) =1 forb<br; and ImF(b,s) =0 forb> br,

(1.8.28)
whence

A5,1) > () /0 " bdb) I (V). (1.8.29)

The last integral can be done. Changing variables Y =
brv/t, we have

%&@N>AT@MMM=WMH) (1.8.30)

For large Yr,

eYr
I1(}7p) — \/Q;F§§:7 (1.8.31)
so that, for large Y
2t VYre¥r
= Au(s,8)] > % > e¥7, (1.8.32)
T

upon which by taking the logarthims of both sides, and
remembering that As(s,t) < (s/s,)%/In(s/s,), we obtain

from
2t )?pey% Y-
—As(s,t)] > ——— > e’ 7T, 1.8.33
O (1.833)
that
Yr <In(s/s1), (1.8.34)
and thus that
br
s T 9
oror < (5)/ (bdb) = [—2][171(3/31)] , (1.8.35)
0 mx

upon imposing t = 4m?2.

1.8.4 Gribov's derivation

What follows is almost verbatim from Sec. (1.
To show that asymptotically

4) of [20].

ImA(s,t)|—o < const - slog? l
50

5 — 00,

(1.8.36)

Gribov proceeds as follows. His notation differs slightly
from the one in the previous section. Defining

A(s,t) =Y (21 +1)fils)Pi(2), (1.8.37)
1=0
with the partial wave amplitudes defined as
fi(s) = 8mi[1 — e ()] (1.8.38)

[With respect to Martin, the difference is a factor of 167].
Using the fact that the singularity of ImgA(s,t) closest
to the physical region of the s-channel is situated at ¢t =
4p2, one tries to estimate fi(s) at large s. At large [, the
partial wave amplitude must fall exponentially in order to
ensure convergence for ¢ > 0. This is a consequence of

ela

P,(cosha) ~ m; for I — oo
2t
cosha =1+ < (1.8.39)

To ensure convergence for ¢ < 442, the partial wave am-
plitudes must then decrease as

8#

fimel@  coshayg =1+ — (1.8.40)

Now, in the limit s >> ¢, cosha ~ 1 + oz2/27 hence oy =

N/ 4p?

T and one can write
f1(s) = c(s, e ®s V 4“

where ks = /s —4p2/2. The function c(s,l) may be a
slowly varying (non-exponential) function of .

To establish the Froissart bound, Gribov now assumes
that the scattering amplitude grows no faster than a power
of s, in the vicinity of the ¢ = 4u? pole in the t channel.
This condition is analogous to the one about subtraction
in Martin’s derivation, just before Eq.(1.8.22)). If A(s, ) <
(s/s0)V, one can then see that this also valid for Im c(s D).
Let us see how.

[l —o00,s 00 (1.841)

s o0
> 1 Q2r+nI —
(SO) 7n ;g; + ﬂqfl ) ( 2k§)
(1.8.42)
Since all the Imfj(s) are positive due to the unitarity
condition as well as the P, for ¢t > 0, it must also be true

for each term on the sum, namely

()WY > Im c(z,s)(mg)—lﬂeé(ﬂ*vm (1.8.43)

S0 s
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and for t < 4u? it will also be

Im e(l,s) < ()N (1.8.44)
S0
and finally we have
Im fi(s) < (Z)Nem#et (1.8.45)

S0

With the bound on I'm f;(s), we can now derive the bound
on the imaginary part of the forward scattering amplitude
and hence on the total cross-section.

oo

ImA(s,t =0) = (2L+1)Im fi(s) (1.8.46)
=0
L 0o

<8w Y (2A+1)+ Y (2+DIm fi(s) (1.847)
=0 =L

where one has divided the sum into a term where the
partial waves are large and for which the partial waves
take the maximum value allowed by unitarity, and one
which contains all the higher partial waves. To estimate
the value of L after which the partial waves are small,
consider that they will become less than 1 when

s _2np ks S
= Rs <1 L < —log — 1.8.48
(SNeEE<l o L Fhos S (L8
Now using
L
> o@+1) (1.8.49)
1=0
we immediately obtain
ImA(s,t = 0) oc L*  slog? =2 (1.8.50)

50
The question arises as to how large are the neglected

. . _2u
terms. We can estimate them by using fri, ~ fre "
and then sum the second series as

> ks | k2
Z2(L+n)e an

n=0 2,[14

(1.8.51)

These terms are at most of orderL?/log(s/sg) and are
subdominant.

Now, using the optical theorem, ImA(s,0) = sotot(s)
one obtains the bound

tor(s) < 09 log? = (1.8.52)

S0
Thus this demonstration uses

— position of the t-channel singularity closest to the s-
channel physical region, at ¢ = 44>

— convergence of the partial wave series for ¢ > 0 (and
at most up to the singularity)

— large I-behaviour of the Legendre polynomials for z >
1

— that the amplitude does not grow with s faster than a
fixed power

— unitarity condition to ensure that I'm f;(s) is positive.

1.9 The Pomeranchuk theorem

Here again we follow Gribov. The Pomeranchuk theorem
[22] says that, if total hadronic cross-sections go to a con-
stant at very high energy, then asymptotically particle-
particle or particle-antiparticle total cross-sections should
be equal. It was derived using the property of crossing
symmetry of the elastic scattering amplitude.

We know, since the early "70s, that total cross-section
grow with energy [23], and therefore the Pomeranchuk the-
orem could be considered obsolete. However, there are two
reasons to discuss it, one of them being that our under-
standing of high energy particle collisions if dominated by
gluon-gluon scattering in QCD framework, would give the
same result as the Pomeranchuk theorem, as discussed
later in this section. On the other hand, since the total
cross-section is not a constant at high energy, there is
space for the existence of the called odderon, whose ex-
change may be relevant at very high energies. We shall
discuss more about this point in later sections.

The Pomeranchuk theorem is derived very simply. First
of all, let us move from the discrete representation of the
scattering amplitude in angular momentum [ to the im-
pact parameter space. To do this, one notices that for the
total cross-section not to decrease at very high energy, one
needs contributions from higher and higher partial waves.
At high energy, and in the forward direction, the main
contribution to the total cross-section comes from higher
partial waves. For large [ then we can use the asymptotic
expression for the Legendre polynomials,

Pi(cosf) ~ Jo((2l1)§) [>>1 0~0

(1.9.1)
We can then substitute the sum over the partial waves
with an integral and introduce the impact parameter vari-
able [k = b. Then the partial wave expansion becomes

A(s,t) = kﬁ/def(b,s)Jo(b\/ft) (1.9.2)
To obtain a constant total cross-section, assume the inte-
gral to be dominated by values of the impact parameter
whose distribution is independent of the energy : in such a
case, the s and ¢t dependences can be factorized. One puts
f(b,s) = a(s)B(b), to obtain

A(s,t) = sa(s)F(t) (1.9.3)
Assuming the further possibility that a(s) has no resid-
ual s-dependence, from the optical theorem there follows
the constant high energy behaviour of the total cross-
section. To summarize, constant total cross-sections can
be seen to arise if one can factorize the s and ¢t dependence
in the scattering amplitude, and if the dominant partial
wave amplitudes also become constant at very high energy.
Both assumptions are not necessarily satisfied. These two
assumptions however allow demonstration of the Pomer-
anchuk theorem, when we use crossing symmetry to relate
two processes, in which one particle in the initial state is
substituted with an antiparticle from the final state. This
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complex s — plane

a+b~>m

Fig. 1.3. Physical region for equal mass elastic scattering

amounts to relating the analyticity properties in the s-
channel to those in the u-channel. The argument goes as
follows.

Let us consider the two processes

at+b—c+d
a+d—c+b

(1.9.4)
(1.9.5)

and let A(s,t) be the amplitude which describes the first
of the above processes. The s-channel physical region for
process a + b — ¢+ d is shown in Fig. ﬂ;;l, i.e. with the
usual right-hand cut starting at s = 4p* and the left-
hand cut starting at s = 0. It is convenient to assume
that the amplitude for a + b — ¢ + d corresponds to the
value above the right-hand cut, namely, to be given by
lim,_,o A(s+ie, t), whereas the crossed process a+d — ¢+b
corresponds to exchange s = (p, + pp)? = (pe + pa)? with
u = (po — pa)? = (p. — pp)?. For the crossed process,
the physical region corresponds to lim._o A(u + i€, t) =
lim, 0 A(—s + i€ —t — 4p? t) = lim,_,0 A(—(s —ie) —t —
442,t), and therefore the physical region for this process,
in the s—channel is obtained by approaching the real axis,
on the left hand side, from below, as indicated in Fig.
Because the amplitude A(s,t) is real for 0 < s < 4p?,t <
0, its value at the edge of the cuts complex conjugates,
namely

A(s —ie, t <0) = A*(s + i€, t < 0), (1.9.6)

but the amplitude at the left-hand side is for process a +
d — ¢+ b, whereas the one at the right hand side is the
amplitude for a + b — ¢ 4+ d and one then can write

Agrisess(s) = [Aarbserals)]” for s~ —u (1.9.7)

Now apply the above result to the elastic amplitude for
a+b — a+ b and consider the imaginary part of the
forward amplitude. If the s-dependence is of the simple
type which leads to constant total cross-section, namely
A(s,t) ~ sF(t) at large s, then optical theorem gives

ola+b)~a(a+b) asymptotically (1.9.8)

For more complicated s and t-dependences in the ampli-
tude, i.e. those that do not imply constant total cross-
sections, Eq. (1.9.8) can still be obtained in some simple
cases such as A(s,t) ~ slns?F(t). However, the deriva-
tion then needs the additional hypothesis that the real
part of the amplitude does not exceed asymptotically the
imaginary part, a hypothesis de facto supported by exper-
imental data.

1.10 Determination of the p parameter through
Coulomb Interference and soft radiation

Here we discuss how near the forward direction, the real
part of the hadronic amplitudes is determined through its
interference with the Coulomb amplitude. We highlight
some of the subtelties associated with the procedure. Also,
a proposal is presented for obtaining information about
the behavior of the purely nuclear amplitude through the
measurement of the soft radiation spectrum in a quiet
event, i.e., unaccompanied by any other visible particle.

1.10.1 Coulomb interference

At high energies, the p-parameter, which denotes the ratio
of the real to the imaginary part of the forward (complex)
nuclear scattering amplitude A(s,0)

ReA(s,0)
= —= 1.10.1
pls) SImA(s,0)’ ( )
is rather small (about 0.12 = 0.14). Since, the total (nu-
clear) cross-section depends only on SmA(s, 0) and through
the optical theorem, the elastic differential cross-section in
the forward direction depends on p quadratically

2

()= 0) = (P14 ),

(1.10.2)

it is difficult to measure p accurately and in any event
such a measurement would not determine the sign of the
real part of the nuclear amplitude.

Fortunately, when we augment the nuclear with the
Coulomb amplitude (due to one-photon exchange, in the
lowest order), the interference between the Coulomb and
the real part of the nuclear amplitude (for small ¢) allows
us to determine both the sign and the value of p. The
Rutherford singularity (o< «/t) renders the Coulomb am-
plitude sufficiently large to become competitive with the
nuclear term, for small . On the other hand, away from
very small angles, the Coulomb term dies out and one can
safely revert to the purely nuclear amplitude. However,
to obtain numerically accurate information about p, some
care is required to obtain the correct Coulomb phase for
the nuclear problem.

To see what is involved, let us consider first Coulomb
scattering in non-relativistic potential scattering. The clas-
sical Rutherford amplitude (or, the Born approximation,
quantum mechanically), with a Coulomb 1/r potential,
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for the scattering of two charges (Z1¢) and (Zse), is given
by

YAV
folk,9) = =222, (1.10.3)
where y denotes the reduced mass, t = —4k%sin?9/2 and

a &~ 1/137 is the fine structure constant. But, the exact
(quantum-mechanical) Coulomb scattering amplitude has
an oscillating phase e**s multiplying the above. This phase
is given by[24]

s = ( ) In(sin*9/2),

ZZz0c (1.10.4)
v
where v denotes the relative velocity and the presence of
«a reminds us of the quantum nature of this phase The
physical reason for this phase is that the Coulomb poten-
tial is infinite range and however far, a charged particle
is never quite free and hence is never quite a plane wave.
For pp or pp scattering, in the relativistic limit (v — ¢)

and for small angles, Eq.(3.2.10) reduces to

b5~ (¥20) n(3).
Eq. is exactly the small-angle limit of the relativis-
tic Coulomb phase obtained by Solov’ev[25]. On the other
hand, this result was in conflict with an earlier potential
theory calculation by Bethe[26] employing a finite range
(R) nuclear potential in conjunction with the Coulomb po-
tential. According to Bethe, the effective Coulomb phase
reads

(1.10.5)

op =~ (+2a) In(kRY). (1.10.6)

This discrepancy was clarified by West and Yennie[27].

is sufficiently accurate for determining p through interfer-
ence at LHC energies and beyond.

Block has defined a practically useful parameter ¢,
for which the interference term is a maximum: ¢, =
[8ma/0tot]. For the maximum LHC energy of 14 TeV,
to =~ 7x 10~* GeV?2. Putting it all together, the Coulomb
corrected, differential cross-section for pp or pp reads|2§]

[Sﬁ]o = (%ot [ () (o)

167

to _
= 2m(p + oy )G2(t)e BlH/2

+ (1 + p?e B, (1.10.10)

where for the magnetic form factor, one may employ G(t) =
[1=i7a2)%, with A% =~ 0.71GeV?.

One other aspect of the EM radiative corrections needs
to be investigated. So far, we have not considered real
soft-photon emissions in the scattering process. As is well
known, contributions due to an infinite number of soft
photons can be summed via the Bloch-Nordsieck theorem.
If (do/dt), denotes the differential cross-section without
the emitted soft-photons, the inclusion of soft radiation
introduces a parameter which is the external energy reso-
lution AE. A compact expression for the corrected cross-
section can be written as follows[29]

do _ AE

o _ do
dt ‘' FE

5= 1.10.11
HE (110.11)
where the radiative factor B combines the various combi-
nations of the momenta of the charged emitting particles
in our equal mass elastic case

These authors computed the effective Coulomb phase through

the absorptive part of the interference between the nu-
clear and the Coulomb amplitude. They found -again in
the small angle, high energy limit-

0 ! /
owy = Faan(5)+ [ o0 - SR
) (1.10.7)

If one ignores the ¢ dependence of the nuclear amplitude,
the integral term above is zero and one obtains Solov’ev’s
result. On the other hand, a result similar to that of Bethe
is reproduced, if one assumes the customary fall-off eB*/2
for the nuclear vertex and a dipole form factor for the EM
vertex. Explicitly, if we choose

A(s, t! " 1—t/A?
Ai’t)) = o] _t//AZ)Q, (1.10.8)
we find
dwy = (Ffa)[y+In(Bt]/2) + In(1 + %)}, (1.10.9)

where v &~ 0.5772 is the Euler-Mascheroni constant. This
expression for the effective Coulomb phase agrees with
Block[28], upto terms proportional to (|t|/A?), which are
quite small near the forward direction. Hence, Eq.

A 2«
B= (?)[112 + Iz + I1a — 2], (1.10.12)
where
1
dy
3 =200 P3) | Gy — By (1= )]
(1.10.13)

In the high energy limit, I15(s) — 2In(s/m?) and I14(s) —
—2In(u/m?), so that the sum I1o+ 114 — 0 vanishes, leav-
ing us with I13(¢). For small angle scattering of interest
here, we have the correction from real photon emission of
the form

do AE gy, do
o (TE‘ )5( )(E)O’ (1.10.14)
where
dor, . —t 9
B(t) = (—)( ); (=t << m?), (1.10.15)

T 3m?
which is rather small and vanishes as ¢ = 0. The phys-
ical reason is that the amount of radiation is small for
low velocities. For the CM elastic amplitude, the energy
loss AE due to real soft bremmstrahlung is estimated by
the lack of collinearity in the outgoing particles. Thus,
(AE/E) =~ AY). Even for AY ~ 107*, the real radiative
correction is extremely small and thus can be ignored.
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1.10.2 Soft photon radiation as a possible tool for
measurements of the total cross-section

Through the above expressions, we may compute the dif-
ferential probability for a single soft photon produced in
association with the near forward elastic process. That
is, the differential cross-section for the process p(p1) +
p(p2) = p(p1) + p(ps) +7(k), for small [t << m? and
small k is given by

doN 4o —t  do

Thdr = (ﬁ)(%)(%)oa (1.10.16)

where m denotes the nucleon mass.
To obtain a leading order of magnitude estimate, let

us insert only the nuclear amplitude in Eq.(1.10.16|) and
integrate over all ¢:

o Ay Ly oo
7~ GO (1.10.17)

Putting in nominal values for the LHC, o4, = 100mb and
for the diffractive width B ~ 20 GeV =2, we estimate

do 1
5~ G
This would lead us to a comfortable soft photon produc-
tion rate [associated with elastic scattering]

L
1032 /em? / sec.

4.35 x 10™3mb). (1.10.18)

N ~ (435 Hertz) ln(sz””)( ), (1.10.19)

where L is the machine luminosity. Thus, observation of
only soft photons accompanied by no other visible par-
ticles (an otherwise quiet event) would be very useful in
determining some crucial nuclear high amplitude parame-
ters. Transcending the specific model estimates, what the
soft radiation spectrum really measures is the mean value
of < —t > associated with the elastic cross section o.;.

A simple variant of the procedure outlined above of ob-
taining information about the background process through
the spectrum of a single photon in an otherwise quiet event
was utilized earlier at LEP. One way adopted to measure
the number of neutrinos into which the Z° could decay
consisted in measuring the rate for the process

e +et — ~(k)+ nothing visible. (1.10.20)
Thus, measuring the initial state photon radiation, al-
lowed one to deduce the correct branching ratio of Z° into
all neutrino-antineutrino pairs, which obviously escaped
experimental detection. On the other hand, at LHC, if in-
deed a single soft photon spectrum in a quiet event - up
to some very small angle - can be measured, one can be
reasonably be sure that two protons (to conserve baryon
number) must have been produced which escape within
the very small angular cone on either side of the beam.
Relaxing the angular aperture might allow one to learn
something about single diffraction cross section as well.
We shall not pursue this interesting topic here any fur-
ther.
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Fig. 2.1. The energy distribution of the cosmic ray flux, mul-
tiplied by E*°, from [30] and 2015 update.

2 Non-accelerator experiments

In this section, we discuss the measurement of proton-
proton scattering as performed through cosmic ray exper-
iments, the results and their interpretation.

Until the advent of particle accelerators in the mid-
1950’s, information about high-energy elementary particle
scattering, and hence its dynamics, was obtained through
the observation of cosmic ray showers, which resulted from
the interaction of primary particles (those arriving from
the interstellar space and beyond) with the earth’s atmo-
sphere. The energy distribution of the primary particles
was measured through the depth and extent of particle
showers observed after the interaction, following a tech-
nique we shall describe in more detail later in this section.

Through these observations, it was possible to extract
proton-proton total cross-sections. To this day, the ex-
traction of proton-proton total cross-sections from cosmic
ray measurements, reaches center of mass energies usually
higher than contemporary accelerator data. As we shall
see however, this extraction procedure is still affected to
a large extent upon modeling.

The energy spectrum of cosmic ray particles is shown
in Fig. from the 2014 Review of Particle Physics
(PDG) [30], where an up-to-date review of the subject
can be found.

We shall follow the historical development of the meth-
ods proposed to extract pp cross-sections from p-air scat-
tering data and present results thus obtained. This section
is structured as follows:

— Heisenberg’s observations about the effective cross-section

for scattering in the Yukawa theory, interesting be-
cause they involve still currently debated questions
such as the simultaneous occurrence of multiple scat-
tering processes and the range of applicability of per-
turbation theory, are presented in
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— Glauber’s model for high energy particle scattering,
which is the basis of present methods for the extraction
of proton-proton scattering from p— air cross-sections,
is outlined in [22]

— in developments in the extraction of pp scatter-
ing from cosmic ray data from early 1970’s, after the
appearance of the ISR data, up to phenomenological
analyses following 1980’s accelerator results in the TeV
energy range, are delineated further as follows:

— early models are in [2.3]]
— more precise extractions after data from the CERN
Super proton-antiproton Synchrotron (SppS) in

— appearance of mini-jet descriptions are presented
in 233
— uncertainties in the extraction of the p — air data

are presented in [2.3.4] 2.3.5] [2.3.6] with updated

analysis of pp data extraction by Bloch, Halzen and
Stanev in [2.3.7]
— further clarifications about extraction of p — air cross-
section from cosmic rays in[2.4]
— a discussion of critical indices for cosmic ray radiation
is presented in
— cosmic ray results after the new pp total cross-section
measurements at LHC, from the AUGER and Tele-
scope Array collaborations can be found in [2.6] with
associated uncertainties due to diffraction discussed in

— eikonal models as tools for extraction of pp data are
discussed in with results from a two-channel model
in and a recent one-channel analysis briefly pre-
sented in [2.7.2)

2.1 Heisenberg and cosmic radiation

In a collection of papers prepared by Heisenberg in 1943
to commemorate A. Sommerfeld’s 75th birthday, and later
translated in 1946 [31] there appear two important issues.
The first concerns the observed power law flux of cos-
mic ray particles as they appear on Earth along with hy-
potheses regarding the flux of primary cosmic radiation.
We shall return to this problem in The second is
a description of the Theory of explosion-like showers, in-
teresting for the strict analogy established by Heisenberg
between mesons and light quanta.

This collection of papers has an interesting history of
its own. As stated in the foreword by T. H. Johnson, the
American editor and translator of the book from German
to English, the volume was published in Berlin in 1943
in commemoration of the 75th birthday of Arnold Som-
merfeld. The articles present a general view of the state-
of-the-art of cosmic ray research. However, and here lies
the historical interest of this note, on the very day which
the book was intended to commemorate, and before many
copies had been distributed, bombs fell on Berlin destroy-
ing the plates and the entire stock of printed volumes.
To make the material available to American physicists, S.
Goudsmith loaned his copy of the German book and T.H.
Johnson translated it. Also interesting are some of the

comments by Heisenberg in the foreword to the German
edition. After mentioning that investigations on cosmic ra-
diation had been sharply curtailed by the misfortunes of
the times, Heisenberg recalls that the papers come from
symposia held in Berlin during 1941 and 1942, and that
the American literature on the subject had been available
only up to the summer of 1941, so that the present collec-
tion could be considered to give a unified representative
picture of the knowledge of cosmic radiation at about the
end of the year 1941. The book is dedicated to Arnold
Sommerfeld, the teacher of atomic physics in Germany,
as Heisenberg says.

In a brief note, page 124, Heisenberg is interested in
estimating the effective cross-section for scattering in the
Yukawa theory, to be applied to cosmic ray showers. He
objects to what was, at the time, the current interpre-
tation of the Yukawa theory as a perturbative one and
discusses the presence of multiple simultaneous processes
when the energy of the colliding particles is above a certain
value. Thus, above this value, the assumption that per-
turbation theory converges reasonably, i.e. that the prob-
ability for the simultaneous emission of many particles be
small, is not valid. According to Heisenberg, there are two
reasons for the occurrence of multiple processes, namely
the close relationship of the Yukawa particle (the 7w me-
son) with light quanta, and the peculiarity of the meson-
nucleon interaction. Unlike QED, whose convergence de-
pends only on the dimensionless constant «, Yukawa’s the-
ory depends on a constant with the dimensions of a length
(of order 10713 ¢m) and thus perturbation theory will di-
verge as soon as the wavelength of the particle concerned
is smaller than this length. Thus in high energy scatter-
ing processes, with very short wavelength of the colliding
particles, there occur the possibility of multiple particle
processes.

As for the close analogy between light quanta and me-
son emission, the similarity lies in the fact that in the
collision of two high energy hadrons, several mesons can
be created in a way similar to when an infinite number of
light quanta is emitted in charged particle collisions. One
can describe soft photon emission in a semi-classical way
as taking place because in the sudden deflection of an elec-
tron, the electromagnetic field surrounding the charged
particle becomes detached from the particle and moves
away like a relatively small wave packet. This process
can be described by a delta function in space-time, whose
Fourier transform is constant. Interpreting this spectrum
as the expected spectrum of the radiation, one can calcu-
late the mean number dn(E) of light quanta emitted in a
given energy interval dE and thus

dE

dn(E) ~ z

(2.1.1)
which is the usual infinite number of emitted soft (E — 0)
photons. In complete analogy, the sudden change in direc-
tion of a nucleon will result in multiple meson emission,
as the difference of the associated Yukawa fields becomes
detached and, as Heisenberg puts it, “wanders off into
space”. However there is of course a difference, namely
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that the pions are massive and therefore the total num-
ber of emitted pions will be finite and increase with the
logarithm of the collision energy. This effect thus gives in
principle the possibility of an increasing multiplicity ac-
companying the high energy collision, but, according to
Heisenberg, it is not enough to explain the experiments.
Thus a second element is introduced, There are non-linear
terms in the Yukawa theory which distort the spectrum
and give rise to a sufficiently large emission to explain
experiments. This part however is described only in quali-
tative terms, at least not in this reference. As we shall see
later more developed models lead to a cross-section that
saturates the Froissart bound.

2.2 The Glauber model for high energy collisions

We shall now discuss Glauber’s theory of high energy scat-
tering [32]. It derives in part from Moliere’s theory of
multiple scattering [33], whose simpler derivation was ob-
tained by Bethe [34] in 1955 and which we shall outline
in Sect. [d Prior to that, Rossi and Greisen had discussed
cosmic ray theory [35] and many of the concepts they used
were later elaborated in the theory of high energy scatter-
ing.
Glauber starts by recalling the complexity of high en-
ergy collisions, that comes from the large number of final
states which open up as the energy increases, but com-
ments on the fact that at high energy it is possible to use
a number of approximations to deal with this complexity.
The inspiration for the treatment of such collisions comes
from the diffraction properties of optics, and this gives
the model its name, i.e. optical model. The major differ-
ence of course lies in the fact that in optics the obstacles,
namely the target of the colliding system, is fixed and
macroscopic, whereas in nuclei, and of course also in nu-
cleons, the scattering is constituted of moving microscopic
particles. Thus a quantum mechanical treatment needs to
be developed. The model originally deals with elastic scat-
tering alone, treating inelastic scattering as if the particles
not scattered elastically had been absorbed by the nucleus.
This is the origin of the term absorption still used for in-
elastic scattering. Glauber explicitly mentions that this
work can be considered as an extension and generalization
of the Moliére method of multiple scattering [33]. Notice
however a basic difference between Glauber’s treatment
and Moliére, namely that Glauber deals with amplitudes,
while Moliére with probabilities. We shall comment on this
in Sect. [l

The scattering amplitude f(8) is related to the differ-
ential cross-section in the solid angle d{2 as

Flux through df?

_ 2
do = Incident flux di2 = |f(0)] a2

(2.2.1)

and is related to the potential V() through the integral
equation

m

ol (@ V(e ()

(2.2.2)

fk,K)

f0) =

To obtain this expression, a boundary condition has been
applied, namely that the potential V' (7) is different from
zero only in a limited region so that as r — co the wave
function takes the asymptotic form

ezkr

Yr(r) ~ e® T + £(0) (2.2.3)

r

Glauber then proceeds to establish some general prop-
erties and starts by looking for the consequences of particle
conservation. For a real potential, he obtains

1 . k *
S L) = £ )} = - [ O BF (b )2,
(2.2.4)
which assumes a particularly simple form for the case k' =

‘c’
) ( ) k ‘ ( )‘ U k sca ( )
\fm’ kvk: 4 ’ k:r,k {1!2 4 ag tt 2.2.13

where 0s.q4¢ 1S the total scattering cross-section. The above
relation is also formulated as the optical theorem. For the
case k # k', Eq. corresponds to the condition
that the operator, which yields the final state, is unitary,
namely to the so called unitarity condition.

If the final states, as we know to be the case in high en-
ergy scattering, will include also inelastic processes, then
the potential to be considered in such case is a complex
potential For a complex potential Eq. becomes

ST — (K}

k / *
=1 [ e )1 )2,

m

gz [ SmV @) n(dn)

(2.2.6)

Again for the case k = k' one can write the generalized
optical theorem, namely

k k
%mf(k7 k) = E(Uscatt + Uabs) = EUtOt

(2.2.7)
where the absorption cross-section o,,s has been intro-
duced to account for particles which have “disappeared”.
In the optical language, these particles have been absorbed
by the scattering material, while in high energy language
this cross-section corresponds to the inelastic cross-section,
namely to the creation of a final state different from the
initial one.

The three cross-sections defined above, 0scatt, Tabs, Ttots
can also be expressed using the partial wave expansion for
the scattering amplitude. Writing

0= 5 X @G -DAE) (229
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one obtains

Foas = [ [FOP2 = S @1+ )0 - 1F

Otot =

% D @+ 1)[1 - ReC]

Oabs = Otot

~ Gucatr = 13 2 (2 + DL = 7] (22:9)

The expression for the scattering amplitude for an ax-
ially symmetric potential is obtained by Glauber, under
certain approximations, as

f(K' k)= %/ei(k_k/)'b{ei’((b) —1}d*b  (2.2.10)
where
1 [t .
x(b) =—ﬁ—/ V(b+kz)dz (2.2.11)
v — 00

He notes that an important test of the self consistency of
this approximation is furnished by the unitarity theorem,
and he proceeds to show that, in the absence of absorption,
i.e. for xy purely real, one has

4
Oscatt = /ko’|f(k7k,)| = Otot = ?\smf(k k)
(2.2.12)
since for y purely real
Oscatt = /|61X 1|2d2b
/(1 — Re eX®)a%p
= Otot (2213)

If there is absorption, namely x is complex, then the con-

servation of probability implies for the inelastic cross-section

to be obtained from the difference 040 — Tscate, and one

has
Oabs = /(1 - |eiX(b)|2)d2b

In what follows in Glauber’s paper, various examples
are discussed and solved, whenever possible. These are:

(2.2.14)

— an absorptive potential (negative imaginary) confined
to a sphere of radius a and in such case the sphere can
be considered to be opaque in the optical sense

— a square potential well

— a Gaussian potential

— the Coulomb potential

— a screened Coulomb potential

In nuclear applications, the incident particle is subject
both to nuclear forces and to the Coulomb field, and su-
perposition of the phase-shift functions for y(b) for the
nuclear and Coulomb interactions is suggested. Thus the
nuclear phase shift function needs to be added to the
Coulomb one, given by

Ze? b 2 p? b
by =22 b 2 +0()

hv 2a fiv 2a2 (2.2.15)

- b
| 5-% 5

Fig. 2.2. View of the Glauber model geometry in the trans-
verse plane relative to the z axis of scattering direction.

which represents an expansion in the ratio between the
impact parameter distance b and the range a for which
the potential is non zero. According to Glauber, this pro-
cedure will take proper account of the two types of effects
and of the interference between the two types of scatter-
ing.

2.2.1 Scattering with bound particles

In the first part of his lectures on high energy collision
theory, Glauber discusses scattering of one-on-one parti-
cle. To study actual scattering experiments of particles on
nuclei, one needs to take into account that particles are
usually in a bound state and thus transitions from one
state to another, bound or free, can take place. The gen-
eralization is done first treating the one-dimensional prob-
lem and then going to the 3-dimensional one. The basic
expression for the scattering amplitude in such cases takes
the form

Fi(K' k) =

k i(k—k')- * % -
%/el(k k)b/uf(Q)[e xX(b=2) _ 1]u;(g)dg db
(2.2.16)

where s corresponds to the impact parameter coordinate
relative to the individual state of the target as shown in
Fig. 22

The initial states u; have been defined from the wave
function expression

U(z,t) = ' PN (z, ),

The phase shift function is now generalized from the pre-
vious expression so as to include the impact parameter of
the target particles, and is thus given as

(2.2.17)

1 [T

x(b—s) = —-— V(b—s+kz)dz  (2.2.18)
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2.2.2 The Glauber model for high energy scattering of
protons by nuclei

In [36], the previously developed theory for multiple scat-
tering is applied to describe the results of an experiment
by Bellettini et al. [37] for the scattering of 20 GeV/c pro-
tons on different nuclei. The starting formula is the one for
proton-nucleon collision in the diffraction approximation
(small angle), with spin effect neglected, i.e.

flk—K)= % /(d%)e“k—k’)'br(b) (2.2.19)
with .
F®) =5 / d*qe™""f(q) (2.2.20)

When I'(b) only depends on the scattering angle, one can
perform the integration over the azimuthal angle, i.e.
Fk—K) = ik / bdbdo(lk — KB)D(B)  (2.2.21)

The proton-proton scattering amplitude at high energies
and small angle is taken to be

fl@) = f(0)e~ 277

where f(0) = (i4+p)koiotar /4. The values used by Glauber
and Matthiae in [36] are p = —0.22, 32 = 10(GeV/c?)~2
and oyopq; = 39.0 mb. What is needed to compare with
data (also later in the case of cosmic ray data) are the elas-
tic and the inelastic proton — nucleon cross-section. After
a number of simplifying approximations, the nuclear elas-
tic scattering amplitude is defined by means of a suitable
nuclear phase-shift function y (b) as

(2.2.22)

Fn(A) =ik / bdb.Jy(Ab)[1 — e~ (®)] (2.2.23)

For large atomic number A, the function xx(b) can take
a simple form [32]

1

; - —iq-b 2

v ) = —5 [ @S@Pe (2224)
where f(q) is the proton-proton scattering amplitude and
S(q) is the nuclear form factor, i.e. the Fourier transform
of the nuclear density. The overall density of the nucleon
in this case is taken as the sum of the single particle den-
sities. Through Eq. , one can then use the optical
theorem to calculate the total cross-section. A further ap-
proximation could be made if the nuclear radius is large
compared to the range of the nuclear forces. In such a
case, the form factor is peaked near zero and Eq.

is approximated as
Fn(A) =ik / bdbJy(Ab)[1 — eCmi/RFOTE)) (9 2 95)

with the thickness function T'(b) = [ dzp(b + kz). At the
time when their paper was written, Eq. was re-
ferred usually as the optical nuclear model. However, ac-
cording to Glauber and Matthiae, it is not a very good

approximation, since the size of the nuclei of interest in
this study were not much bigger that the range of the
nuclear forces. Thus different approximations were looked
for.

The quantity of interest here is the total inelastic cross-
section. This will be obtained as the difference between the
rate for all possible final states and the elastic differential
cross-section. For large A values, and for the large nuclear
radius approximation, the following expression is proposed

Z |Ffi(A)‘2 — (;)2 /(de)(dQB)eiA'b_UtotalT(B)
fi ™
X{mp[T,(f) /6*iq'b|f(q)|2d2q] ~1)

(2.2.26)

Since actually the large radius approximation does not
quite hold for light nuclei, one needs to use a non approx-
imate expression. Different models for the nuclear density
functions and the nuclear forces are discussed and the re-
sults plotted and compared with the Bellettini et al data.

The situation is easier for small A, namely for small
scattering angles, A < R~! where R is the nuclear radius.
When A becomes small, and the nuclear radius is large
compared to the interaction range, for large A one can
use

S IFR(A) = /(AP (N~ | / HALTN T () (d%B)|?),
F#i

(2.2.27)
where N refers to the number of free nucleons.

This model can be used then to extract information
about pp total cross-section from cosmic ray experiments,
given the correlation between the proton-nuclei cross-section
and o4otq;- However, apart from modeling the nuclear den-
sity, which by itself may introduce some degree of theoret-
ical uncertainty, there is another problem connected with
the extraction of data from the cosmic ray shower, namely
how to extract the energy of the initial hadron or proton
from the actual measurement of the shower. To this we
turn in the next sections.

2.3 Cosmic rays: measurements and extraction of pp
data

Cosmic rays have traditionally afforded information about
particle scattering at very high energies. Indeed, the rise
of the total cross-section, hinted at by the earliest exper-
iments at the CERN Intersecting Storage Rings (ISR),
could be seen clearly in cosmic ray experiments as shown
in [38,39]. In [38], Yodh and collaborators stress the in-
conclusiveness of data concerning the energy behavior of
the total cross-section. Since the rise, if at all, would be
logarithmic, it is pointed out that one needs to go to much
higher energies, such as those reached by cosmic ray ex-
periments, where even logarithmic variations can be ap-
preciable. Fig. from [38] shows results from cosmic
ray experiments compared with ISR earliest results [40].
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Fig. 2.3. Figure 2 from [38], in which measurements for the
inelastic p-air cross-section from cosmic ray experiments are
compared with various theoretical models and values extracted
from then available ISR results [40] for of”, ,. Reprinted with
permission from [38], ©1972 by the American Physical Society.

Subsequent ISR measurement of o}’ then confirmed the
early rise and the cosmic ray observations.

In order to relate pp total cross-sections to p — air
measurements, Yodh and collaborators followed Glauber
multiple scattering theory [36] using a method previously
discussed in [41]. A value for ot%, could be obtained essen-
tially through the following basic ideas:

— what can be measured in cosmic-rays is the inelastic
p-air cross-section,

— once a model for the p — nucleus elastic amplitude is
advanced, the inelastic p—nucleus cross-section follows
from Oinel = Ototal — Oelastics

— the pp cross-section corresponds to the mean free path
for interaction of a proton in a nucleus and can be
input to an effective inelastic cross-section for protons
in air.

Different theoretical models for pp cross-section were then
inserted in the calculation and compared with cosmic ray
data as well as an early ISR measurement [40]. The results
were given as a set of different curves, of which the one
fitting cosmic rays data followed a behaviour saturating
the Froissart bound. With this latter parametrization, the
curve at FEj,, = 10° GeV gives a most reasonable value
of

oth =60 mb at By = 10° GeV (2.3.1)

corresponding to a c.m. energy /s = 450 GeV. We notice
that the above value is very close to what subsequent fits
to of?, (up to the LHC energies) have given [42].

In what follows, after briefly recalling the status of
the problem in the early ’70s [43], we shall summarize
subsequent developments following [44], for the connection

between p—air and pp . Then we shall see how Durand and

Pi [45] applied their mini-jet model[46] to cosmic rays. We
shall examine the discussion by Engel et al. [47], followed
by Block et al. [48,[49]. Subsequently we update these with
a discussion from a review[50], including later results by
Block [51l52] along with work by Lipari and Lusignoli
(LL) [53].

2.3.1 Cosmic ray experiments and the extraction of energy
dependence of 017, , up to 10 TeV after the ISR data

The question of model dependence of the relation between
pp total cross-section and p — air inelastic cross-section
was discussed by Gaisser, Noble and Yodh in 1974 [54]
55]. The starting point was of course the ISR confirmation
of the rise of the total pp cross-section, suggested from
cosmic ray experiments [38]. The question being posed in
the physics community was basically whether a behavior
already saturating the Froissart bound was in action or
one was observing a transient behavior due to some sort
of threshold, or to the rising importance of parton-parton
scattering [50].

An answer to this question was considered impossible
to obtain from the then available accelerator data alone, so
the question of reliability of cosmic rays estimates of o2, ,
naturally arose. The conclusion of this paper is that not
only the extraction of 0,_4ir from air-showers is by itself
affected by rather large uncertainties, but there is also a
large model dependence in the extraction of the pp cross-
section from the observation of unaccompanied hadrons
in the atmosphere. More investigation of the modeling for
both crucial steps was needed.

Before proceeding further, we mention the work by
Cline, Halzen and Luthe [56] who interpreted the rising
cross-sections as receiving a contribution from the scat-
tering of the constituent of the protons, the so-called par-
tons, quarks and gluons. Parton-parton scattering would
give rise to jets of particles in the final state. An early
estimate of a jet cross-section contribution, given as

PT=1/5/2 do
Otot = / ——d(phase space) (2.3.2)
P

r=(2+3)GeV/e APT

was obtained in this paper for jets with final transverse
momentum pp > (2= 3) GeV/c and is shown in Fig.
by the shaded area. Adding such an estimated contribu-
tion to a constant or diffractive term, strongly suggested
the (jet) phenomenon could to be responsible for the ob-
served rise. It must be noticed that hadron jets had not
been observed at ISR. Indeed, to get a sizable contribution
from such a simple model, sufficient to fully explain the
cosmic ray excess at high energy, softer jets, contributing
from a smaller pp ~ 1 GeV, are needed: and such small
pr jets would be very hard to observe.

What appears here for the first time is the idea of small
transverse momentum cluster of particles, which can be
ascribed to elementary processes which start appearing in
sizable amounts, what will be later called mini-jets. It will
be necessary to reach a much higher cm energy, to actu-
ally see particle jets and mini-jets at the CERN SppS, a
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FIG. 3. (a) Inclusive cross sections for hadron jets

from high-p, partons, estimated in the quark-gluon
model for different energies, versus the total p, of the
hadron jet at 90° in the c.m. system. (b) Contribution
to the total proton-proton cross section from the pro-
duction of inelastic partons (shaded region). The re-
sulting rise in 0. (total pr of the jet >2 GeV/c) is il-
lustrated by adding the parton contribution to a constant
value of 38.5 mb and is shown along with high-energy
data (Refs, 17, 19, and 20).

Fig. 2.4. This early attempt to estimate jet contributions to
the rising total cross-section shows cosmic ray extracted pp
total cross-section as well as ISR results. Reprinted with per-
mission from [56], ©1973 by the American Physical Society.

proton-antiproton accelerator which would explore ener-
gies as high as /s = 540 GeV'.

However, in 1974, accelerator data could give informa-
tion on the total hadronic cross-section only up to /s <
60 GeV and new accelerators reaching higher energies,
such as near and around the TeV region, were very much
in the future. Thus the question of whether it could be
possible to extract the total pp cross-section at c.m. ener-
gies around 10 T'eV and choose among different theoretical
models for 0%, was of great interest and was further ex-
amined in [43]. The state-of-the-art for total cross-section
studies (circa 1974) is shown in Fig. where added lines
and arrow indicate results in the range of LHC energies.

As already known, the cascade development through
which one measures p — air cross-section is sensitive only
to production processes, and the quantity measured is an
inelastic cross-section. Then one could write the simplest
possible model, which would ascribe the breaking up of the
stricken nucleus both to elastic and inelastic scattering
from the nucleon — nucleon scattering, using Glauber’s
formalism, as

Ufn_e‘lm = Oubs = /de[l

where o014 indicates the total nucleon-nucleon (proton-
proton) cross-section. T'(b) indicates the profile function
of the stricken nucleus of atomic number A. Two limits of

Eq. (2.3.3) can be taken as

Oabs =~ AUtotal
Oabs = ﬂ'Ri‘ ~ CA%/3

_ e_o'totalT(b)] (2.3_3)

Ototal Sall (2.3.4)

Ototal large (2.3.5)
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Fig. 2.5. State-of-the-art of total cross-section models in 1974
and comparison with existing accelerator data. Reprinted with
permission from [43], ©1974 American Physical Society.

where R4 is the nuclear radius.

Such a simple model is unable to provide enough infor-
mation on oyeq; at high energy, where o,  can become
large, and a more precise expression seemed required. Within
the Glauber model, convoluting the nucleon profile func-
tion with the nuclear density function p(r), the following
expression was proposed:

Cats = / B[l —[1-TAB)2]  (2.3.6)

where
Tab)=1-[1- /de’szN(b— b)p(z, b4, (2.3.7)

I'y(b) is the nucleon profile function. There exist various
models for the nuclear density, as already mentioned, de-
pending on the nucleus being light, heavy or in between.
Often, as in [43], the gaussian form is used. Next, one
needs a nucleon profile function and the frequently used
expression is again a gaussian distribution, namely

e—b°/2B
47 B

This expression is based on the description of the elastic
differential cross-section in the small —¢-region, namely:

FN(b) — Ototal (238)

dUelastic 2 2 dJelastic Bt
— = d*bI'n(b)|" = [—————], 2.3.
et | [@bry(p) = (e, P (239)
where B is defined in the usual way,
_ d dUelastic
B(s) = [ (In ——)lle=o (2.3.10)

It became clear however that there were other uncertain-
ties to take into account, in particular those related to
processes which could not easily be classified as elastic or
inelastic, but, rather, were quasi elastic.
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2.3.2 Prescriptions for more precise extraction of ot%, after
the advent of the CERN SppS data

The need to extract from cosmic ray experiments more
precise information about the proton-proton cross-section
led to scrutinize better the original use of the definition
of inelastic cross-section for nucleon-nucleus collision. Fol-
lowing the discussion by Gaisser, Sukhatme and Yodh in
[44], the inelastic p — air expression for the cross-section
should include various processes which are neither totally
elastic nor inelastic. Such are

— Oguasi—el: quasi-elastic excitations of the air-nucleus,

— o*: processes where there are diffractive excitations of
one of the nucleons in the stricken nucleus,

— Ao: multiple collisions with excited nucleon interme-
diate states

However, the cascade shower which is measured in cosmic
rays is not sensitive to these processes. Thus, the p — air
inelastic cross-section which is being extracted from the
cosmic ray cascade is not

p—air __ _p—air _ _p—air
Oinel = 9total O elastic (2311)
but rather
p—air __ _p—air p—air
inel = Ototal elastic
*
— Oquasi—el — 0" — Ao (2.3.12)

Hence, in order to be able to extract information about
pp cross-sections from p — air, one needs to have a model
for various nuclear excitation processes and for the diffrac-
tive part of the nucleon-nucleon cross-section which con-
tributes to Ao. These various processes can be taken into
account through the Glauber technique. Eq. re-
quires [44] knowledge of the following quantities:

- CTtpoptal

— BPP(t = 0), the forward elastic slope parameter
o, o', the total single and double diffractive pp
crdo?ss—sections ' . .
— m the shape of the diffractive cross-section for

pp—p+ X near t, =~ —[m?(M? —m?)?]/2s>

— the nuclear density

In [44] use is made of unitarity to either exclude some of
the then current models or to restrict the various contribu-
tions entering Eq. . In particular, when inclusion of
diffractive processes are taken into account, the Pumplin
limit [57], to be discussed in Section [5] has to be included:

Oelastic + Odif fractive S = O¢total (2313)

2

The total, elastic and quasi-elastic p — air cross-sections
can be calculated in a straightforward manner using the
model parameters for o>, . o?P . BPP and p, as for in-
stance in [12]. In brief, after having determined the values
of ototar as a function of /s as well as that of B(s), the
scheme of the calculation is to start with the elastic pp

scattering amplitude at small angle,

k ota. . —
fla) = (Z; Lp+i)e PO/

(2.3.14)

which is now fully determined and insert it into the nucleon-
nucleon profile function

. 1 —ig-
F](b) =1—e% = ﬂ/que qbf(q)

which assumes that each nucleon has a static profile, thus
automatically identical to a given function, the same for
all. This nucleon-nucleon profile function is put into the
profile factor for the nucleus

(2.3.15)

F=1-eX=1-¢2i=14% (2.3.16)

and then this is put into the nucleon-nucleus scattering
amplitude, together with the nuclear density of nucleons
in the nucleus p(r). The nuclear amplitude is thus written
as

F(q) = ﬁe(qQ)/deei‘I'bx
2

A
></.../...F(b,sl,..sA)il:[lp(m)cFri (2.3.17)

with I'(b, 81,..84) being the profile function for the nu-
cleus , s being the component of r in the b plane. One now
uses the basic Glauber hypothesis that the overall phase
shift x of a nucleon on a nucleus is the sum of the phase-
shifts of individual nucleon-nucleon phase-shifts, and the
following is now the proposed nucleon-nucleus amplitude:

" .

F(@) = 5o00a) [ @bet¥i= 1= [ o)y (b-s)
™

(2.3.18)

where I is the nucleon-nucleon profile function. One can

now see how, by using various models for the nuclear den-

sity, and various models for nucleon-nucleon scattering,

one can estimate of, “7  oP~%" through the optical the-

elastic’ ~ total
orem, i.e.
—ai 4
Ototal = %%mF(O) (2.3.19)
Tt = [dulr(@P (2.3.20)

Before proceeding further, let us notice that the Block and
Cahn model [12] fits B(s) and o¢otq; from available data in
a large energy range and the result is a curve where B(s)
and ootq; can be plotted against each other. The effect is
that the larger values of o}%, , correspond to larger values
of B(s), as one can see from the straight line in Fig. [2.6
from [48].

The above takes care of the first two terms in Eq. ,
and we now turn to the last three terms. While different
models were used for the nuclear density function in evalu-
ating the proton-nucleus amplitude, for the calculation of
the other three terms, whose details are in the Appendix
of [44], only a gaussian density distribution is used. The
calculation of ogyqsi—er is obtained from [36] by integrat-
ing the expression for quasi-elastic scattering and making
an expansion, i.e.

0 e
2
Oquasi—el = TR E —_
n
n=1

(2.3.21)
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with
2 2 2
R*=2<d®> (2.3.22)
1+ p2 Ototal
= 0 2.3.23
16w B ( )

a being the rms nuclear radius. Given an input for the nu-
clear radius, in this model, the quasi-elastic term is again
obtained from the pp parameters. Next one needs to es-
timate o*, which represents the correction for diffraction
dissociation of the nuclear target. This is estimated, in
Gaisser’s model, from

pp
2
*= 25D (T 42 (2.3.24)
Uinel 3

where the last term in round bracket represents the cross-
section for absorptive p-nucleus interaction involving only
one nucleon. One can use unitarity to put bounds on the
ratio ;T;;g}l
tains for o* a range of values between 28 and 15 mb as
the energy changes from /s = 20 GeV to 10 TeV.

As stated in [44], the last term, Ac, is a correction
to Glauber’s model, to include cases when one nucleon is
excited in one encounter and then returns to the ground
state through a subsequent encounter. This correction is
evaluated to be of the order of 10 mb. For its estimate,
the differential cross-section for diffractive excitation of

the nucleon to a mass M is modeled to be

do _
dM2dt

and from the Block and Cahn model, one ob-

A(M)eBO)t (2.3.25)

Once the five steps of the calculation have been per-
formed in terms of the given input from B(s) and oyotai
for various energies, one can now try to extract the proton-

proton cross-section from the measured p—air cross-section.

The procedure consists of two steps. First, one finds
curves of fixed value of o)_4;, in the (B(s),ots, ,)-plane,
namely one finds the corresponding points in the (B, o4ota1)
plane which give that particular p— air cross-section. This
procedure gives curves such as the ones shown in Fig.
from a later paper by Block, Halzen and Stanev (BHS)
[48] to which we shall return next. To obtain then oipta;
at a given energy from this procedure depends on the
model for pp scattering. In a given model let one draw
the line which corresponds to predicted values for B(s)
at a given energy. The same model will also give a value
for oiotai(s) and thus a line can be drawn to join these
various point in the (B(s), 0iotai(s)) plane. This line will

meet the constant of 7" at some points. Now if the ex-
periment says that a proton of energy /s ~ 30 TeV has
produced op,_qir = 450 mb, say, all we need to do is to
look at which set of {B, ototai} values the model crosses
the constant contour. It is possible that the model cannot
give such a high value for the p—air cross-section for the B
and o}, values input by the model. This was for instance
the case for one model by Goulianos [58], in which diffrac-
tion dominated the cross-section, or a model by Block and

T T T T T T T T T T
440mb | 490mb . 540mb \ 590 mb 640 mb

AN 590 mb

25

B, in (GeV/c)?

490 mb

— 440 mb~__
L 1 1 I e

L L
90 100 110 120 130 140 150 160

O,,(PP). in mb.

FIG. 1. B dependence on the pp total cross section a,,. The five curves are lines of constant

oinel | of 440, 490, 540, 590 and 640 mb—the central value is the published Fly’s Eye value, and
the others are 10 and +20. The dashed curve is a plot of our QCD-inspired fit of B against 0.
The dot is our value for /s = 30 TeV, the Fly’s Eye energy.

Fig. 2.6. Relations between the total pp cross-section ootal,
the slope parameter B(s) and o?~*" from Block, Halzen and
Stanev [48]. Reprinted with permission from [48], ©1999 by
the American Physical Society.

Cahn, in which both ¢, and B(s) were not asymptoti-
cally growing. In such cases, seen clearly in (Fig. 6 of) [44],
these values can never give a cross-section for p — air as
the one observed. Thus, the cosmic ray observation allows
one to exclude these models, at least within the validity
of the given construction based on the Glauber model and
on a correct estimate of the cosmic ray composition. But
other models can give values which would be as high as
the observed cross-section: in such cases, when the line
crosses (say a value 450 mb) of the p — air curve, one has
correspondence between the experimental point for op_ g,
and the value of ¢},  in that particular model. One can
also prepare a different plot, which shows which value of
Op—air ONE can get for a given o1?, | for different values of
the slope parameter. Depending on how different models
obtain/parametrize B vs 0totq1, One can then extract the
relevant information.

Conclusions about the validity of a given model, from
plots such as the one in Fig. depends also on the un-
certainties about the measured values for o?~%". In par-
ticular, as emphasized in [44], fluctuations in individual
hadronic interactions and on the chemical composition of
the primary particles in the observed showers influence
the final result.

2.3.3 The Durand and Pi mini-jet model for p — air
interactions

So far, we have discussed approaches which use the Glauber
method to extract information about ol”, , from cosmic
ray measurements at very high energy. As we have seen,
in some cases, such approach yielded information not only
on the energy dependence but also about the model valid-
ity at such very high energies. This was for instance the
case of a diffractive dominance model [58] or one of two
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models by Block and Cahn [I2]. We now discuss a rather
different approach.
The approach followed by Durand and Pi [45] employs

their QCD-driven model [59] to predict oups(p — Air). E|

This model, which is described in detail in Sect. [4] for
the case of pp scattering, uses an eikonal formalism with
QCD mini-jets as input for the energy dependence and an
impact parameter distribution (of quarks and gluons in
a proton) modeled after the proton e.m. form factor. In
this paper the model is extended to scattering of protons
on nuclei of nucleon number A, by basically treating the
process as the scattering of quarks and gluons from the in-
coming protons against quarks and gluons in the nucleus.
We shall now follow their description to see how the model
is applied to p — air or more generally to p — A.

The authors start with the proton-nucleus profile func-
tion which enters the (proton-nucleus) scattering ampli-
tude f(t) for the given process (¢ being the momentum
transfer), i.e.

£(t) = in / bdbJo (/=1 I'(b) (2.3.26)

Instead of the usual parametrization given as
) = %e#/w, (2.3.27)
B= [%(111 Z—Z)]tzg, (2.3.28)

Eq. (2.3.26) is written in terms of an eikonal function
whose high energy behavior will entirely be based on the
mini-jet model, namely

f(t) =im / bdbJo(bv/—t)[1 — e Xp4]  (2.3.29)

)ZPA = %(00 + CTQCD)A(b) (2330)
in close connection with the similar treatment for pp. In
this, as in other similar models, the eikonal function is
assumed to have a negligible real part. Corrections for
this can be included. The absorption cross-section is then
given as

Oaps(PA) = 27 / bdb[1 — e~ HXra(b:9)] (2.3.31)

We now sketch the procedure followed by Durand and Pi
and postpone a discussion of how this production cross-
section differs from the total inelastic cross-section. For an
eikonal mini-jet model such as the one discussed here one
needs to start with the following input:

1. how partons of given energy, momentum and position
b are distributed in the nucleus

2. an elementary cross-section for parton-parton scatter-
ing dé /dit(s,t)

3. density of nucleons in the nucleus

2 Here, as everywhere else in this review, we adopt the no-

tation used by the authors in their articles.

Consider the p — A scattering process as built from
the uncorrelated scattering of an incoming proton with
an average target nucleon a, which carries a fraction 1/A4
of the nucleus momentum. Quarks and gluons in the in-
coming proton then scatter against quarks and gluons in
the average nucleon a inside the nucleus. This model as-
sumes that, at high energy, the parton distribution in the
nucleus A is given by the parton distributions in the nu-
cleon a convoluted with the distribution of nucleons in the
nucleus A. We are now dealing with a proton-nucleus scat-
tering and, as in the original mini-jet model for pp scat-
tering, the impact parameter dependence is factored out
from the energy and transverse moment dependence. Let
pa(b) be the average impact parameter distribution of par-
tons in nucleon a, and f; 4(z, ||) the usual nucleon Parton
Density Function (PDFs), where x is the fractional lon-
gitudinal momentum carried by the parton, ¢ the parton-
parton momentum-transfer in the scattering. Next, parton
distributions inside the nucleus are proposed for a model
of A uncorrelated nucleons. In the model, parton distri-
butions inside a nucleus, f; 4(x,|t|,b), are obtained as a
convolution of the distribution of partons in the nucleon
fi.a(z,]t))pa(b) with the distribution of nucleons in the
nucleus, p(r), namely

A
. 1 -
CLDES Y [ rsdafiateli x

pa(lb—ri|)pa(ry,z)(2.3.32)

with pa (7, z) being the nuclear density function, subject
to the normalization condition

/derdsz(rl,z) =A (2.3.33)
Nuclear binding and small differences between protons
and neutrons are neglected and one arrives to the follow-
ing simplified expression

fia(a, |t],0) = fialz, |f7|)/d2mdzpa(|b— r1])pa(ry,z)

(2.3.34)
Folding the above with the elementary parton cross-sections
and integrating in the sub-process variables, leads to very
simple result that the QCD contribution, also called mini-
jets, to the eikonal is the same as the one calculable for pp
scattering, and the difference between the hadronic and
the nuclear eikonal function only lies in the impact pa-
rameter distribution, namely the eikonal function for pA
scattering is written as

1 -
X (b.5) = 5AM)ogen (2.3.35)

where ogcp is the mini-jet cross-section which will be
used to describe (fit) 0%  and A(b) is a convolution of
the nuclear density with the parton density A(b) in the
proton, i.e.

A = / Pr o depa(re, )A(b—r1])  (2.3.36)
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The next step in the calculation is to deal with the non-
QCD part, what can be defined as the soft scattering
contribution, 4. One may ask if this quantity is the
same as in pp scattering. The model indicates that the
same ogcp gives the high energy contribution (and hence
the rise with energy) to both nucleon and nuclear proton
scattering. But there is no reason to expect the soft part
to be the same. Indeed the phenomenology, indicates a
smaller 7,¢; in fits to the data. The point of view here
is that it should be smaller, because soft processes (in
mini-jet language -see later- final partons with p; < pimin)
may not be sensitive to such processes as much as the pp
cross-section. Whatever the reason, the end result is that
a good fit yields G40r; = 31.2 mb, instead of the value
obere = 49.2 mb used to describe pp scattering.

Folding the impact parameter distribution of partons
of their model with different nuclear distributions accord-
ing to the nuclear composition of air, gives the result for
p—air, and obtains the expression for the absorption cross-
section for protons in air

Oaps(PA) = / d®b(1 — e~ 2Xpalb:s)y  (2.3.37)

%palb5) = 3 (G0 +oac)AB)  (2338)
We show their result in Fig. for two different nuclear
density models, and 69 = 31.2 mb fitted to low energy
nuclear data, a value 30% lower than what enters the fit
to free pp scattering. The fit to AKENO and Fly’s Eye
are quite acceptable. However, the inverse procedure, that
of trying to extract from the cosmic ray data a value for
ot? .1 poses some problems. The Fly’s eye value of 045 (p—
Air) = 540 £ 50 mb is seen to correspond to a bt =

106 £ 20 mb at the cms energy of 30 TeV, a decidedly low
value, especially after the latest TOTEM results at LHC.

2.3.4 More about uncertainties in extracting ots, from
cosmic ray data, after the Tevatron

While cosmic ray measurements can shed light on the be-
haviour of o¥%, at very high energies, the hope to exclude
or confirm a given model for pp scattering is clouded by
large uncertainties.

An updated analysis of such uncertainties was done
in 1998 by Engel, Gaisser, Lipari and Stanev [47], and
a summary of their analysis is presented in the follow-
ing. The starting point is the calculation of the absorption
cross-section with the Glauber model [36]. First, Engel et
al. [47] discuss the relation between nucleon-nucleon and
nucleon-nucleus cross-sections. This discussion is based on
the procedure used to extract o}, from oP~%" following
Gaisser et al. in [44], where the definition of a production
cross-section is adopted, namely

prod

_ _tot el __q—el
p—air — Yp—air Up—ah’ Up—ah“ (2i&39)
qg—el

with o,,_ ;. the quasi-elastic p — air cross-section where
no particle production takes place, but there are inelastic
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FIG. 1. The absorptive cross section for protons on air calcu-
lated using Eq. (27) with shell-model (solid line) and Gaussian
(dashed line) nuclear densities. The data are from Refs. 1, 2,
and 23.

Fig. 2.7. The absorption cross-section for p —air as calculated
in the QCD model by Durand and Pi in [45] compared with
cosmic ray data. Reprinted with permission from [45], ©1988
by the American Physical Society.

contributions as intermediate states while the nucleon in-
teracts with the nucleus. In this procedure a crucial role
is played by the B-parameter, and the relation between
Ototal NA Oejgstic N elementary hadronic cross-sections.
After this, a discussion of how air shower experiments in-
fer the p — air cross-section is presented and the relevant
uncertainties summarized.

In this model, the basic sources of uncertainties arise
from modeling of :

1. oP~%" the interaction cross-section between hadrons

and the atmosphere, vs. oPP, the proton-proton cross-

sections (total and elastic)

oPP the hadron-hadron cross-section

3. the shower development and the primary cosmic ray
composition and the relation with A,_4;., the interac-
tion length of hadrons in the atmosphere.

N

In the model, the profile function of the stricken nu-
cleus is obtained through a combination of the following
inputs: (i) the elastic differential cross-section in the for-
ward region, (ii) ot and (iii) B(s), the slope parame-
ter at t = 0, defined as in Eq. (2.3.2§). The connection
between B(s) and the elementary hadron-hadron cross-
sections, Oastic and oiorq; 18, as before, obtained from
the optical theorem and the gaussian approximation for
the forward region, namely

el __ 1 2 (a'fﬁfé)2 2) 340
UAB_( +10 )167TB(S) ( s )

While Eq. (2.3.40) is a good approximation to the data,

the high energy behavior of oY% and B(s) depends on the
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model used. In [7], one of two models discussed is the
standard Donnachie and Landshoff (DL) fit [60], i.e.

ot = Xaps®+ Yaps™" (2.3.41)
with € ~ 0.08 and 1 ~ 0.45. The Regge-Pomeron inter-
pretation of the expression for the slope parameter would
lead to

B(s) = By + 20/ (0) In(~)

2.3.42
5 i)

We shall see later, in Sect. that a linear extrapolation
in (Ins) up to present LHC results can be challenged [61]
and that the high energy behavior of B(s) is still an open
problem.

In general, once fits to the elastic and total cross-
sections have been obtained in a given model, the by now
familiar plot of B vS 00tq; is used with curves of constant
p— air cross-section drawn in it. Intersection of the model
lines with a given curve allows to extract pp cross-section
in a given model at the given cosmic ray energy. One such
plot, from [47] is reproduced in Fig. 2.8 This plot gives
rise to large uncertainties: for instance the same low p—air
cross-section can be obtained with a small B-value and a
range of o}, . values, and so on. Given a certain model
and its fit to elastic and inelastic data, and then its input
into p — air cross-section, three observations are worth
repeating:

— model for the pp interactions usually show that at high
energy the larger B(s) the larger is ototai

— along a line of constant o?~%" larger B(s) values cor-
respond to smaller gyzq;

— extrapolations of the slope parameter to higher energy
depends on the model and it may lead to large uncer-
tainties in oP =",

Two models are shown in Fig. [2.8] the Donnachie and
Landshoff (DL) model [60] and a geometrical scaling model.
Geometrical scaling was a useful approach to the behavior
of the elastic differential cross-section up to ISR energies.
The hypothesis of geometrical scaling is that the entire
energy dependence of the cross-section comes from a sin-
gle source, a radius R(s), thus implying automatically the
black disk limit Re; = Oelastic/Ttotar = 1/2. Geometrical
scaling however is not observed by experiments at SppS
energies and beyond. We shall return to this point in the
section about models and elastic scattering. The dashed
area indicates the region excluded by unitarity, as dis-
cussed in subsection 2.6

2.3.5 Extracting information from cosmic ray showers

The uncertainties encountered in determining values for
Ototal from oP~%" are only one of the problems encoun-
tered in trying to find the asymptotic behavior of proton-
proton scattering. More uncertainties lie with the air shower
technique which is used to extract ¢?~*". Such uncertain-
ties are summarized in a parameter, sometimes called a,
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Fig. 2.8. Contour plot of constant p — air cross-section in
the B(s) vs ot? , plane from [47]. Solid symbols are experi-
mental accelerator points, dashed line is the DL model, dotted
line a geometrical model. Dashed area excluded by the uni-
tarity constraint, the five curves are the region within one or
two standard deviations from the central Fly’s Eye experiment,

ST(ZT = 540 £ 50 (mb) measurement. The open point is the
expectation of the DL model at 30 TeV cm energy. Reprinted
with permission from [47], ©1998 by the American Physical
Society.

more often k, which relates the interaction length of pro-
tons in air, i.e.
mp

prod
p—air

Apair = 14.5 (2.3.43)

where 14.5 is the mean atomic mass of air, to the attenu-
ation length A defined as

A= adp_gir (2.3.44)
The attenuation length A is a measure of the initial pro-
ton energy, and is obtained from the air showers gener-
ated by the interaction of the primary cosmic ray with the
atmosphere. This uncertainty entering data extraction is
the rate of energy dissipation by the primary proton. The
p—air cross-section is thus affected by uncertainty related
to the parameter a.

But uncertainty also comes from the composition of
the most penetrating cosmic rays, and this is also related
to the question of the origin of cosmic rays. Engel et al.
[47] discuss how different Monte Carlo programs simulate
air shower development using the same A = 70+ 6 g/cm?
and extract different values for o?~%" according to the
chosen parameter set.

2.3.6 Air shower modeling
The energy of the particle starting the shower and the in-

teraction length of the proton in air are obtained from the
depth and extension of the electromagnetic shower they
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initiated. The most important processes of interest for air
shower modeling are electron and muon bremsstrahlung
and pair production. The electromagnetic shower, which
develops as an electron or a photon starts losing energy
because of EM processes such as bremsstrahlung and pair
production, can be divided into three phases:

— the shower grows as long as all the particles have en-
ergy larger than the typical ionization energy ¢, which
corresponds to an electron energy too small for pair
production, and such as to typically induce ionization
in the nuclei

— the shower maximum, which has an extension deter-
mined by the fluctuations around the point where all
the particles have energy just about ¢

— the shower tail where particles lose energy only by ion-
ization or by absorption, or decay.

To determine the quantity X,,., one can use a simple
model due to Heitler and summarized in [50].

These processes are characterized by a typical quan-
tity, the radiation length X, which represents the mean
distance after which the high-energy electron has lost 1/e
of its initial energy. Namely, X is the constant which
defines the energy loss of the electron as it traverses a
distance X,

dE E

Then, in a simplified model in which only bremsstrahlung
and pair production are responsible for energy losses, the
air shower can be modeled, as follows. At each step the
electron, or photon can split into two branches, each of
which will then split into two other branches as long as the
energy of each branch is > ¢g. At a depth X, the number of
branchings is roughly n = X/X, and after n branchings,
the total number of particles will be 2. The maximum
depth of the shower will be reached when the initial energy
E) is equally distributed among the maximum number of
secondaries, each one of which has energy just above the
ionization limit €y, Thus, Ey = Nimaz€o, Nmaz = 27mer =
2Xmaz/Xo = Ey/eo. This leads to

In Eo

= Xo[+—=]

Xmax
In2

(2.3.46)

The matter is further complicated by the fact that not all
groups employ the X,,,, method.

The attenuation length A is obtained from the tail of
the function describing the X, distribution.

2.3.7 Block, Halzen and Stanev: models vs. measured
attenuation length

Shortly after Ref. [47], the uncertainties arising through
the a parameter values used by different experiments, were
again discussed [4849) in light of the QCD inspired model
for of%, in [62], referred to as BHM model. This model in-
corporates analyticity and unitarity, in a context in which

QCD shapes the parameterization of the terms which con-
tribute to the rise of the cross-section. We shall discuss it
later in more detail.

Anticipating more recent debates, we notice that the
cosmic ray experiments can give information on the inter-
action p— air, and hence on pp, but the extraction of data
depends not only on the rate at which the primary par-
ticle dissipates energy in the atmosphere, but on cosmic
ray composition. In this work, Block, Halzen and Stanev
choose to ignore the possibility that the most penetrat-
ing particles may not be protons, and focus instead on
the consistency of the values extracted by cosmic ray ex-
periments with those extracted by the Glauber method
implemented with their model for pp scattering.

They rename the parameter a as k, and use the slightly
different nomenclature

14.5
A = KA pair = k2 (2.3.47)
1.) lll'LT'
O;zetiir = Op—air — Uze)lfair - O';Z:Zi'r (2348)

where the subscript m in Eq. stands for measured,
k measuring the rate at which the primary proton dissi-
pates energy into the electromagnetic shower as observed
by the experiment, and o,_g;- is the total p — air cross-
section. Once more, here are the steps as described in this

paper:

1. experiments obtain o} 7" from Eq. at a given
energy of the most penetrating primary particle, mea-
suring A, and estimating a value for k,

2. model builders use Eq. , with Glauber’s theory
and a nuclear density model as described in [44], and
draw constant contours of fixed o7, in the B(s) and
ol plane,

3. the QCD inspired model by [62] establishes the cor-
respondence between B(s) and ofh: i) at any given
energy, extrapolated values for of%, and B(s) can be
determined through a fit of the model parameters of
all the pp and pp accelerator data. Thus a plot such as
the one in Fig. where the dashed line is for the
DL model, is now constructed for the BHM model,

4. the intersection of a given curve for p — air, which
corresponds to the measured o %" for primary proton
energy, with the B(s) vs. otl, line determines the ot?,
value at that energy.

Fig.|2.9] shows the one-to-one correspondence established
between 073, and ¢77¢! via the constant contours in the
(B, o¥%) plane, according to the BHM model.

It appears that in such a procedure, one has to first
trust two models, i) the Glauber model along with the
relation between B(s) and ol%, and ii) the model which
extrapolates B(s) and o}%, at ultrahigh energies, but then
one has also to trust the correctness of the extraction pro-
cedure of U;’leiir from the air showers.

In [48] a contradiction is seen to arise between the pre-
dictions for pp in the model as obtained from accelerator

data and cosmic ray extracted values.
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Fig. 2.9. Plot of the predicted pp cross-section wvs. for any
given value of a measured U;,’féir, using the constant contour
procedure, from Fig. 3 of [48]. Reprinted with permission from

[48], ©1999 by the American Physical Society.

In their conclusion, the authors point a finger to the
parameter k, as already noted before [47]. Different exper-
iments use different values for k, obtained from different
analyses of shower simulation. The authors thus proceeded
to do a 2 fit to the cosmic ray data and extract a value
for k, and obtain k£ = 1.33 £ 0.04 &£ 0.0026, which falls in
between values used by different Monte Carlo simulations.

Shortly there after, in a subsequent paper [49], to re-
duce the dependence on the determination of the param-
eter k, a simultaneous fit to both accelerator data and
cosmic ray data was done by the same authors and a
reconciliation between pp cross-section between acceler-
ator data and cosmic ray data was obtained when a value
k = 1.349 + 0.045 £ 0.028 was used. The resulting agree-
ment is shown in Fig. from [49]. This analysis now
gives a value of9f!(\/s =14 TeV) = 107.9 + 1.2 mb and
the predictions from the model are now in agreement with
extracted cosmic ray pp data.

Other questions arise if one were to challenge the as-
sumed primary composition or Eq. , as we shall
see through a summary of a review paper by Anchordoqui
et al. [50], to which we now turn.

2.4 The extraction of p — air cross-section from
cosmic rays

A good review of the experimental techniques used to mea-
sure cosmic ray showers and extracting information from
them can be found in [50] and lectures covering many as-
pects of cosmic ray physics can be found in [63].

This 2004 review focuses on cosmic ray phenomenology
from the top of the atmosphere to the earth surface. For
primary cosmic ray energies above 10° GeV/, the flux is so
low that direct detection of the primary particles above
the upper atmosphere is practically impossible. In that
range, however, the primary particle has enough energy
to penetrate deeply in the atmosphere and generate Ex-
tensive Air Showers (EAS), namely a measurable cascade

220 T T T T
200 3
— ® g(pp)
180F ® ¢ (pbar-p) E
@ Fly's Eye, Air Shower Data, corrected
160 A AGASA Air Shower Data, corrected 1

1e+3 le+d

Vs, in GeV

1e+2

Te+l

Fig. 2.10. pp scattering total cross-section predictions com-
pared to rescaled Cosmic ray data from [49], as described in
the text. Reprinted with permission from [49], (©2000 by the
American Physical Society.

of detectable products. Various techniques are used to de-
tect the cascade products, and different types of detectors
are employed.

In addition to various ways to extract from air show-
ers information about primary composition of the incom-
ing cosmic rays and energy of the primaries thus selected,
one tries to extract o’ from oP~%". There are various
Monte Carlo simulation programs which do this, the ones
mentioned in this review being SIBYLL [64], QGSJET [65]
and DPMJET [66]. DPMJET simulates hadronic interac-
tions up to the very high cosmic energies of interest using
the Dual Parton Model [67]. The other two are both based
on the eikonal approximation and mini-jet cross-sections,
but differ in how they introduce the impact parameter
distribution of partons in the hadrons. According to this
review, in SYBILL the b—distribution is the Fourier trans-
form of the proton e.m. form factor, whereas in QGSJET
it is taken to be a Gaussian, i.e.

A(s,b) = e b/ R (s)

R2(s) ~ 4R2 + 40/, , In% =
(s) o T 4oppln 5

(2.4.1)
(2.4.2)

In this way, they can easily obtain the diffraction peak
in agreement with the experimentally observed increase
with energy. DPMJET has its name from the Dual Parton
Model and is based on soft and hard Pomeron exchanges.

We can see now how various models for proton-proton
scattering influence the information about the behaviour
of the total pp cross-section at the highest energy avail-
able. In Fig. values for o;,¢; from cosmic ray data
from AGASA and Fly’s Eye are plotted against the two
model entries from SYBILL and QGSJET for the inelas-
tic pp cross-section. At low energy, data come from CERN
ISR and the cross-sections are normalized to these values.
The experimental errors indicated in this figure are mostly
due to a limited understanding of the interaction of pro-
tons with nuclei and also nuclei with nuclei at such very
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Fig. 5. Energy dependence of the pp inelastic cross section as predicted by Egs. (13) and (14) with
0.3 < Ay < 0.4. The darkly shaded region between the solid lines corresponds to the model with Gaussian
parton distribution in A, The region between the dashed-dotted lines corresponds to the model with
exponential fall-off of the parton density in 5. In both cases the cross sections are normalized to reproduce
the data (%) [89] from the CERN Intersecting Storage Ring (ISR) at 30 GeV. Also shown are estimates
[90] of the inelastic pp cross section as derived from measurements of the inelastic p-air cross section by the
AGASA (w) [91] and the Fly's Eye (@) [92] experiments.

Fig. 2.11. The above figure from [50] shows the energy depen-
dence of the pp inelastic cross-section compared with different
models for the impact parameter distribution inside the pro-
tons. Reprinted from [50], ©(2004) Elsevier.

high energies, as we shall try to show in what follows. An
even greater uncertainty seems to come from the modeling
of the pp cross-section itself, as indicated by the two dif-
ferent bands. This uncertainty is actually not as large as it
appears in this figure, since data at /s =~ (60+1800) GeV
severely limit the high energy behaviour, as one can see
from the section on models and fits.

Let us now turn to describe how one extracts the data
for pp cross-section from p — nucleus, basically p — air
data, always following [50]. In order to simulate cosmic
ray showers, current event generators will need first of all
to extrapolate the pp cross-section to very high energy
(but this is by now provided by the many models and fits
described in the next section) but also to make a model
for the impact parameter distribution of nucleons in nu-
clei. Indeed, all the event generators or models included
in the event generators, use the Glauber formalism, with
the nucleon density folded into that of the nucleus.

In ref. [50], the distinction between a production and
an inelastic p— air cross-section as related to the total vs.
the inelastic pp cross-section is clearly emphasized. We
anticipate here that the definition of of?, .~ is model
dependent. Following ref. [68], the following expressions
are discussed:

i % [ @b{1L = copl-ounaTa®)l}  (243)
G prod = / d’b{1 — exp|—0imaTa(b)]}  (2.4.4)

where T4(b) gives the impact parameter distribution of
the hadronic matter in the target (air for instance) folded
with that of the projectile particle. oyo1q; and oy are the
relevant quantities for pp scattering or hadron — hadron

scattering. Here &;,; uses the usual eikonal format, with
as input the total pp cross-section. The physical descrip-
tion amounts to consider all the possible ways in which
the proton can interact with another proton, o and
this will then be input to the formal expression for the
inelastic p — air cross-section. Then the result, compared
with p—air data should allow to extract the pp data. The
second equation starts with the pp inelastic cross-section
and thus corresponds to breaking up single protons in the
nucleus. What will it give for p — air? Clearly it is a scat-
tering process in which at least one proton has broken up,
generating a new particle. According to Anchordoqui et
al., Gprod gives the cross-section for processes in which at
least one new particle is generated. For this to happen,
one must exclude elastic pp processes, and this is why the
input in this case is the inelastic pp cross-section. This
latter quantity, oprod, is the one which enters the cascade,
since this is what will start the cascade.

Notice that, in the cascade, m — p is also playing a
role and this cross-section needs to be entered in the sim-
ulations as well. The m — p cross-section is smaller than
the one for pp, but only by perhaps a factor 2/3. The
relevant parameters in modeling these processes are two,
the mean free path, A\ = 1/(népr0q) and the inelasticity
K=1- Elead/Eprojy where n is the density of nucleons
in the atmospheric target and Ejcqq and Ep,,; are energy
of the most energetic hadron with a long life time in the
shower and the energy of the projectile particle, respec-
tively.

2.4.1 Extraction of o?, in Block and Halzen model

The extraction of o}, from cosmic ray data has been con-
sidered once again in [52]. Block summarizes his descrip-
tion of the connection between p — air and pp data and
examines different methods by which data are extracted
and analyzed. In addition, a different model for of%, is
used. The discussion covers now two different methods by
which one can obtain o? ioadir from the X,,,, distribution.

In the first of the methods examined, which is the one
used by Fly’s Eye, AGASA, Yakutsk and EASTOP, the
measured quantity is of course A,,, which implies that, in
order to extract first of all a value for Ugioadir one needs
the value of the parameter k. The range of values used by
different experiments for the parameter k is given in the
paper and it lies within (1.15+1.6) from EASTOP to Fly’s
Eye experiment. The smallest value is the one used by
EASTOP, which is also the most recent and corresponds
to more modern shower modeling,

A second method is the one used by the HiRes group,
which, according to Block, has developed a quasi model-
free method of measuring o? COCzT. Basically, the shower
development is simulated by randomly generating an ex-
ponential distribution for the first interaction point in the
shower. By fitting the distribution thus obtained, one can
obtain o’f)’ioadir =460+ 14+39+ 11 mb at /s =77 TeV.

The analysis in this paper differs from the one in [49)]
in two respects, one concerning the model used for o}%,,
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and the other the treatment of different cosmic ray ex-
periments. The extraction of ¢®"° from the model used
for pp description does not use all the results from the
QCD inspired model. A hybrid combination enter into the
(B(s), off) plane, namely: i) ot is obtained from an an-
alytic amplitude expression, which saturates the Froissart
bound [69], i.e. 67, ~ In?s at asymptotic energies, with
parameters fitted to both pp and pp accelerator data, ii)
B(s) is obtained via a fit to data from the QCD inspired
model [51]. Values for o’ at LHC remain unchanged, but
changes appear in the thus determined value for the pa-
rameter k.

2.4.2 The inelastic cross-section and model uncertainties,
including diffraction

A short review by D’Enterria, Engel, Pierog, Ostapchenko
and Wener [70] deals with various hadronic quantities en-
tering cosmic rays analyses, such as multiplicity distribu-
tions and energy flow. In addition, extracting an inelastic
cross-section from total and elastic scattering requires, in
most models, a theoretical description of diffraction, single
and double, low and high mass.

In Regge based models, diffraction uses a multichan-
nel formalism along the line of previous analyses by Mi-
ettinen and Thomas [71], also discussed by Pumplin [72]
73], and based on the Good and Walker decomposition of
diffractive scattering [74]. Within a Reggeon Field Theory
(RFT) framework, a QCD based description of diffrac-
tion has been applied to cosmic rays by Ostapchenko[75]
and in the simulation program QGSJET [65]. The formal-
ism uses a multichannel decomposition, and the physics
contents include description of non-perturbative effects,
such as gluon saturation, and semi-hard interactions. We
shall see in the section dedicated to the elastic differential
cross-section how other authors have introduced diffrac-
tion within Regge field theory, in particular Khoze, Mar-
tin and Ryskin and Gotsman, Levin and Maor, also using
a Good and Walker (GW) formalism with a Regge model
for the high mass diffraction, through triple Pomeron in-
teractions.

Another approach is found in the work by by Lipari
and Lusignoli (LL) [53], who have combined the mini-jet
approach with the GW description of diffractive states.
The approach by LL is based on the mini-jet description,
which the authors consider most useful to implement in
simulation programs, and on a continuous distribution of
diffractive states, all contributing to the total diffraction
cross-section. Their work on diffraction is described in the
part of our review dedicated to the elastic cross-section.

Later, in [2.6.1] we shall discuss again this point, fol-
lowing a recent analysis by Engel and Ulrich [76].

2.5 Modeling the cosmic ray flux and energy
distribution of particles

Of course, a fundamental problem -still unsolved- concerns
the origin of the primary cosmic ray flux, specially at high

energies, of interest for this review. Related issues concern
the composition and the energy distribution of the cosmic
ray constituents. As some progress has been made in this
regard, in the following we shall briefly review it.

2.5.1 Power law flux and critical indices of cosmic radiation

As stated at the beginning of this chapter, starting with

Heisenberg, many physicists including Landau[77] and Fermi[78]

devoted much time and effort to understand the observed
isotropy and a stable power law energy spectrum of the
cosmic radiation flux. Presently, it is known experimen-
tally that [79] the energy distribution law of cosmic ray
nuclei in the energy range 5 GeV < E < 100 TeV ob-
tained via the differential flux per unit time per unit area
per steradian per unit energy obeys

AN (1.8 nucleons) (1 GeV)a (2.5.1)

| wadanas) ~

sec cm? sr GeV E

wherein the experimental critical index o =~ 2.7. At the
“knee” of the distribution, i.e. at energy E ~ 1 PeV, there
is a shift in the critical index to the value o ~ 3.1.

In a recent series of papers [0],[81],[82] [83] the hypoth-
esis has been made that cosmic rays are emitted from the
surfaces of astronomical objects (such as neutron stars)
by a process of evaporation from an internal nuclear lig-
uid to a dilute external gas which constitutes the vacuum.
On this basis, an inverse power in the energy distribution
with a power law exponent of 2.701178 has been obtained
in excellent agreement with the experimental value of 2.7.

The heat of nuclear matter evaporation via the en-
tropy allows for the computation of the exponent. The
evaporation model employed is based on the entropy con-
siderations of Landau and Fermi that have been applied
to the liquid drop model of evaporation in a heavy nucleus
excited by a collision. This model provides a new means
of obtaining power law distributions for cosmic ray en-
ergy distributions and, remarkably, an actual value for the
exponent which is in agreement with experiment and ex-
plains the otherwise puzzling smoothness of the cosmic ray
energy distribution over a wide range of energies without
discontinuities due to contributions from different sources
required by current models. The argument runs as follows.

2.5.2 Evaporation of fluid particles

The heat capacity ¢ per nucleon of a Landau-Fermi liquid
drop at a non-relativistic low temperature T is given by
_dE _ds

C

(2.5.2)

Eq.(2.5.2) implies an excitation energy E = (v/2)T? and
an entropy As =~ T so that

As(E) =+/(2vE) = k:B\/Ef.

o

(2.5.3)
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Consider the evaporation of nucleons from such a droplet
excited say by an external collision. Given the entropy per
nucleon As in the excited state, the heat of evaporation
Quaporization = T(As), determines the energy distribution
of vaporized nucleons through the activation probability

— e VE/Es,

using Eq.(2.5.3)). We now turn to relativistic cosmic ray
particle production through evaporation.

P(E) = e~ 4s(B)/kp (2.5.4)

2.5.3 Cosmic ray particle production

The sources of cosmic rays here are the evaporating stel-
lar winds from gravitationally collapsing stellar (such as
neutron star) surfaces considered as a big nuclear droplet
facing a very dilute gas, i.e. the vacuum. Neutron stars
differ from being simply very large nuclei in that most of
their binding is gravitational rather than nuclear, but the
droplet model of large nuclei should still offer a good de-
scription of nuclear matter near the surface where it can
evaporate.

The quantum hadronic dynamical models of nuclear
liquids have been a central theoretical feature of nuclear
matter[84]. It is basically a collective Boson theory with
condensed spin zero bosons (alpha nuclei) and spin one
bosons (deuteron nuclei) embedded about equally in the
bulk liquid. In the very high energy limit, the critical expo-
nent o occurring in Eq. in this model are computed
as follows [80,[811[82].

2.5.4 The critical exponent for classical and quantum
particles

The density of states per unit energy per unit volume for
ultra-relativistic particles is proportional to the square of
the energy. The mean energy per particle in an ideal gas
of particles obeying classical or quantum statistics can
be succinctly described using, for classical (Boltzmann)
statistics n = 0 whereas for quantum statistics, n = 1 for

bosons and n = —1 for fermions, as:
0o 3
S =)
15‘77 =~ = - ¢ /I;Bd’l;_n = ankBT
P ]
n= 0; = aBoltzmann = 3;
3¢(4)
N=1,= Qposons = =5 = 2.701178;
¢(3)
7
N=—1;=> O fermions = —+ ~ 3.151374, (2.5.5)
where
= 1
= — 2.5.6
=3 (25.6)

is the Riemann zeta function.

To establish « as a power law exponent when the en-
ergy E = a(kgT) , one computes (i) the entropy as

dE E
E =akgT = akgﬁ; = S =kpa ln(E—o) (2.5.7)
and (ii) employs the heat of vaporization to compute the
evaporation energy spectrum

E,

e—S/kB _ ( = )O‘

(2.5.8)

as in Eq.. A more detailed interacting quantum field
theoretical calculation of o power law exponents involves
the construction of single particle spectral functions in
the context of thermal quantum field theory. While they
have here been computed the critical indices for the free
Fermi and free Bose field theories, the results are already
in quite satisfactory agreement with experimental cosmic
ray power law exponents.

In a recent paper, the AMS Collaboration[85] has re-
ported detailed and extensive data concerning the distri-
bution in energy of electron and positron cosmic rays. A
central result of the experimental work resides in the en-
ergy regime 30 GeV < E < 1 TeV, wherein the power
law exponent of the energy distribution is measured to be
Qezperiment = 5.17. In virtue of the Fermi statistics obeyed
by electrons and positrons, the theoretical value was pre-
dicted as a¢peory = 3.151374 in very good agreement with
the AMS data.

The reason for this remarkable agreement would ap-
pear to be due to a Feynman parton structure for the
high energy asymptotic tails of the single particle spec-
tral functions. In this case that structure would be de-
scribed by free non-interacting particles thanks to asymp-
totic freedom in QCD. Following Feynman’s physical rea-
soning and employing dispersion relations in a finite tem-
perature many body quantum field theory context, in prin-
ciple, it is possible to compute rather small corrections to
the renormalized energy dependent power law exponent
«a(F) for interacting theories. For further details about
a phase transition and the behaviour around the “knee”
etc. an interested reader may consult[83] and references
therein.

2.6 Cosmic ray results after start of the LHC

Since 2011, accelerator data for ot%, at LHC c.m. energy of
Vs > 7 TeV have provided new accurate information on
the high energy behavior of the total pp cross-section. The
question of whether one is now reaching a region of satura-
tion of the Froissart bound was posed again. At around the
same time, a new generation of cosmic ray experiments,
which probes ultra-high cosmic ray energies, started to
provide data. In 2012 the measurement of o, Was re-
leased by the AUGER Collaboration [86] for an equiva-
lent cm. energy /s, = 57 £ 0.3 (stat.) £ 6 (sys.) TeV.
The result depends on the simulation program, in partic-
ular models of hadronic interactions, as described in [86]
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Fig. 2.12. Fig. 2 of [86], showing the AUGER Collabora-
tion result for agioadir in comparison with other cosmic ray
results, with references as indicated in the figure. Various dot-
ted or dashed curves indicate different models used to extract
the data through different simulation programs as indicated.

Reprinted from [86], ©2012 by the American Physical Society.

[87], and the model used for extracting the proton-air pro-
duction cross-section. The spread of results is shown in
Fig. from [86].

One important difference between AUGER result and
previous results lies in the assumed primary composition:
all the measurements in the highest energy group, HiRes,
Fly’s Eye, Yakutsk and Akeno, assume pure proton com-
position, whereas AUGER opts for a 25% Helium compo-
nent.

Further uncertainties lie in how diffraction is taken into
account in the calculation. In [88], one can find a recent
discussion of the tension between LHC results on single
and double diffraction as reported by TOTEM, ATLAS
and CMS collaborations, and their impact on the cosmic
ray results.

Averaging the result between the different hadronic
models leads to

O_p'r‘_od. = [505 + 22(5tat)t;2;2(595)]mb

p—air

(2.6.1)

at a center of mass energy of (57 4+ 6) TeV. The correla-
tion between the parameters of the Glauber model which
converts p — air to pp, B(s) and o;pe;(proton — proton),
is shown in Fig. 2.13] which includes a comparison with
accelerator data, at their respective energies. The hatched
area in the figure corresponds to the unitarity limit im-
posed by the relation between the total, the inelastic and
the elastic cross-section, derived as follows :

Oin

47

B> [-—]. (2.6.2)
The above inequality may more usefully written in terms
of their commonly used units as [86]

Oin

2 .
BGeV? > [ HmbGeV > 1. 0in
mb

47 Iz [5](mb

). (2.6.3)

[A heuristic derivation of Eq.(2.6.3]) proceeds as follows.
Assume that there exists an effective B so that the elastic
differential cross-section can be approximated as

2
do . Otot Bt

s 2.6.4
dt 167 (2.64)
so that
ooy = ot (2.6.5)
= 16Br o

— Oin, Eq.(2.6.5) may be written as

Since g = Otot

2

o
B=_—__tot 2.6.6
167 (0tot — Tin) ( )
Let & = 04 /0tot, so that Eq.(2.6.6) reads
47 B 1
= >1 2.6.7
O  Ax(l—x) =7 ( )

from which Eq.(2.6.3)) follows.]

The inequality Eq. is mildly stringent. For ex-
ample, at LHC [7 TeV], the left side is ~ 20 whereas the
right side is ~ 15. Incidentally, the lower limit is reached
only in the black disk limit when ¢;, = 0¢; = 00t/2. This
provides yet another evidence that we are still nowhere
near the black disk limit. But this would be discussed
in much more detail in our section on the elastic cross-
section.

Finally, the extraction of the pp total and inelastic
cross-sections for /sp, ~ 57 TeV, leads to the quoted
results for pp scattering:

Uzi)'r;el _ (92 + 7(stat) ™), sys) £ T(Glauber)|mb
(2.6.8)

U;‘;t = [133 + 13(stat) T3] (sys) + 16(Glauber)mb
(2.6.9)

There is a strong warning in the paper, that the error
from the application of the Glauber model may actually
be larger than what is quoted here. It is also noted that
this error is smaller for the inelastic cross-section, and
this can be accounted for by the inelastic cross-section
being less dependent on the B(s) parameter than the to-
tal. We shall return later to the question of how to es-
timate the needed inelastic cross-section for cosmic rays.
We notice that, very recently, the AUGER collaboration
has released results [89] estimated in the two energy inter-
vals in log(FEre/€V) from 17.8 to 18 and from 18 to 18.5.
The corresponding values for ?~%" are within the errors
of the 2012 measurements, the central values lying in a
curve lower than the one drawn across the central 2012
reported value. These results are shown in the right hand
plot of Fig. in the context of a mini-jet model whose
results are discussed in 272

In the next subsection we shall summarize the method
used by the AUGER collaboration to extract the proposed
values for /" in [86].
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Fig. 2.13. Fig. 3 of [86], showing the AUGER Collaboration
result for Ugioadir in the {B(s),oin(s)} plane. The unitarity
limit is indicated, as is the uncertainty due to modeling of the
pp cross-section. Reprinted from [86], ©(2012) by the Ameri-

can Physical Society.

2.6.1 A recent analysis of Glauber theory with inelastic
scattering

The details of the actual inputs used in the various Mon-
tecarlo simulations used by the AUGER Collaboration to
extract ailoadir and thence 4o pp total and inelastic cross-
sections can be found in an internal report by Engel and
Ulrich [76]. Here we shall summarize the salient aspects
of this analysis that includes inelastic screening through a
two channel Good-Walker approach in the Glauber theory.

Considering just two states: |p > and |p* >, where the
first is the proton and p* is an effective state standing for
all inelastic states. A coupling parameter A is introduced
so that the 1-channel elastic amplitude I}, becomes a 2 x 2
matrix:

(2.6.10)

The elastic impact parameter amplitude for a hadron h
on a nucleus with A nucleons becomes

:<p‘th(b;Sl ....... ,SA)|p>

A
=1-<p|[[[1 - Din(b—s))]lp> (26.11)

j=1

After diagonalization, it reads

[1 — (1 + )\)fh]\[(b — Sj)} \p >

<
Il
—

H
|
ol
A
=
o S o PN

<p| [1—(1—A)th(b—Sj)} ‘p>

N =
.

I

—

(2.6.12)

For the Gaussian profile functions, an analytic closed form
expression for Iy 4(b;sy....... ,S4) is obtained and, through
it, analytic but somewhat long expressions for total, elas-
tic and quasi-elastic cross-sections for proton-nucleus are
obtained and can be found in [76].

The parameter A\?(s) is related to the ratio of o5p(s) to
Oelastic(s) and hence to available accelerator data on sin-
gle diffractive dissociation(SD) and elastic pp-scattering.
It can be parametrized and extrapolated to higher energies
as needed. Thus, accelerator data can in principle deter-
mine (modulo extrapolation) A\?(s). In practice, empirical
functions such as the following are employed

s log[103 GeV 25

b .
Ts 4 400 Gevz ) (M0

O'SD(S) = |:
Mg max
valid for (pax = ——— < 0.05.  (2.6.13)
s

Here Mp pqz is the maximum invariant mass of the diffrac-
tive system expected to be coherently produced by a nu-
cleon. Typical values (nae = (0.05 = 0.15) are consid-
ered to describe SD. The choice of (4, controls the scale
of ogp and thus . At very high energies A\? should de-
crease since we expect osp ~ In(s) and oeastic ~ In>(s).
These authors find that for the AUGER measurement at
/s = 57 TeV, A(/s = 57 TeV) = (0.35 + 0.65). This
is then folded into the errors associated with the various
cross-section estimates.

The conversion of the proton-air to proton-proton cross-
section proceeds along the lines discussed earlier, i.e., plots
of B vs. 0iner are used with constant values of p-air pro-
duction cross-sections drawn and the intersection giving
the pp inelastic cross-section at that energy. With A = 0.5,
these authors deduce that at /s = 57 TeV:

U;Zel = [92 4 7(stat) ], (sys) £ 1(slope) £ 3(\)] mb
ool = [133 £ 13(stat) T3 (sys) + 13(slope) + 6()] mb,

(2.6.14)

also shown in Eqgs.(2.6.8] [2.6.9)

2.6.2 The Telescope-Array measurement at 95 TeV c.m.
energy

In 2015, the Telescope Array (TA) collaboration has pre-
sented a measurement of the p — air cross-section at the
never attained before c.m. energy of /s = 95 TeV. The
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method used is that of K-factor, in which the attenuation
length, and hence the p — air cross-section, is proportional
to the slope of the tail of the X, distribution. As seen
before, the factor K depends on the model used for the
shower evolution. In [90], averaging over different models,
a value K = 1.2 is obtained, with an uncertainty (model
dependence) of ~ 3 %. Including a systematic error from
the uncertainty on the primary cosmic ray composition,
the procedure therein described leads to a value

oinel. = (567 + 70.5[Stat] *32[Sys])mb (2.6.15)
at an energy of 10868 ¢V, The proton-air cross-section
from this measurement appears to lie higher than the more
recent AUGER values, but it is consistent with the ob-
served trend within all the errors. Some of the difference
could be ascribed to assuming a different primary compo-
sition, a question still not fully resolved. Results from a
higher statistical sample are expected shortly.

The TA collaboration has also presented a value for
the total pp cross-section, following the procedures from
[441[47], which we have described in and Using
Glauber theory and the BHS QCD inspired fit [48], they
propose:

oot = 170713 [Stat | T 19[Sys|mb

(2.6.16)

While consistent within the errors with the trend shown
by the lower energy measurement by the AUGER collab-
oration, the above value for the pp total cross-section is
thus higher than the value extracted by AUGER. In this
respect we should notice that the methods used by the two
collaborations to pass from p — air to proton — proton are
not the same. In the next subsection, we present another
model about how to extract pp cross-section from that of
p — air.

2.7 Eikonal models for inelastic p — air scattering.

As we have seen, in order to extract information about
the basic pp scattering, cosmic ray measurements require
models to link the inelastic p—air cross-section to the total
and elastic ones. Glauber theory provides such a connec-
tion, through an eikonal formalism in impact parameter
space. However, one-channel eikonals provide an incom-
plete picture at high energy, as has been noticed since a
long time. As we shall see in more detail in the sections
dedicated to the total and the elastic cross-section, a single
channel eikonal model with an approximately real profile
function is unable to clearly discriminate between elas-
tic and inelastic processes. As a result, various techniques
have been developed: we have described in the preceding
a two channel model as that due to Engel and Ulrich, and
recalled the analytical model with QCD inspired input by
Bloch and Halzen. The present uncertainties and difficul-
ties with these extractions lead to large errors and hence,
in part, to the inability to fully exploit the very high en-
ergy data provided by the cosmic ray experiments.

In what follows we shall briefly outline the results from
a multichannel model by Gotsman, Levin and Maor and

800
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Fig. 2.14. The inelastic p — air cross-section from the two
channel model of Gotsman, Maor and Levin, compared with
cosmic ray data, from [91I]. Reprinted with permission from
[91], ©(2013) by the American Physical Society.

then show corresponding results that can be obtained in
a single channel eikonal model with QCD mini-jets and
compare them with present data.

2.7.1 A multichannel model inclusive of diffraction and
triple Pomeron coupling

An example of a QCD model used to extract p— air cross-
section can be found in [91]. This is a multi-channel model,
to which we shall return in the section dedicated to elastic
scattering. It includes diffraction contributions and triple-
Pomeron exchanges. The final formula for the inelastic
p — air cross-section is given as

Sa(b)

2771 ;PP

/d blL = cap( {Jt0t1+§G3PGenh(Y)SA(b)+
Sa(b)

—(of + agfff)

Dl
(2.7.1)

(1 + gGSPGenh(Y)SA(b))2

with S4(b) the nuclear density, Gsp the triple Pomeron
coupling, Genn(Y) the Green’s function of the Pomeron
exchange, g includes the parameters of the GW diffraction
couplings, which are used to determine oiot, 01, Tqify-

A comparison between data and results from this model

is shown in Fig. from [91]. From Eq. (2.7.1) and the

figure, one can notice the following:

— both recent AUGER and Telescope Array data (within
their large errors) can be described by the model. Shown
are two curves: for Gzp = 0 or G3p = 0.03;

— the impact parameter (b-)dependence, over which the
eikonal is integrated, includes only the nuclear shape.
In the exponent, it can be factored out of the QCD
part. Namely, there is convolution of the nuclear dis-
tribution with the inner nucleon structure;
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— the case Gap = 0, reduces Eq. (2.7.1) to

Cin(pHAY) = / db[1—cap(—Sa(b){oTh— (0" +0 )]

— the curve where also oj;f;; = 0 lies higher than the
data.

Thus, the authors conclude that a small triple Pomeron
coupling and o # 0 can give a good description of
data, when a two channel GW formalism is employed to
describe total and elastic pp cross-sections.

An interested reader may also consult some related
work in [88] that is based on QCD and the Regge picture.

2.7.2 A single channel model with QCD mini-jets

In a recent work [92], a single channel eikonal formalism
has been proposed for a somewhat different reconstruction
of the quantity ogr_ojir measured in cosmic rays, from the
underlying pp dynamics.

The starting point of this approach is the realization
that in single-channel mini-jet models, o¢jqstic includes
both purely elastic and correlated-inelastic processes [42]
93].

The model we present here exploits this observation
and has the virtue of eliminating the complicated and
model dependent untangling of the elastic and diffractive
parts to deduce the needed inelastic non-diffractive contri-

. pp . .
bution, called here o;~ , . that serves as an input in
prod

the Glauber reconstruction of o,,"" ;...
as follows.

As Eq. makes evident, cosmic rays measure and
probe the part of the scattering process that is shorn of
its elastic and quasi-elastic parts. We may thus identify
the needed remainder to be the “inelastic-uncorrelated”
part of the cross-section. If such is indeed the case, then
Oine; computed through a single channel mini-jet eikonal
formalism based on an exponentiation of the basic parton-
parton scattering would indeed correspond to the inelastic-
uncorrelated cross-section for pp scattering, as we have
discussed in [42]. This last point will also be discussed in
more detail in Sect. @

Under the above hypothesis, the steps relating pp dy-
namics to the cosmic data in a one channel formalism
become rather simple and can be outlined as follows:

The argument runs

— 1. Neglecting the real part of the scattering amplitude
at t = 0, the same eikonal x;(s,b) can be used to
describe both of?,(s) and Giner—uncorr(5):

oPP = 4m / (bdb)[1 — e~ X1(9)] (2.7.2)

inel—uncorr

at? = 27r/(bdb)[1 — e 28] (9.7.3)

In the mini-jet model of [941[95],

2x1(b,s) = nPP(b,s) = nil,, + A, s)aﬁ?D(ptmm, s)

(2.7.4)

where the impact parameter function A(b, s) describes
the impact parameter space parton distributions in
the proton, obtained through soft gluon resummation,

and U]C%?D (Ptmin, s) is calculated through elementary
parton-parton scattering and library used parton den-
sity functions (PDFs), as already discussed in the con-
text of the Durand and Pi model in [2:3:3}

— 2. Next, the usual Glauber impact parameter expres-

sion is used for the cosmic ray production cross-section:

prod

0P (Bigy) = 2m / (bdb)[1 — e~ ")) (2.7.5)

with

nP=%" (b, s) = T (b)ot? (s)

inel—uncorr

(2.7.6)

where P, .(s) in Eq. (2.7.6) is obtained from
Eqgs. (2.7.2) and (2.7.3)), with the same QCD term,
but a different parametrization of the low energy part,
as also discussed in the Durand and Pi model. T (b)
is the nuclear density, for which the standard gaussian

choice is made:

A 2 2
Tn(b) = —ge v /BN 2.7.7
IV( ) 7r}{%[e ) ( )
properly normalized to
/ d*bTx (b) = A. (2.7.8)

The parameters used in the profile , namely the
average mass number of an “air” nucleus, A, and the
nuclear radius, Ry, are again standard:

A=145, Ry = (L1fermi)AY?.  (2.7.9)
The authors of [92] have used the above in an eikonal
model for the elastic amplitude based on gluon resumma-
tion (with a singular «g), which we label BN from the
Bloch and Nordsieck classical theorem on the infrared
catastrophe in QED. The BN model and the choice of
X(b, s) are discussed in the elastic cross-section part of
this review.

We show here only the final model results and their
comparison with experimental data in Fig.. In this
figure, the left hand panel shows a comparison of data with
the results from two different nuclear density models, the
gaussian distribution and a Wood-Saxon type potential, as
in [98], as well as with different low energy contributions.
The right hand panel shows a comparison of p — air data,
including the most recent AUGER and Telescope Array
results just discussed, with two different parton densities
used in the BN model, as indicated. The band highlights
the uncertainty due to the low — x behavior of these two
PDFs parametrizations.

We notice that in this model, the impact parameter
distribution of partons is not folded in with the nuclear
density distribution, rather it is factored out, just as in
the model described in[2.7.1] This assumption may not be
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Fig. 2.15. p— air production cross-section as deduced from the mini-jet model of [94L[95] and its comparison with experimental
cosmic ray data. At left we show the model predictions using MSTW parton densities [96] and different nuclear density models,
at right using both MSTW and GRV densities [97], and including recent AUGER data [89] as well as those at /s = 95 GeV
from the Telescope Array Detector [90]. Reprinted with permission from [92], ©2015 Springer.

valid at low energies. In the above mini-jet model this un-
certainty is buried in the low energy contribution ni’;fat",
but it is likely to be correct in the very high energies re-
gion now being accessed. Thus the model differs from the

usual Glauber applications.

The AUGER data at /s = 57 TeV are very well
reproduced by this model. It is reasonable to conclude
that a single channel eikonal model that describes well o1,
indeed generates a correct uncorrelated-inelastic pp-cross-
section. The latter in turn provides the proper input to
generate Ugiofir as observed in cosmic rays. Work is still
in progress to understand the implications of the above
description on the construction of multi-channel models.

2.8 Conclusions

In this section, we have presented an overview of how,
over the past 60 years, cosmic ray experiments have pro-
vided much needed information (albeit with large errors).
They have helped guide the theorists towards more real-
istic particle physics models and make better predictions
for their asymptotic betaviour. However, many uncertain-
ties still affect the extraction of the more fundamental
pp cross-section from the cosmic ray experiments, some
of them related to the Glauber formalism and the mod-
eling of quasi-elastic contributions, and others pertaining
to diffraction in pp scattering and its relation to p — air
processes. Other uncertainties depend on understanding
the actual composition of cosmic rays and the relation be-
tween the measured high-energy power law distributions
of cosmic electron/positron, proton and nuclei and the ori-
gin of high energy cosmic rays.

3 The measurement of o,,, before the LHC:
description of experiments and their results

In this chapter, we give a brief account of crucial hadronic
cross-section experiments at particle accelerators, begin-
ning in the 1950’s up to the Tevatron, including how the
measurements were done at each machine. Relevant exper-
imental data with figures, plots and tables shall be shown.
Whenever it appears useful, there would be a discussion
of the error estimates and the difference between results
from different experimental groups.

The focus of these experiments has been to determine the
following 4 basic physical quantities:

(i) total cross-section oiotar;

(ii) elastic cross-section oeigstic;

(iii) slope of the forward elastic amplitude B;

(iv) p-parameter, that is the ratio of the real to the
imaginary part of the forward elastic amplitude.

Before the advent of particle accelerators in the 1950’s,
cosmic ray experiments were the only source for mea-
surements of total proton cross-sections. The situation
changed with the first measurements at particle acceler-
ators, which took place at fixed target machines, see for
instance [09]. These measurements were followed in the
1960’s by extensive ones, again at fixed target machines,
at the CERN ProtoSynchrotron [100], at Brookhaven Na-
tional Laboratory [I01] and in Serpukov [102]. These ear-
lier measurements showed decreasing total cross-sections,
more so in the case of pp, only slightly in the case of
proton-proton. These results were in agreement with the
picture of scattering as dominated at small momentum
transfer by exchange of Regge trajectories (leading to a
decrease) and multi peripheral production, resulting in
the exchange of the Pomeron trajectory, with the quan-
tum numbers of the vacuum, and intercept ap(0) = 1.
Things changed dramatically when the CERN Intersect-
ing Storage Ring (ISR) started operating in 1971. We
show the scheme of operation of the ISR in Fig. from
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Fig. 2.1. Schematic view of the PS and ISR rings.

Fig. 3.1. A schematic view of the ISR set up from [I03].
Reprinted from [103], ©(1979) with permission by Elsevier

[103]. Cross-sections were seen to rise. Since then, accel-
erator measurements for the total cross-section for pp as
well as for pp have been performed only at colliders and
the cross-section has continued to increase, with the lat-
est measurement released at c.m. energies of /s = 7 and
8 TeV at the Large Hadron Collider (LHC7 and LHCS8)
by the TOTEM experiment [104], with predictions and
measurement in general agreement with latest cosmic ray
experiments [86].

The spirit of this section is to show how many different
experiments took place from early 1970’s until the end of
the century, and established beyond doubt the rising be-
havior of the total cross-section while the center of mass
increased by almost a factor 100 from the first ISR exper-
iment, at 23 GeV c.m.to the 1800 GeV at the Tevatron.

This section is structured as follows:

— the description of measurements through fixed target
experiments is given in [3:1}

— the measurements at the CERN Intersecting Storage
Rings (ISR) are discussed in including a discussion
of measurement of the p parameter and the radiative
corrections needed for its determination in with
description of the various methods to measure the total
cross-section in [3:2.3] and ISR final results in [3.24]

— experiments confirming the rise of the total cross-section
at the CERN SppS are presented in with results
from UA1 in [3:33] which includes a comment on the
energy dependence of the slope parameter, UA4 and
UA4/UA2 results are in UAS5 and the ramping
run in [3:3:3]

— measurements at the FermiLab TeVatron are described
in 3:4) with results from E710, CDF and E811 in
and an overview of the Black Disk model, for a long
time a very useful and commonly held model in [3.4.2]

— further discussion of the p parameter is in [3.4.3]

3.1 Fixed target experiments

Proton-nuclei cross-sections by Bellettini et al. [I05] were
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of protons on nuclei. In this experiment, the momenta of
the proton before and after the scattering were measured,
the recoil of the nucleus was not measured at all. The ex-
perimental technique was the same as the one used for the
measurement of proton-proton scattering [100].

A system of quadrupoles and bending magnets trans-
ported a well collimated (almost monochromatic) beam of
protons of average momentum 19 GeV/c from the CERN
ProtoSynchrotron to the experimental area. The incident
proton beam was defined by scintillation counters C1 2 3
while the scattered protons were detected by another set of
counters, Cy 5, placed after the target. An anti-coincidence
counter, placed directly in the path of the beam, was used
to reduce the background trigger rate from unscattered
particles. The position of the incident and scattered pro-
tons were measured by sonic spark chambers, S123.4,5. It
is clear from the above description why such experiments
received their name: the transmission method.

A description of the transmission method can be found
in [I06], where the measurement of pion-proton total cross-
section between 2 and 7 GeV/c laboratory momentum is
described. The total cross-sections for pp and pp were mea-
sured [I0T] along with that for 7 p and K p on both hydro-
gen and deuterium targets. In this set of experiments to-
tal cross sections were measured between 6 and 22 GeV/c
at intervals of 2GeV/c and the method utilized was that
of a conventional good-geometry transmission experiment
with scintillation counters subtending various solid angles
at targets of liquid H2 and D2. The results showed a vari-
ation of the cross section with momentum, namely a small
but significant decrease in or(pp) [and or(pn)] in the mo-
mentum region above 12GeV/c was found.

The measurement of total cross-section in these trans-
mission experiments was done essentially by following the
initial and final particle paths through a series of (scintilla-
tion ) counters placed at subsequent intervals and covering
different solid angle portions. For each set of counters, at a
given solid angle, a transmission factor was defined to take
into consideration signals from the various detecting com-
ponents and the total cross-section at a given momentum
transfer value (t) was computed from the expression

o(t) =(1/N)In(Tr/TF) (3.1.1)
where N was the number of nuclei per cm? in the target,
Tp and Tr the transmission factors for an empty or a
full target respectively. Subsequently partial differential
cross-sections measured at different t-values were fitted
either by a polynomial or preferably by an exponential
and extrapolated to zero.

In Figs. and we show schematic views of the
transmission set up for the measurement of the total cross-
section from [T0TLI06].

3.2 The ISR measurement and the rise of the total
cross-section

among the first experiments to measure the expected diffrac- At ISR, in order to measure physical cross-sections, com-

tion pattern from the optical model, for elastic scattering

pletely different methods had to be employed. At least
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Fig. 3.2. A schematic view of the transmission type experi-
ment from [I06]. Reprinted from [106], ©(1966) by the Amer-
ican Physical Society.
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Fig. 3.3. A schematic view of the transmission type ex-
periment from [I0I]. Reprinted with permission from [I0T],
©(1965) by the American Physical Society.

three such methods were used, two of them depending on
there so-called luminosity of the accelerator, one indepen-
dent. Luminosity is the key parameter for cross-section
measurements at intersecting storage rings and is defined
as the proportionality factor between the number of in-
teractions taking place at each beam crossing, R, and the
particle cross-section o to be measured, i.e. R = Lo. The
concept of luminosity had been introduced in the mid-
fifties, when storage rings had started being discussed in
the community. The name itself is probably due to Bruno
Touschek, who used it when proposing the construction
of the first electron-positron colliding beam accelerator,
AdA, in 1960 [I07] and the process ete™ — vy was sug-
gested as the monitor process for other final states.

At the CERN Intersecting Storage Rings (ISR), 0total
and/or oeqstic were measured by a number of different
experiments, with different methods, in different ¢-regions.
A list of all these experiments up to the end of 1978, can
be found in the extensive review of physics at the ISR
by Giacomeli and Jacob [I03]. We reproduce information
about some of them in Table[I} While early measurements
of the elastic scattering at /s = 30 and 45 GeV were not
conclusive, a combination of various methods allowed to
definitely establish the rise of the outq;, as clearly shown
in Fig. [3.4]from [23], where the rise appears beyond doubt.

Unlike fixed target experiments which used the trans-
mission method to measure the total cross-section, stor-
age ring experiments such as those performed at the ISR,
needed either a measurement of the total rate, and hence
an accurate estimate of the luminosity, or a measurement
of the differential elastic cross-section and its extrapola-
tion to the optical point, namely ¢ = 0. Such measure-
ments are described in [I09] where first results from the
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Fig. 3.4. From Amaldi et al. measurement [23], one can clearly
see the rise of the total cross-section. Reprinted from [23],
©(1973) with permission from Elsevier.

Table 2. Results of early measurements at ISR from [109].

ISR beam Ototal P Oelastic
Vv (mb) (mb)
(GeV)
11.8 38.9£ 0.7 | +0.02 £0.05 | 6.7 £ 0.3
154 40.24+ 0.8 | 40.03+0.06 | 6.9 + 0.4

operation of the ISR at beam momenta of 11.8 GeV and
15.4 GeV are reported along with values for o;4¢q1, p and
Oelastic- These are shown here in Table

3.2.1 ISR measurements for the total cross-section and the
elastic scattering amplitude

A luminosity dependent measurement of the total cross-
section which uses the optical point method, relies on the
luminosity and on extrapolation of the elastic rate down to
t = 0. Through the optical theorem, one has that the total
(nuclear) cross-section depends only on SmA(s,0) and the
elastic differential cross-section in the forward direction
can be written as

Oe 07520t
(%)(tzo) = (167r)[1+p2], (3.2.1)

with only a quadratic dependence on the ratio of the real
to the imaginary part of the forward (complex) nuclear
scattering amplitude A(s,0),

ReA(s,0)

p(s) = SmAQ0)° (3.2.2)
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Table 1. Experiments measuring the total and the elastic cross-section at ISR as of 1977. For complete references see [103],
where C and R refer to Completed and Running experiments, respectively.

| Observable Experiment Ref.
Elastic scattering E601 [1081109,23]
at small angle CERN-Rome
Elastic scattering E602 [40|ITOLITTLIT2)1T3]

Aachen-CERN-Genoa-Harvard-Torino

Ototal R801-Pisa-Stony Brook [114]
CERN-Pisa-Rome-Stony Brook [IT5L1T6]
Small angle scattering 805 [117]
CERN-Rome

However, a method relying only on Eq. does not
allow a precise determination of the nuclear amplitude,
since at high energies, from ISR onwards, the p-parameter
is rather small (~ 0.1). It is then difficult to measure p ac-
curately and in any event such a measurement would not
determine the sign of the real part of the nuclear ampli-
tude.

Fortunately, when we augment the nuclear with the
Coulomb amplitude (due to one-photon exchange, in the
lowest order), the interference between the Coulomb and
the real part of the nuclear amplitude (for small ¢) allows
us to determine both the sign and the value of p. The
Rutherford singularity (x «/t) renders the Coulomb am-
plitude sufficiently large to become competitive with the
nuclear term, for small £. On the other hand, away from
very small angles, the Coulomb term dies out and one can
safely revert to the purely nuclear amplitude. However,
to obtain numerically accurate information about p, and
hence the nuclear amplitude, a precise knowledge of the
Coulomb amplitude is required and some care has to be
applied to obtain the correct Coulomb phase for the nu-
clear problem. This problem is far from trivial, because of
infrared photons present also in the forward direction. A
first estimate by Bethe [I18], was later clarified in [119],
as discussed in subsection where we also discuss the
question of soft photon emission.

At ISR, experiments using this method fitted the ob-
served elastic scattering rate to the expression

R(t) o 5 = mlfo+ Il
where f. is the Coulomb scattering amplitude and fx
the nuclear scattering amplitude. The two amplitudes are
both complex, with a relative phase to be determined the-
oretically. The expression for the Coulomb amplitude is
then written as

(3.2.3)

2
fe= 2aG|t(t) el

where the minus sign holds for proton proton scattering,
with opposite sign for pp scattering, « is of course the
fine structure constant and G(t) is the proton electromag-
netic form factor. This expression corresponds to ”spin-
less” scattering, a good approximation at high energies. A

(3.2.4)

more complete discussion inclusive of magnetic terms can
be found in [51], part of which will be reproduced in the
next subsection. Here we follow the abbreviated discussion
in [I09]. The expression used for the proton electromag-
netic form factor was the usual dipole expression

1

Gt) = [T SYyE

12, (3.2.5)

with A% ~ 0.71 GeV?2. To complete the parametrization
of the Coulomb amplitude, one needs to specify the phase,
which was taken to be

ag = afln(te/[t]) — C]
C = Euler's constant = 0.577
(3.2.6)

to = 0.08 GeV?,

For the nuclear, or hadronic amplitude, use was made of
the optical theorem, namely

fN _ Ototal (p + i)eBt/z

= (3.2.7)

and of a parametrization of the very small ¢ behaviour de-
scribed by a falling exponential, with B the so-called slope
parameter, in fact a function of s. One immediately sees
that the rate of elastic events involves all the quantities
we are interested in, namely

R(t) - K[(QTQ)QG‘l(t) - (P + Oé¢)%0'total G|t(|t) eBt/2
(Ztetel 21 4 )P,

47
(3.2.8)

where K is a proportionality constant and the sign in front
of a holds to pp scattering and is reversed for pp.
3.2.2 Radiative corrections to the determination of the p

parameter

Here we discuss further how the real part of hadronic am-
plitudes near the forward direction is determined through
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its interference with the Coulomb amplitude and highlight
some of the subtleties associated with the procedure.

To see what is involved, let us consider first Coulomb
scattering in non-relativistic potential scattering. The clas-
sical Rutherford amplitude (or, the Born approximation,
quantum mechanically), with a Coulomb 1/r potential,
for the scattering of two charges (Z1e) and (Zze), is given
by

22,7
Jo(k,9) = =222, (3.2.9)
where u denotes the reduced mass, t = —4k%sin?9/2 and

a ~ 1/137 is the fine structure constant. But, the ex-
act Coulomb scattering amplitude has an oscillating phase
€'?s multiplying the above. This phase is given by[24]

Z1Z2€2

o ) In(sin*9/2),

ds = (

(3.2.10)

where v denotes the relative velocity and we have restored
proper units to exhibit the quantum nature of this phase.
The physical reason for this phase is that the Coulomb po-
tential is infinite range and however far, a charged particle
is never quite free and hence is never quite a plane wave.
For pp or pp scattering, in the relativistic limit (v — ¢)

and for small angles, Eq.(3.2.10) reduces to

o5~ (F2a) Zn(%)
Eq. is exactly the small-angle limit of the relativis-
tic Coulomb phase obtained by Solov’ev|25]. On the other
hand, this result was in conflict with an earlier potential
theory calculation by Bethe[26] employing a finite range
(R) nuclear potential in conjunction with the Coulomb po-
tential. According to Bethe, the effective Coulomb phase
reads

(3.2.11)

op =~ (+2a) In(kRY). (3.2.12)

This discrepancy was clarified by West and Yennie[27].

These authors computed the effective Coulomb phase throug

the absorptive part of the interference between the nu-
clear and the Coulomb amplitude. They found-again in
the small angle, high energy limit-

0 ’ s, t'
dwy = (:Fa)[an(%)—i-/_ t/di t| {1- j((s’z)

. (3.2.13)
If one ignores the ¢ dependence of the nuclear amplitude,
the integral term above is zero and one obtains Solov’ev’s
result. On the other hand, a result similar to that of Bethe
is reproduced, if one assumes the customary fall-off e*/2
for the nuclear vertex and a dipole form factor for the EM
vertex. Explicitly, if we choose

A(s, ¢ ' pyyeg 1 —t)A2
A((ZJ)) = t)/2(1_t////12)2’ (3.2.14)
we find
8
dwy ~ (£a)ly +In(Blt]/2) + In(1 + 575)], (3.2.15)

where v ~ 0.5772.., is the Euler-Mascheroni constant.
This expression for the effective Coulomb phase agrees
with Block[28], up to terms proportional to (|t|/A?), which
are quite small near the forward direction. Hence, Eq.(3.2.15)
is sufficiently accurate for determining p through interfer-
ence at LHC energies and beyond.

As a practical matter, Block has defined a useful pa-
rameter t, for which the interference term is a maximum:
to = [8ma/0tot]. For the maximum LHC energy of 14 TeV,
t, & 7x 10~* GeV2. Putting it all together, the Coulomb
corrected, differential cross-section reads|28)]

[%L’ N qé:i) [G4(t)(t7o)2 + 2%(/} + owy )G (t)e Bl

+(1 4 p%)e Bl
(3.2.16)

where for the magnetic form factor G(t), one may employ
Pa. 523

One other aspect of the EM radiative corrections needs
to be investigated. So far, we have not considered real
soft-photon emissions in the scattering process. As is well
known, contributions due to an infinite number of soft (IR)
photons need to be summed. If (do/dt), denotes the dif-
ferential cross-section without the emitted soft-photons,
the IR corrected cross-section depends upon the external
energy resolution AF. A compact expression for the cor-
rected cross-section can be written as follows

do AE 500 8(u do
b (7)/3( )—B( )+B(t)( )os

dt E dt

2.1
7 (3.2.17)

where the various radiative factors ((s,t,u) are defined
and discussed in Sec. [

Recently, there has been a study of the amplitudes for
pp and pp elastic scattering in the Coulomb-Nuclear In-
terference region based on derivative dispersion relations
[120]. Work on this subject was done early on by Bour-

jrely, Soffer and T.T. Wu [121] and more recently also in

collaboration with Khuri [I22]. An interested reader may
consult these references.

3.2.3 The four methods used at ISR

Here we present a short discussion of the four methods
used at ISR to measure the total cross-section.

The Pisa-Stony Brook method (R801) to measure the
total cross-section at ISR was based on measuring the lu-
minosity £ and the inclusive interaction rate Re; + Rinel,
through the definition

2gec™! )Ototal (cm2)

(3.2.18)
This method had the advantage of making a totally model
independent measurement.

Two different approaches were adopted by the CERN-
Rome group. They measured the differential elastic cross-
section at small angles, but not in the Coulomb region,
and then extrapolated it to the optical limit, i.e. ¢ = 0.

R(number of events/second) = L({cm™
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The measurement was based on the parametrization of
the hadronic part of the cross-section given by Eq.,
which assumed a constant (in t) exponential t—dependence
of the scattering amplitude, and a parameter p constant
in the range of ¢ of interest. Elastic events at smaller and
smaller scattering angles were measured through the so-
called Roman pots, which were detectors inserted in con-
tainers called the Roman pots and which could penetrate
the beam pipe and get very close to the beam.

The CERN-Rome group also applied a third comple-
mentary method, the one described in the previous sub-
section, which measured the rate in the region where the
Coulomb and nuclear amplitudes interfere. At ISR this

! PP | &ﬂ*

gk 2 |..|...lz L ...u..l’
s[(GeV)’_I

happens in a region 0.001 < |t| < 0.01 GeV2. From Eq. (3.2.8))

one can fit do/dt in terms of o¢otal, p, £ and the slope pa-
rameter B.

A fourth method was adopted by a combined Pisa-
Stony Brook (PBS) and CERN-Rome collaboration. By
combining the measurement of the total interaction rate
Riot, i.e. the PBS approach, Eq. , with the Cern-
Rome method, Eq. , based on the optical thorem,
one obtains a luminosity independent measurement, i.e.

167 (dN/dt)1—o

3.2.19
Niot(1 4 p?) ( )

Ototal =

where (dN/dt);—o is the elastic rate measured at ¢ = 0
and Ny is the total rate. This was a combined Pisa-Stony
Brook and CERN-Rome measurement.

For a description of the luminosity measurements at
ISR, we refer the reader to [103].

These measurements indicated a rising total cross-section.

The result was surprising, given the then accepted con-
stant cross-section emerging from the simple Pomeron pole
model with an intercept ap(0) = 1. The measurement
was repeated several times against possible systematic er-
rors. We show in Fig. [3.5from [114], the published results
for the total cross-section as a function of s, the squared
center of mass energy. The Pisa-Stonybrook experiment
also produced a beautiful pictorial description of single
diffraction [123], but because of the difficulty in separat-
ing the non-diffractive background, these results were not
published.

3.2.4 A final analysis of ISR results

A final analysis from the group from Northwestern, com-
prehensive of both pp and pp scattering in the full range of
ISR energies is given in [124]. This analysis was published
after the CERN SppS had already been operational for a
couple of years and the rise of the total cross-section had
been confirmed. We shall now summarize this paper.

In the following we use the notation of [124], where
the slope parameter B is indicated by b. The method
used for measuring oyosq1, p and b, is luminosity dependent
and is based on measuring the differential elastic rate and
then making a simultaneous fit of the elastic differential
cross-section in and around the Coulomb region, typically
0.5 x 1072 < |t| < 50 x 1073 GeV?2. For a¢ << 1, from

Fig. 3.5. The measurement of the total cross-section by the
R801, Pisa-Stonybrook, experiment. This figure is courtesy of
G. Bellettini, also published in [114]. Reprinted from [114]
©(1973) with permission from Elsevier.
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Fig. 3.6. Proton-proton differential elastic scattering cross-
section doe;/dt in the very small [¢| region, at ISR operating
energy /s = 52.8 GeV from [124]. Shown are the Coulomb
region, the interference and the beginning of the nuclear region.
Reprinted from [124] ©(1985) with permission by Elsevier.

the Rutherford scattering formula and the optical theo-
rem, the usual expression is used to parametrize elastic

scattering in this region, i.e.
do
dft]
+ (L4 p)oppare 11 /167

Ama®GH (1) /|t F ororarc(p £ ag)G*(t)e 112 /|t

(3.2.20)

For this method, a precise determination of the luminos-
ity is crucial. Notice the known expression for Coulomb
scattering allows a calibration of the |¢| scale. We show
in Fig. 3.6 one of the many plots presented by this col-
laboration, for pp, at /s = 52.8 GeV. This figure clearly
shows the transition between the Coulomb region —t <



Table 3. Resulting values for o¢otar, p and b at ISR from [125].

\/g Ototal P b
GeV mb GeV 2
pp | 23.5 | 39.65+£0.22 | 0.022+0.014 | 11.80+0.30
pp | 30.6 | 40.11£0.17 | 0.034 £ 0.008 | 12.20 4+ 0.30
pp | 30.4 | 42.134+0.57 | 0.055+0.029 | 12.70 £+ 0.50
pp | 52.8 | 42.38 +0.15 | 0.077 = 0.009 | 12.87+0.14
pp | 52.6 | 43.32+£0.34 | 0.106 £0.016 | 13.03 + 0.562
pp | 62.3 | 43.55+0.31 | 0.095+0.011 13.02 £0.27
pp | 62.3 | 44.124+0.39 | 0.104 + 0.011 13.47 £ 0.52

0.005 GeV? and the nuclear region , —t > 0.01 GeV?
through the interference region . Similar distributions are
presented in the paper for the full range of ISR energies,
Vs = 23.5—62.3 GeV for pp and /s = 30.4—62.3 GeV for
pp. The measured differential cross-sections as a function

of |t| are presented and a simultaneous fit of Eq. (3.2.20))

allows to extract the values we reproduce in Table

3.2.5 Measurements of p and the slope parameter

The CERN-Rome experiment had measured the ratio of
the real to the imaginary part of the forward elastic scat-
tering amplitude. The trend with energy of the p parame-
ter was confirmed by other experiments as well and found
in good agreement with a dispersion relation calculation
by Amaldi. These results are shown in Fig[3.7 from [125].

We mention here the question of the |¢| dependence of
the slope at ISR. In [I12], the distributions of the differen-
tial rates for pp elastic scattering are presented nominally
for 4 different ISR energies, /s = 21.5, 30.8, 44.9 and
53 GeV . P All three sets of data points exhibit a break for
[t| ~ 0.1 GeV2. For all the energies under consideration,
the measurement of the slope in the smaller ¢ interval, was
found to be larger than the one at larger t. At 53 GeV,
the two slopes would be b(0.050 < [t| < 0.112 GeV?) =
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Fig. 4. Summary of high-energy data for p (pp) [24,3] and
p(pP) [25]. The full line represents the dispersion relation fit
of Amaldi et al. [3]. Not shown are two early data points

for p (pp) of Amaldi et al. and the p (pp) data of Fajardo et
al., which lie above the other pp data.

Fig. 3.7. The ratio p from /s = 5 GeV up to the highest
ISR energy, from a compilation in [I25]. Reprinted from [125]
(©(1983) with permission by Elsevier.

of the detector. The fitting took account of the Coulomb
corrections, through Eq. .

In Table 1 of this paper, the results for 0.01 < |¢| <
0.05 GeV'? are displayed and the following final values for
the slope are given

b(pp) = 13.924+0.37+0.22 b(pp) = 13.09+0.37+0.21

(3.2.22)

12.40 GeV =2 and b(0.168 < [t| < 0.308 GeV?) = 10.80 GeV ~Where errors quoted are statistical only, and include error

The steepening of the slope at small |t| values increases
the forward scattering cross-section above the value ex-
trapolated from larger |t| by about 20 %.

We now turn to a 1982 paper by a group CERN-
Naples together with some members of the Pisa-Stony
Brook collaboration [126]. Measurements were done for
pp and for pp at the ISR energy /s = 52.8 GeV for the
quantities doe;/dt, oejastic and, using the optical theorem
Ototal- The measurement of the elastic cross-section was
obtained by measuring the elastic rate while simultane-
ously measuring the luminosity of the colliding beams.
The differential cross-section -in the small-|¢| region- was
then parametrized as usual, i.e.

doe/dt = Aexp(bt) (3.2.21)

Fit to the data yielded o¢;qstic and b. Elastic scattering was
studied in the ¢ range 0.01 —1.0 GeV? using different parts

3 However only three such distributions appear in their Fig.
3, the one at 30.8 GeV is apparently absent.

on luminosity and uncertainty on determination of the |¢|
interval (see [126] for details). When reporting the results
for the slope at larger |¢| intervals, i.e. 0.09 —1.0 GeV? for
pp and pp, the slope was found to be smaller, 10.344+0.19+
0.06 GeV~2 and 10.6840.20+0.06 GeV ~2 respectively, in
agreement with [I12]. Results for the slope in the smaller
interval were in agreement not only with [IT2] but also
with [127] whose measurement covers the interval |t| =
1.0 x 1073 to 31 x 1073 GeV?. The larger |t| interval is
not discussed in [127]. Results for the slope in the larger
|t| interval are summarized in table

Notice that this experiment also gives explicit values
for ototar, the ratio oeiastic/0total, and the ratio oiota/b,
all of which will be discussed in the context of models.

We now look at Amaldi’s later work in [128] and [129].
Ref. [128] contains a complete review of all the data col-
lected at ISR for the usual slope, total, elastic cross-section
and real part of the amplitude in the forward direction,
while [129] discusses in detail the optical picture and its
connection to the Pomeron exchange description.
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Table 4. Values of the slope parameter at /s = 52.8 GeV in
different t intervals, as shown.

Experiment | reaction | |t|interval b
GeV? (GeV™2)
2] pp | 0.168-0.308 10.80£0.20
[126] pp 0.09-1 10.68 £ 0.20 £ 0.06
[126] Pp 0.09-1 | 10.34 4 0.19 & 0.06

3.3 Measurements at the SppS

In the early 1980’s, an hitherto unimagined energy value
in the CM was reached at the CERN SppS, ie, /s =
540 GeV. At the SppS, the luminosity [130] due to N,
protons and Np antiprotons crossing at zero angle with
effective area A is £ = fN,N;/A where { is the frequency
of revolution of the bunches. The effective area is given by
A = wh where the effective width (w) and height (h) of
the crossing bunches are :

w= /da:Np(x)Nﬁ(m) h= /dpr(y)Np(y)

(3.3.1)
where N, (z) is the normalized proton density profile along
the transverse horizontal axis at the crossing point. At the
time of the UA1 early measurement a systematic error
of 8% on the integrated luminosity measurement was re-
ported due to various uncertaintites in the factors entering
the luminosity formula.

At SppS the total cross-section was measured by ex-
periments UA1 and UA4, later on followed by a combined
collaboration UA2/UA4 and by a ramping run measure-
ment by UA5.

3.3.1 Early total cross section measurements: UAL and UA4

UA1 experiment made a measurement of the elastic scat-
tering cross-section [I30], with forward detectors cover-
ing angles down to 5 mrad, measuring the elastic dif-
ferential cross-section for 0.04 < —t < 0.45 GeV?2. The
data collected by UA1l were fitted by the usual expo-
nential form dNg/dt eBt. A measurement of the in-
tegrated luminosity allowed the extraction of values B =
13.7+£0.24 0.2 GeV =2 for |t| = 0.21 — 0.45 GeV? and
B = 17.1+£0.1 GeV? fot |t| = 0.04 — 0.18 GeV?2. The
values oy = 67.6 £5.9 4+ 2.7 mb and o0c/0totar =
0.209 + 0.18 4+ 0.08 were thus obtained. The UA4 experi-
ment had also made an earlier measurement of o4zq; [131]
and we show both measurements in Fig. from [130].
The two curves shown in this figure correspond to two
different fits by Block and Cahn [I32], where a simultane-
ous analysis of 0ytq and p, from s = 25 GeV'? to the ISR
data is performed. The two fits follow from the expression
for the even amplitude at t=0 [133] , i.e.

B(lns/sg —in/2)?
1+ a(lns/s0— im/2)?

My = —is|[A+ [+C, (3.32)

a linear (fit2, lower, dashes) Ins dependence, while ob-
taining a constant behaviour for the total cross-section at
really high energies. The other curve (fit 1,upper, full )
follows from an expression for the amplitude which sat-
urates the Froissart bound, namely is quadratic in Ins
[132]. Fit 2, with a very small value for the parameter a,
i.e a = 0.005 £ 0.0031, gives a slighly better fit, as the
authors themselves point out. The problem with this fit
is that, at extremely high energies, the total cross-section
would go to a constant, a behaviour still not yet observed
even at very high cosmic ray energies.

In [I34], the behaviour of the slope parameter B was
fitted with the asymptotic form In? s, that is with the
same curvature as the total cross-section. Such form fol-
lows from the standard parametrization of the forward
scattering amplitude as in Eq. . The rationale be-
hind this choice of behavior is that if B ~ (Ins) and
Otot ~ (Ins)?, asymptotically there is a problem with uni-
tarity, i.e., ¢ > Opor. But, if o141 saturates the Froissart
bound, i.e, o¢otar ~ In2 s, and we require that the slope pa-
rameter B rises as 0ytq1, then there is a problem with the
simple Regge-Pomeron picture, because we would expect

4o (5 \2lapen(t)-1] _ o~20" In(s)]]
7 (80) =e (3.3.3)
namely the slope parameter to be proportional to Ins.
[This argument holds even with three Pomeron trajecto-
ries, intersecting at 1, and conspiring to produce a total
cross-section to increase as (Ins)?]. Where, in such picture,
a In% s for the slope parameter B would come from is not
clear. On the other hand, using the Block and Cahn simple
analytic expression, only a constant or a In” s behaviour
results.

This debate is still of interest, as we discuss in the
following sections of this review.

3.3.2 UA4 and UA2

UA4 was the experiment dedicated to the measurement
of the total and elastic cross-section, and of the parame-
ter p. UA4 measured the total cross-section with the lu-
minosity independent method by comparing the forward
differential cross-section with the total elastic and inelas-
tic rate [I3TLI35). In [131] the value oiptq; = 66 mb with
a 10% statistical error was reported. Subsequently, using
the same method and through a comparison with a lumi-
nosity dependent measurement, the final value of oyp1q; =
61.9 + 1.5 mb was given [I35]. The difference with pre-
vious measurements was attributed to a 1.1% overesti-
mate of the beam momentum above the nominal energy
E = 270 GeV and thus to an overestimate of 2.2% on
the total cross-section. The inelastic rate at intermediate
angles was measured by a set of dedicated telescopes ,
while the total inelastic rate in the central pseudorapid-
ity region was measured by the UA2 detector. UA4 was
able to measure very small scattering angles, as small as
~ 1 mrad, down to values 0.002 < |t| < 1.5 GeV?2. This

Let the parameter a take a small value. Then at intermediate-was accomplished through the use of the Roman Pot tech-

to-high energies such as that at the SppS, one obtains

nique, already employed at the ISR. The result confirmed
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Fig. 3.8. This figure from [130] shows the total cross-section
as measured by UA1 at the CERN SppS compared with the
UAA4 early measurement [I31]. The two curves correspond to
different fits by Block and Cahn. For details see [I30], from
which this figure is extracted. Reprinted from [130] ©(1983)
with permission by Elsevier.

the shrinking of the diffraction peak, with a value of the
slope, B, defined, as customary, from the parametrization
doe/dt = doe/dt(t = 0)exp(Bt). We show in Fig. a
plot of the total cross-section from [135], where the UA4
result is compared with earlier measurements at ISR and
fixed target machines.

The ratio p was also measured and found to be sur-
prisingly large, namely p = 0.24 + 0.4. As the authors
themselves note in a subsequent paper [136], this mea-
surement was affected by poor beam optics and limited
statistics. It was then repeated by a combined UA4/UA2
collaboration under very clean conditions with higher pre-
cision and better control of systematic errors, and found
to be

p=0.135+0.15 (3.3.4)

which supersedes previous measurements and was in agree-
ment with the original theoretical expectations.

3.3.3 The ramping run and UA5 measurement

The UA5 experiment measured the total pp cross-section
at /s = 200 and 900 GeV [I37]. Data were normalized
at v/900 GeV from an extrapolation by Amos el al.[124]
and the result, o}%0, = 65.3 = 0.7 &= 1.5 mb, was found
to be consistent with previous measurements. We show
in Fig. the result of UA5 measurement compared
with the UA4 measurement [135], with the extrapolation
from [124], the expectations from Donnachie and Land-
shoff Regge-Pomeron exchange model [138], as well as a
description by Martin and Bourrely [133[139], with ex-
plicit analytic and crossing symmetric form of the even
signature amplitude at £ = 0 as in Eq..
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Fig. 3.9. The result of the UA4 experiment for the mea-
surement of the total cross-sectionat the CERN SppS from
[135].Reprinted from [I35] ©(1984) with permission by Else-

vier.

3.4 Reaching the TeV region

Starting from 1985, an even higher center of mass energy
for proton-antiproton scattering was reached in FermiLab
near Chicago through the TeVatron accelerator. At the
Tevatron, the total cross-section was measured by three
experiments: E710 [140,141], Collider Detector Facility

(CDF) [142] and E811 [143].

3.4.1 Measurements at the TeVatron

Experiment E710 at the Tevatron was the first to measure
the total interaction rate and the forward elastic cross-
section [I44]. In the detector for elastic events, two Roman
pots were placed one above and one below the beam, with
drift chambers and trigger scintillators. The inelastic rate
was measured at large and intermediate angles through
ring shaped scintillators and tracking drift chambers, re-
spectively. The first measurement by E710 was based on
the optical theorem, i.e.

dNelastic d

2
g g
g = Lo = I 1) (34)

dt 167

and extrapolation to zero of the usual exponential behav-
ior of the elastic rate measured in the interval 0.025 <
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Fig. 3.10. The total cross-section for pp and pp from [137], in-
cluding the measurement by the UA5 Collaboration, compared
with models and data, as explained in the text. Reprinted from

[137], ©(1986) by Springer.

[t| < 0.08 GeV?, i.e.

do do

Bt
do _do,
dt dt't*O

(3.4.2)

Coulomb effects were included in the analysis, although
small in the range used for the extrapolation. A second
measurement [141] used the luminosity independent method,
described in the previous subsection, and the total cross-
section was obtained from

167 1
I+ p2 Nelastic + Ninelastic

dNelastic
dt

(3.4.3)

Ototal = ‘ =

CDF at the FermiLab Tevatron Collider repeated the
Cotal Measurement at /s = 546 GeV and extended it to
/s = 1.8 TeV using the luminosity independent method
[142]. The measurement of the primary particle scattered
in the forward direction was possible only on the antipro-
ton side. CDF used the Roman Pot detector technique. In-
side the pots, two scintillation counters were used for trig-
gering, with a drift chamber backed by silicon detectors
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Figure 2: Sketch of a detector assembly (top view); the detector section symmetric with
respect to the beam-axis is not shown.

Fig. 3.11. Schematic view of the CDF Roman Pots operation
at the FNAL Tevatron from [145]. Reprinted with permission
from [145], ©(1993) by the American Physical Society.

measuring the particle trajectory at 5 points. In Fig. [3.11]
we show the layout of the detector assembly, which also
shows the bellows technique employed to move the sili-
con detectors in and out of the beam. Elastic events were
distinguished by left-right collinearity, while silicon detec-
tors behind the chambers allowed to reach off-line higher
angular resolution.

The total cross-section was obtained from a measure-
ment of the forward elastic and inelastic interaction rate.
The rate of inelastic events for scattering at intermedi-
ate angles was measured through two telescopes. On the
antiproton side, quasi-elastic antiprotons were detected al-
lowing the measurement of single diffraction with the re-
sult

osp(z > 0.85) = 7.89 4 0.33 mb (3.4.4)

to be compared with the previous UA4 result of ogp(x >
0.85) = 10.4 £ 0.8 mb, indicating the difficulty in control-
ling systematic errors in diffractive event measurements.
The measurement of the small angle elastic cross-section
was reported in [145].

The result for the total cross-section measured by CDF
differs by more than 3 standard deviations from the E710
result, as one can see in Fig. This figure shows a com-
parison between these two results from [142]. CDF also
measured the total cross-section at /s = 546 GeV and
the result with oo = 61.26 + 0.93, obtained assuming
p = 0.15, was consistent with the UA4 result, assuming
the same value for p.

Because of the discrepancy by more than 3 standard
deviations between the CDF and the E710 measurements,
E811 analyzed the very small angle data, 0.0045 < |¢| <
0.036 GeV2, using the luminosity independent method in
order to measure ooy [143] and the p-parameter [146]
and obtained a result consistent with the one from E710.
We show a compilation of all the TeVatron results for
Ototal in Flg @‘

The final numbers for o.,(pp) measured at the Teva-
tron by the three different experiments, CDF, E710 and
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Fig. 3.12. Comparison with lower energy data of results
for the total cross-section from the two experiments which
first measured the total cross-section at the Tevatron, E710
and CDF, from [142]. Reprinted with permission from [142]
©(1993) by the American Physical Society.

E811 are a follows:

oD —80.03 +2.24 mb,
o119 — 72.8 +1.63 mb,
BB — 71.42 +2.41 mb

Notice that at /s = 1.8 TeV, the CDF result

Jelastic _ () 946 + 0.004
Ototal

(3.4.5)

agrees with the E710 value 0.23 + 0.012 [142].

3.4.2 A Comment on the Black Disk Model

Fits to the total cross-section from measurements prior to
ISR and up to the latest Tevatron data accomodate a In? s
rise. It should however be mentioned that in models such
as in Refs. [9411] for instance, the rise can be (Ins)'/?
where 1/2 < 1/p < 1.

The In? s behaviour would reflect a geometrical picture
such as that arising from of a black disk with all partial
waves to be zero beyond a maximum impact parameter
value b < R, i.e. angular momentum values bk = [ <
Lz = kER. As discussed in more detail in Section the
black disk picture gives

s i (3.4.6)

with /—t = ¢ = k6 and J; the Bessel function of order
1. At small values of Rgq, J; can be approximated by an
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Fig. 3.13. Results for the total cross-section at the TeVatron,
in a compilation by E811, from [143]. Reprinted from [I43]
©(1998) with permission by Elsevier.

exponential with slope defined by the interaction radius
and one can write

do  wR* g2,
oot /4

~ e 3.4.7
dt 4 ( )
Integrating the above equation, one obtains the elastic and
the total cross-sections in the black disk limit, i.e.

Oclastic _

1
Ototal — 27TR2, = 5 (348)

Oclastic = 7TR2’

Ototal

As we shall see in later sections, even considering latest

LHC and cosmic ray results at 57 TeV, such behaviour

is not observed yet for the ratio of the two cross-sections.

Indeed what one has so far, before the LHC measurements
described in the next sections, is shown in Table

3.4.3 The p parameter at the Tevatron

In previous subsections we have described the measure-
ment of various quantities related to oyotq;, among them
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Table 5. Total and elastic cross-section from ISR to the Teva-
tron.

| /5 (GeV)  process Ttotal (MD) Oelastic/Ttotal
62 PP 43.55 £ 0.31 0.1754+ 0.004
546 PP (63.3£1.5)/(14p?)  0.213+ 0.06
1800 pp 71.4 to 80.0 0.2464 0.04

the p—parameter, the ratio of the real to the imaginary
part of the forward scattering amplitude. The behaviour of
the p parameter with energy has been discussed in many
papers. In most of the literature concerning models for
the total cross-section, p is considered to be small and
often taken to be & 0 so as to simplify many analytical
calculation, as in most mini-jet models for instance. The
sudden change of perspective arose in the 1980’s, when
the experiment UA4 at the CERN SppS reported a mea-
surement well above previous theoretical estimates. This
results however was soon superseded by a more precise
measurement, in agreement with theoretical expectations.
At the Tevatron, in the range 0.001 < || < 0.14 (GeV/c)?,
a 3-parameter least square fit, gave [147],

p = 0.140 £ 0.069 (3.4.9)
B =16.99 £ 0.047 (GeV/c)®>  (3.4.10)
Ototal — 72.8£3.1 mb (3411)

These values are consistent within the quoted errors with
the earlier E710 values [140,[141[144] and supersede them.

In Fig. (3.14), we show a compilation from [148]. The
full line represents the result from the QCD inspired model
by Block and other collaborators, which will be discussed
in the section dedicated to models.

3.5 Conclusions

The period of experimentation discussed above led to an
enormous change in the view that physicists had held until
then, due to the observed rise in the total cross-section,
changes in the value of p and the beginning of tension in
the dependence of the slope parameter with energy. These
results would lead to radically different formalisms and
models for higher energy experiments during the following
three decades. This is a subject matter which we shall
discuss at length in the coming sections of this review.

4 Theoretical scenarios and phenomenological
applications

In this section an overview of the state-of-the-art of theo-
retical and phenomenological aspects of total cross-sections
is presented.

We show in Fig. [I.]a compilation of total cross-section
data, from accelerators and cosmic ray experiments, with
photon cross-sections normalized at low energy together
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FIG. 2. The ratio of the real to imaginary part of the forward
scattering amplitude for pp and pp scattering. The solid line and

squares are for pp and the dotted line and circles are for pp.

Fig. 3.14. The p parameter as a function of the CM energy
and its comparison with the prediction from [148]. Reprinted
with permission from [I48], ©(1999) by the American Physical
Society.

with proton data [I149]. The dashed and full curves overim-
posed to the data are obtained from a mini jet model with
soft gluon k;—resummation [I50,94195], which we call BN
model, and which will described later in |4.9.4]

g BN-model (MRST-LO,p=0.62,p,,,,=1.25 GeV; GRV,p=0.69,p, . .=1.2 GeV)
T BN-model (MSTWO08-LO, p=0.66, p,,,,,=1.3 GeV)
& L
O Photoproduction data before HERA .
N P y proton multiplied by 330
160 [ ™ ZEUS 96 o ;
H1 94 yy multiplied by (330)
140 [ * Vereshkov03yp
[ L3yy 189, 192-202 GeV

OPAL yy 189 GeV
TPCyy

DESY 84yy
DESY 86 yy

* AUGER

® TOTEM and ATLAS
pp accelerator data

A pp accelerator data

pp cosmic ray data
Ll

. o o 2
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10°
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Fig. 4.1. Total cross-section data for pp and pp scattering
together with normalized «p and 7y data. Curves describe
predictions from a mini-jet model with soft gluon resummation,
and has been updated from the corresponding one in [149],
updated figure is courtesy of A. Grau, with MSTWO08 curve
courtesy of D. Fagundes.

One is often asked what one can learn from total cross-
section measurements. Although the total cross-section is
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proportional to the imaginary part of the elastic scattering
amplitude in the forward region, and thus it can shed only
a limited light on the dynamics of scattering, the interest
in such a quantity -since more than 60 years- indicates
that it can give information on fundamental questions of
particle physics.

Indeed, the total cross-section is the golden observ-
able as far as QCD confinement dynamics is concerned:
its behavior is dominated by the large distance behav-
ior of the interaction, and thus by QCD confinement dy-
namics. This dominance of large distance behavior implies
very low-momentum exchanges, characterized, at high en-
ergy, by gluons with k; — 0. These very soft quanta need
to be resummed, not unlike what happens in QED and,
the problem of the high energy behavior of total cross-
sections appears related to the one of radiative correc-
tions to parton-parton scattering. Resummation for such
effects, and hence integration over the infrared region, be-
ing mandatory, a knowledge or a model for the behavior
of emitted gluons in this domain is needed for any pa-
rameter free description. In our opinion, models which do
not access the infrared region, for instance introducing an
infrared cut-off, may provide good phenomenological de-
scriptions and some understanding of the dynamics, but
so far fail to shed light on the essential problem.

The still unsolved problem of confinement is presently
the reason why there is no model allowing to calculate
the total cross-section from first principles from low en-
ergies to high energies. In the context of the total cross-
section, we shall define as low energy the region after the
resonances have died out, /s = (5 + 10) GeV for pro-
tons, and as high energy the region where (10 + 20) GeV
< /s < (10 + 20) TeV. We shall refer to higher energies,
accessible through cosmic rays, as the very high energy
region.

The above distinction between low and high energy
is not purely phenomenological. As the c.m. energy rises,
partons inside the scattering hadrons can undergo hard or
semi-hard collisions. Such collisions, by definition, are de-
scribable with perturbative QCD (pQCD). In this regime,
partons of momentum p = xzP, are extracted from a
hadron of momentum P, with a 1/x spectrum and scat-
ter into final state partons of transverse moment p;, with
a strength calculable through the asymptotic freedom ex-
pression for the strong coupling constant, given to lowest

order as .

bo 0 Q2/ A%,
Eq. is valid for Q* >> A3 p, basically for Q* ~

p? > 1GeV2 At the same time, as the c.m. energy rises,
parton emission for given momentum p probes decreasmg
values of z, and, due to the 1/z spectrum, leading to
an increase of the cross-section, as << 1. Combining
the spectrum behavior with Eq. , and calling high
energy the region where pQCD starts taking over, we have
that the transition to the perturbative region will occur

when

aar(Q%) = (4.0.1)

1/2 > v/8/2 pimin >> 1 and pimin =1 GeV  (4.0.2)

%120 i PRD 72, 076001 (2005), eikonal mini-jet model with kt-resummation
GRYV densities, p=0.75, p,,,=1.15 GeV
100 [§ Neor=Arr(b.S)(AG+AE“1- AE"2)

G mb)

extracted

S 1*
3 D

A
Al
19

v
roton

, roton
Broton ntiproton
A :rt

ﬂ:

T
T

10°
Vs ?Gev )

Fig. 4.2. Proton and pion total cross-sections, as indicated,
from [I5I]. Reprinted from [151], ©(2010) with permission
from Elsevier.

For 2 ~ (0.1 = 0.2) the turning point where pQCD starts
playing a substantial role can be seen to occur when

Vs 2 (2/x) GeV .
V5 ~ (10 + 20) GeV (4.0.4)

Indeed, data indicate that, after the resonances die out,
the pp cross-section keeps on decreasing until reaching a
cm energy between 10 and 20 GeV. It is here that the
cross-section undergoes a relatively fast rise, easily de-
scribed by a power law, which levels off as the energy
keeps on increasing. In the case of pp, the initial decrease
is very mild and the rise may start earlier. Notice that
for pion cross-sections, the onset of the high energy region
may be considered to start earlier, as one can see from a
compilation of 7w and 7p total cross-sections, shown in
Fig. from [I51]. In this figure, the overlaid curves cor-
respond to the same model as in Fig. discussed later.

As for the high energy behaviour of all total cross-
sections, there are two main features which need to be
properly addressed in any description of data in the TeV
region: (i) how to include the mechanism which drives the
rise on the one side and (ii) what dynamics transforms the
early, almost sudden, power law-like rise into the smoother
observed behav1our consistent with the Froissart bound,
Ototal S log s. A cartoon description of this transforma—
tion appears in Fig.|4.3] There is a general understanding
that the rise is produced by an increasing number of low
momentum parton-parton collisions, and a similar general
understanding that an effect called “saturation”, brings a
balance and the Froissart-like behaviour. However, models
differ in their detailed description. In our model, such a
saturation is a consequence of the scheme we propose for
infrared gluon k;-resummation.

The large number of models available, can be divided
in various groups as follows:
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Fig. 4.3. The softening of the total cross-section from early
rise to logarithmic type behavior, consistent with the Froissart
bound.

— geometrical models

— eikonal models

— Gauge boson trajectories: the photon and the gluon
— Reggeon field theory

— QCD minijets

— AdS/CFT approaches

— fits with Froissart bound asymptotic constraint

We shall dedicate some space to each of these different
approaches, with however particular attention to the QCD
models and to efforts on resummation, resulting in what
is phenomenologically described as the Pomeron Trajec-
tory. To put this in perspective, we present an extended
summary of the problem of infrared radiative corrections
in QED, including the question of the photon trajectory,
and then a brief overview of the Balitsky, Fadin, Kuraev
and Lipatov (BFKL) approach to hadron scattering.

Not all readers are expected to be familiar with all the
theoretical backgrounds, and it is clearly impossible to
render justice to a field which has been active at least for
70 years, with new data appearing both from accelerator
and cosmic ray experiments. The literature on the subject
is very large and still increasing and the problem presents
yet unsolved aspects. Because many books and reviews
are available on specific models, our choice in this review
has been to follow a historical path and highlight some of
less treated aspects in models. The following aspects will
be examined:

Moliere’s theory in 4.1

Heisenberg model in

on the Froissart bound in 4.3

the impact picture: Cheng and Wu (also with Walker)

and Bourelly, Soffer and T.T. Wu in [£.4]

e Donnachie and Landshoff Regge-Pomeron description
in .5

e hadronic matter distribution in

e role of resummation in QED in [£.7]

— a digression on the Rutherford singulartity in [4.7.1

— Bloch Nordsieck theorem in

Touschek and Thirring about covariant formalism

of Bloch and Nordsieck theorem in [4.7.3

Schwinger’s exponentiation in [4.7.4]

— Double logarithms in QED: the Sudakov form fac-
tor in [A.7.5]

— Early 60s and exponentiation in ,

Semi-classical approach to resummation in QED in

— Reggeization of the photon in
e Role of resummation in QCD in[4.§]

— BFKL approach in
— The odderon in [4:8.2]
— Odderon in QCD in
— Gribov, Levin and Ryskin in
— BFKL inspired models in [1.8.5]
e Mini-jet models in
— Non-unitary models and the rise of 0y0¢q; in
— QCD inspired eikonal models in [£.9.2]

— Mini-jets and infrared k; resummation in through

F.9.7
e AdS/CFT models in
e phenomenological fits in
e the asymptotic behavior of total cross-section models
in theories with extra-dimensions in £.12]

Further discussion of related items can be found in the
coming Section [6] where one will also find a presentation
of the non-linear Balitsky-Kovchegov (BK) equation.

4.1 Moliere theory of multiple scattering

Most models for the total cross-section are based on the
optical theorem, and many of them use models for the dif-
ferential elastic cross-section . In this subsection we wish
to recall the general features of one such model, Moliére’s
theory of multiple scattering [33], developed for the scat-
tering of electrons on atoms, summarized, and compared
to other pre-existent models, by Bethe [34] .

Moliére’s theory of multiple scattering is valid for small
angle scattering, i.e. sinf ~ 6, and is based on the trans-
port equation for f(0,t), with f(6,¢)df the number of elec-
trons scattered within an an angle df after passing through
a slab of atoms of thickness ¢, and an ansatz for the prob-
ability of small angle single scattering. The starting point
is

w — Nf(6,1) /a(x)xdx +

+N/f(9’,t)a(x)dx (4.1.1)

where N is the number of scattering atoms per unit vol-
ume, o(x)xdx is the electron-atom cross-section into the

angular interval dx after traversing a thickness ¢. In Eq. (4.1.1])

the first term corresponds to electrons which were scat-
tered away from the studied position, namely probability
of being originally at angle 6 times the number scattered
away in any direction, while the second is the probability
of electrons scattered into the observed position from any
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process, and 8’ = 0 — x, dx = xdxd¢/2w. Taking the
Fourier transform of f(6,t)

F0.1) = / T ndnd)g(n. ) (412)

one can use Eq. (4.1.1)) obtaining, in the notation of Moliére,

g(n,t) = 2= %® (4.1.3)

where

2(n,t) = Nt /Ooo a(x)xdxJo(nx) (4.1.4)

with 24(t) = 2(n = 0,t) having the physical meaning of
the total number of collisions. Notice that Eq. uses
the fact that g(n,0) = 1, which follows from the fact that
the incident beam is exactly in the direction 6 = 0, i.e.
f(6,0) = 6(0). One can then solve for f(6,t) obtaining

F0.1) = / ~ pdn o)

<expl-Ni / ¥ o toxdx{l - hm)Y  (4.15)

Bethe points out that this equation is exact provided the
scattering angle is small. He then proceeds to describe the
approximations used by Moliére to evaluate the integral
and, in the remaining sections, to compare these results
with others.

Moliére’s theory of multiple scattering analyzes and
proposes models for the scattering probability and it is an
early example of resummation of small angle scattering.

4.2 The Heisenberg model

An early estimate of the total hadronic cross-section was
obtained by Heisenberg in 1952 E| [152],

o2V

m2 < Ey >

T

Ototal ~

(4.2.1)

where < Ejy > is the average energy per emitted pion. We
will describe the argument behind Eq. m )following
the very clear presentation by Kang and Nastase [I53],
who then use it to derive similar results in AdS/CFT.

The description of scattering is the by now familiar
picture of two hadrons colliding and interacting through
their surrounding cloud of pions. Due to Lorentz contrac-
tion at high energy, we are dealing with two thin pancakes,
and the scattering degrees of freedom are in the transverse
plane, where the impact parameter b describes the scat-
tering, as in Fig. [.4] from [I53]. In such a picture, the total
cross-section is written as

Ototal = T (4.2.2)
4 A translation of this article can be found at

http://web.ihep.su/dbserv/compas/src/heisenberg52/engl.pdf
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Figure 1: Hadron scattering in the center of mass frame. M= hadron mass, m= pion mass.
Also, A-S shockwave scattering on the IR brane. M= dual particle size. m=KK graviton
mass (gravitational field in 5d, with given boundary conditions)

Fig. 4.4. Description of the scattering in impact parameter
space from [153], leading to Heisenberg total cross-section for-
mulation, and to the AdS/CFT derivation, as discussed later.
(©2005 Elsevier. Open access under CC BY License.

where b4, is the largest impact parameter value which
still allows pion emission, so that the expression at the
r.h.s of Eq can also be considered the maximum
value which the total cross-section can take, as the energy
increases.

The challenge is then to find b,,,, and its energy de-
pendence. Let £ be the energy emitted in the scattering at
impact parameter b, and < Ej > the average pion energy
for scattering at a c.m energy /s. One can then write

E=a+/s > n<FEy> (4.2.3)

where n is the number of pions emitted with « a propor-
tionality constant which reflects the overlap of the wave
functions of the pions surrounding the colliding hadrons.
As the transverse distance between the two hadrons in-
creases, the pion wave function can be expected to de-
crease as an exponential, and, at the maximum distance
for the scattering to still take place, one can write

o = ¢ bmazma

(4.2.4)

since m, is the size of the pion cloud. One then obtains
Eq. . This equation however does not provide much
information, unless one can determine how the average
pion energy depends on the c.m. energy. To obtain this
energy dependence, for instance whether the total cross-
section is a constant or increasing with the square of the
logarithm of the c.m. energy or any other behavior, one
needs a model to calculate < Ey >. Notice that if < Ey >
is proportional to /s, then the total cross-section would go
to a constant, whereas the rise with a logarithmic power is
only ensured by a constant average pion energy. We shall
now see, from [I53], which was the procedure followed by
Heisenberg.

One starts with calculating the differential energy radi-
ated away during the collision for the case of a free massive
scalar pion of energy Ej,

d&€

—— = A = constant

4.2.
B, (4.2.5)
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which is found to be a constant up to a maximum energy
Eo maz = ymy with v &~ /s/Myg, Mg being the hadron
mass.

Apparently a similar argument was also pictured by
Sommerfeld in his theory of the production of X-rays (ac-
cording to Touschek [154]). If the collision takes place in
a time interval much shorter than the one characteriz-
ing the emission, then the process can be described by a
d—function in time, whose Fourier transform is a constant.
This would lead to a constant spectrum for the energy
emitted in the process, namely Eq. .

The number of emitted pions per unit energy radiated
is then obtained as

dn A

R 4.2.6
dE, Eo (4.2:6)

Now, to get the energy £ and the number n of emit-
ted mesons, we integrate Eqgs. (4.2.514.2.6) between m,
(we need to emit at least one pion) and Eg mqp. With
the maximum energy, which can be emitted, given by
Eo maz = /S mx /My, one gets

EO,nLaa:
£ = / d€ ~ A(Vs mx /My —my)  (4.2.7)
and
n:/dn:A dE—E;O:AlnE(;n’inrz (4.2.8)

which immediately gives the average energy < Ey > from

< Ey >:%: (s ma /Myt — )

(4.2.9)

EO,maa:
My

In

This indicates that the average energy < Ey > increases
with the c.m. energy +/s, apart from logarithmic terms.
For such a case, then the total cross-section would go to
a constant. The above result follows, according to [153],
from the equation of motion for a free pion. But the pion
is not free at high energy and the equation of motion,
[0 —m2]¢ = 0 is not valid. At this point Heisenberg took
the Dirac-Born-Infeld-like action for the scalar pion

S=1" / d4x\/l +14[(0,9)% + m2¢2?] (4.2.10)
with a length scale [ and obtained
e _ A dn A (4.2.11)

dEy ~ By = dEy EZ

Now, using Eq. (4.2.11)), one repeats the above steps, namely

Vs mx /My E
d& = Aln 22mes, (4.2.12)

Mo zs

n:/dn:A

5:

and

dEy _ A My

T E) @)

At this point, one can calculate the average energy

Eo,max

& In =omes In~y
< Ey>= = =m, M =m, ~ mylny
n R 1—1/y
(4.2.14)

with v &~ \/s/Mpy . With this energy distribution for the
pion field, the average energy Fy o m, grows only log-
arithmically. This then immediately leads to a maximal
behavior consistent with the Froissart limit.

Kang and Nastase comment further on this result.
They write that the minimum energy emitted could be
mistakenly understood to be m,;, but it is instead the pion
energy, which for a free pion would grow linearly with /s.
On the other hand one needs an action with higher power
of the derivatives, such as the Dirac-Born-Infeld action,
to obtain a constant value for < E; > proportional to
the pion mass. In their subsequent treatment in terms of
AdS/CFT, the model by Kang et al. is applied to the
case of pure gauge theories and the authors will talk in-
terchangeably of pions and lightest glueballs.

One can unify the two derivations from the previous
part, by using

d& o
— = A(=)? 4.2.1
= A (4:2.15)
and hence J )
n 1
— = A—(—=)? 4.2.1

which would give the two previous cases in the limit p = 0,
i.e. constant cross-section and average pion energy increas-
ing with c.m. energy, or p = 1 with constant average pion
energy and cross-sections limited by In? v/s. For dimen-
sional reasons, we must introduce the pion mass already
in Eq. .

Then both the above results can be written in a single
expression, with 0 < p < 1. We write for simplicity m, =

wand then Ey yq2 =~ yu. Integrating Eqs. (4.2.15)) 4.2.16)),

we get
A:U’ 1-p
= — —1 4.2.1
&= o) (42.17)
—— Aplny (4.2.18)
p—1
and
A
n=—|1—-(=)’| —A|l-— (4.2.20)
p ’)/ p—>1
— Aylny (4.2.21)
P
so that 1
pp v P -1
Ey>=— ———— 4.2.22
<Bo>=1 75 ( )
and as a result we have the two limits
In~
< Eg > p—;l—) ILI,1 — % (4223)
Y
— 4.2.24
p—0 uln’y ( )

as it should be.
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4.3 A general observation about the various ways to
obtain the Froissart bound

Heisenberg’s argument is geometrical to begin with, but
dynamics enters in defining the average pion energy. The
geometrical argument is also the one used by Froissart [3],
and in all the others derivations of the bound, including
Martin’s [4] and Gribov’s [20], as seen in Section [I] These
derivations are all obtained with

— optical theorem , oyp1q; x SMA(s,t = 0)
— partial wave expansion truncated at L., so that

L'm,atc
SmA(s,t=0)< Y (2A+1)=L},, (431
0

In other words the derivations are related to the partial
waves falling off at high energy for a finite L4, which, in
impact parameter space, then becomes proportional to a
bmaz- The connection between L4, alias by,qz, and the
energy comes from the high [—behaviour of the Legen-
dre functions, and the energy dependence enters because
the scattering amplitudes are said to grow at most like a
polynomial in s. The difference between Heisenberg’s ar-
gument and the S-matrix derivations seems to be that for
the latter the energy dependence comes from the hypoth-
esis on the amplitudes taken to grow with energy, whereas
for Heisenberg, to obtain the limit one needs an average
pion energy to be a constant and total energy emitted
proportional to the c.m. energy.

Let us repeat here the heuristic argument given by
Froissart, at the beginning of his paper, to obtain his re-
sult. It must be noted that this intuitive explanation relies
upon the existence of confinement. Indeed, the whole de-
scription applies not to parton scattering but to hadron
scattering.

Let the two hadrons see each other at large distances
through a Yukawa-type potential, namely ge™"" /r, where
K is some momentum cut-off. Let a be the impact parame-
ter, then the total interaction seen by a particle for large a
is proportional to ge™*%. When ge™"* is very small, there
will be practically no interaction, while, when ge™"® is
close to 1, there will be maximal probability for the inter-
action. For such values of a, ka = In |g| one can then write
for the cross-section o ~ (m/k?)1n? |g|. If ¢ is a function
of energy and we assume that it can grow with energy
at most like a power of s, then one immediately obtains
that the large energy behaviour of the total cross-section
is bound by In?s. What & is, remains undefined for the
time being, except that it has dimensions of a mass.

Since Heisenberg’s early result, many attempts have
been made to reproduce it with modern field theory tech-
niques. Leaving aside for the moment, the Regge-Pomeron
language, one can summarize this result and related at-
tempts, including those of Froissart and Martin, as fol-
lows:

— confinement is input to the derivation as one considers
pions as a cloud around the interacting hadrons, repre-
sented by a fall-off of the cross-section at large impact

parameter values. In [I52] a value b4, is defined and
related to the energy emitted. In Froissart’s heuristic
explanation of his derivation, the potential is of the
Yukawa type, with the coefficient of the term in the
exponential in r, proportional to a constant x, which
will later turn out to be the pion mass, (similar to the
coefficient in Heisenberg’s exponential);

— with such an exponential behaviour, o4, by definition

proportional to b2,,, , will be proportional to

e inverse of the scale, which is m,
e a logarithm of a function of the energy scales of the
collision, f(+/$, Mz, mp)

— the average emitted pion energy is what determines
the function f(v/s,mr, mpg), through the relation <
Ey >= \/se~bmazm=x

— for a free pion field f(y/s,mr,mpy) = ﬁ, while for
the more realistic case of not free pions, Heisenberg
obtains f(y/s, Mg, mpy) = Invy with v ~ \/s/My

To obtain the logarithmic dependence in the cross-section,
it is then necessary to understand the behaviour of the
function f(1/s,my,mpy). In Froissart, the elastic ampli-
tude is assumed proportional to a finite power of the en-
ergy and this brings in the energy term in the logarithm.

Finally, let us notice a recent paper by Azimov [155],
where the fundamentals of the Froissart bound are revis-
ited and the possibility of a different asymptotic behaviour
of the total cross-section is proposed.

4.4 The impact picture

The impact picture for particle scattering is still at the
basis of many of the proposed descriptions for the total
cross-section. It is often obtained as a direct consequence
of an optical model for scattering, with direct connection
to the optical theorem.

4.4.1 Cheng and Wu description of high energy scattering,
including work with Walker

In 1970 Cheng and Wu [I56] (CW) described the general
qualitative features of the impact picture for high energy
scattering.

The final picture had arisen through a long series of
papers, the first of which studied the high energy limit of
elastic two body scattering amplitudes in (massive) quan-
tum electrodynamics [I57]. In this paper, a systematic
study, at high energy, of all two body elastic scattering
amplitudes was performed and the concept of “impact
factor” was introduced for electrons, positrons, nuclei (all
point-like) and the (massive) photon. ”After 16 months
and 2000 pages of calculations”, as the authors say, it was
found that the matrix element for the elastic scattering
process a + b — a + b, for small values of the momentum
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transfer r1 ~ 0, can be stated in the form [I57]
Mg
< [ darlian+ ) g -t

x$"(q.,r1)8" (g, m)
(4.4.1)

~ i(2ryr3)(2m) 72

The authors note that, with the exception of the result
in Eq. , all the above is model independent and
believed to be firm, whereas the first one could only be
valid in QED. We shall return to this point in Sec. 77.
In 1973 Cheng, Walker and Wu proposed a quantita-
tive model, based on such picture, to the study of total
cross-sections [I59], and, later, also applied it to study
the ratio of the elastic to the total cross-section [160].
The impact picture presented by Cheng, Walker and

This expression introduces the impact factor §*. In Eq. (4.4.1Wu (CCW) represents the collision, as seen by each in-

the amplitude is cast as an integral over an internal vari-
able, which obtains from higher order diagrams, with ro
and r3 being averages over initial and final particle mo-
menta. The results obtained in this paper, which relies on
a non-zero photon mass A\ to avoid infrared divergences,
contradicts, according to the authors, previous results on
Regge-poles and the droplet model for diffractive scatter-
ing, both of which rely on potential model results.

In [I56] the impact picture and the eikonal approxima-
tion, which will later lead to their numerical prediction for
high energy scattering (with Walker), are presented and,
in [158], the limiting behaviour of cross-sections at infinite
energy is stated in the following major predictions for two
body scattering:

1. the ratio of the real to the imaginary part of the elastic

amplitude
ReM(s,0)  w 9
SmM (5,0) /S| +O0(n|S|) (4.4.2)
where S is obtained asymptotically as
_ (—s)° (—w)?* y1/a
SR Y T el
5/50 (4.4.3)

7 Tin(s/s0)2/°

for —t ~ 0. This expression shows that S increases at
least like a power of s, with a a positive constant;
2. the asymptotic behaviour of the total cross-section is
given as
Orotal = 202 R* + O(In|S))

with R = RyIn|S], and Ry is a constant.

3. for the elastic cross-section, the impact picture, ex-
tended to t # 0 leads to a prediction on the position
of the first dip, namely to geometrical scaling, a result
previously obtained in [I3] on very general grounds,
ie.

(4.4.4)

— taipOiotal = 2767 + O(In |S]) 1) (4.4.5)
with 8y corresponding to the position of the first zero
of the Jy(7f);

4. the ratio of elastic to the total cross-section goes to a
constant, namely

elastic 1
Telastic _ — (4.4.6)

Ototal 2

dividual particle, as that of two thin pancakes, Lorentz
contracted along the direction of motion. The pancakes
are seen as being made of

1. a black core, where essentially total absorption takes
place, with a logarithmically expanding radius R(s) ~
RoIn s, which owes its existence to the production of
relatively low energy particles in the center-of-mass
system

2. a grey or partially absorptive fringe, roughly indepen-
dent of the energy.

One of the immediate predictions of this picture is that
the ratio of the total to the elastic cross-section becomes
1/2 at very high energy. As we discuss later in this review
in the context of diffraction, this is a problem with the
one channel eikonal representation.

Lifting notation and everything else from [159], for an elas-
tic channel j, the amplitude at high energy is written as

M;(s,A) = 22—8 /dwlexp(—iA ~x1)Dj(s,x1) (4.4.7)
T
where A is the momentum transfer and D; is written as

Dj(s,m1) = 1—eap(—f;(Ee'™?)%) xexp(—A(a? +3,)'/?)
(4.4.8)

with E the laboratory energy of the projectile (incident
particle). While ¢ and A are universal constants, f; and z,
are parameters, which however are the same for particles
and antiparticles. The factor e ~*"/2 is present to allow for
crossing symmetry in the amplitudes. The normalization
of the amplitude is such that the differential cross-section
is given by

do

= [My(s A)
where t = —AZ2. The optical theorem then leads to the
expression for the total cross-section

(4.4.9)

Frorat() = Ags ™2+ T Smi (5,0) (4.4.10)
In the above equation, the authors added a term, defined
as a background term, and the factor 4.893 is a conver-
sion factor to mb. The asymptotic energy scale is now
controlled by the power ¢ in Eq. . When the paper
[T59] was written, the parameter was fixed through the fit
to hadronic data, including results from ISR experiments.
The value of the parameter was given as ¢ = 0.082925.
In a subsequent paper [160], the model is further de-
fined. The amplitude is written as the sum of 3 terms,
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namely a vector and a tensor exchange, and the Pomeron
contribution. The authors write

B SmA,(s,0 _ _ _
ot /pp) = 48981 A0 4 1250 5] b

(4.4.11)
where the subscripts f and w refer to the tensor and vector
exchange. The Pomeron contribution appears through the
eikonal formulation, i.e.

Ayls,t) = 5 / de e A" D(s,e)  (44.12)

with

D(s,x1) =1— exp[—S(s)F(x3)] (4.4.13)
With this, CWW obtain the fit to the elastic scattering
parameter, presently called the slope parameter, further
discussed in Sec. 5] B(s), which is seen to rise slowly with
energy. It is also seen that the ratio of the elastic to the
total cross-section should rise by 7% at ISR.

4.4.2 The impact parameter description by Soffer, Bourrely
and Wu

A particularly clear description of how the impact picture
developed after CW work can be found in a short review
paper by Jacques Soffer [I61] in [162]. It is recalled that
QED was the only known relativistic quantum field the-
ory in the late ’60s and that CW introduced the small
photon mass in order to avoid what Soffer calls unnec-
essary complications. It is recalled that the summation
of all diagrams for Compton scattering leads [158] to the
asymptotic expression of Eq. .

In the model built by Soffer with Bourrely and Wu
(BSW), the scattering amplitude for proton scattering is
written as

a(s,t) = a(s,t) £ sa’(t)

where the signs refer to pp and pp respectively, the hadronic
amplitude is given by a®¥(s,t) and the factor s has been
factorized out of the Coulomb amplitude a®(t).

The hadronic amplitude is obtained from the impact
picture [I63] as

(4.4.14)

a¥(s,t) = is / h bdbJo(byv/—t)(1 — e~ (b)) (4.4.15)

The eikonal function (2(s,b) is split into two terms, re-
flecting different dynamical inputs, namely

2(s,b) = Ro(s,b) + S(s,b) (4.4.16)
where Ry(s,b) includes the Regge contribution important
in the low energy region and is different for pp and pp,
whereas the second term S(s,b) is the same for both pro-
cesses and gives the rising contribution to the total cross-
section. In this paper, a factorized expression is chosen so
that

S(s,b) = So(s)F(b?) (4.4.17)

with the energy dependence given as in the CW model,
namely

(&

= 7 +
In® s/s¢

uC

So(s) (4.4.18)

In® u/ug

The impact parameter dependence, and hence the t-dependence,
is inspired by the proton electromagnetic form factor, namely
it is the Fourier-transform of

a’+t
a2 —t

F(t) = fIG)P[ ] (4.4.19)
where G(t) is given by a parameterization inspired by the
proton electromagnetic form factor, i.e.
G(t) =[(1—t/m3)(1 —t/m3)] ! (4.4.20)
This model had six parameters, which were fixed from
existing data. As in most models, the appearance of LHC
data required some adjustment of the parameters. In Fig. [{.5]
we show some current predictions from this model, up to
very high energy cosmic rays [164].
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Fig. 4.5. Total cross-section predictions at LHC and beyond,
from Soffer’s contribution to Diffraction 2012 [164]. Reprinted
from [164], ©(2013) with permission by AIP Publishing LLC

The elastic differential cross-section is defined as

812|a(s,t)|2 (4.4.21)

and the total cross-section at /s = 40 TeV is predicted
to reach a value of 121.2 mb [165].
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4.5 The universal Regge and Pomeron pole description
by Donnachie and Landshoff

In Sect. [, we have seen that the analyticity properties
of the elastic scattering amplitude in the complex angu-
lar momentum plane, make it possible to obtain that the
amplitudes for large ¢t and small s exhibit a power law be-
haviour. Using crossing, one then obtains the usual large
s and small ¢ behaviour to describe elastic scattering and
different low energy processes.

The very successful parametrization of all total cross-
sections provided in 1992 by Donnachie and Landshoff
(DL) [60]

oTOT =y 4 X5 (4.5.1)

was inspired by Regge and Pomeron exchange, and pro-
posed as a universal expression valid for all hadronic total
cross-sections. In Eq. (4.5.1) the first term is identified
as arising from p,w, f,a (J = 1,2) exchanges, the second
from Pomeron exchange, a vacuum trajectory, which, be-
fore the observation of the rise of oy, had been given a
constant intercept ap(0) = 0. Requiring the same values
for X, e and 7, the DL fit to pp and pp data gave
e = 0.0808 n = 0.4525 (4.5.2)
What is remarkable about this expression is that the same
value of € and 1 appeared to fit all available cross-section
data, within the existing experimental errors, namely 7%p,
K*p, vp, pn, pn.The interpretation of this expression for
what concerns the first term is that it correspond to a
simple Regge pole with intercept «(0) =1 — 7. Clearly, if
one uses only one such decreasing term for different sets
of data, n is understood as being the intercept of an effec-
tive trajectory, which actually takes into account different
Regge terms contributions as well as possible contribu-
tions from non-Regge terms, including the exchange of
more than one Pomeron. As for the Pomeron, this is con-
sidered as an entity whose distribution and density func-
tion were actually measured at HERA, and to which we
shall return in the section dedicated to photon processes,
Sec. [6} The fact that the power is the same for different
processes finds its justification in that the Pomeron has
the quantum numbers of the vacuum. Thus, for crossing
symmetric processes such as pp and pp not only the power
is the same, but also the coefficient X. This is borne out
by the fit to various processes, which we reproduce in Fig.
4.0l
In the introduction to this section, we have mentioned
the interpretation of the rise in terms of QCD processes
like mini-jets, which will also be discussed later in more
details. We mention here that in [I66] this possibility was
considered unlikely because, when the contribution from
vector and tensor meson exchange to the total cross-section
is subtracted off, the rise appears to be present already at
Vs <5 GeV and, in some cases, even earlier [I67]. In the
1992 paper [60], this statement is softened, although it is
still said that the form X s€ is unaffected by the onset at
higher energies of new production processes, such as charm
or minijets. A word of caution is however added, namely

that at the Tevatron one can expect a large number of
mini-jets.

The question of the rise is also discussed with respect
to the impact picture by Cheng, Walker and Wu [I59,160].
DL considered unhelpful to adopt a geometrical approach
and to talk of hadrons becoming bigger and blacker as the
energy increases. We note that an early rise with the same
power as the one found by DL is also to be found in the
CWW [159].

On the other hand, if the rise is due to mini-jets, at
high energy the rise should only depend on the gluon den-
sities, and thus be flavour independent. However, as in the
case of yp and 7, there may be other ingredients, quark
densities, internal structure such as hadronic matter dis-
tribution etc. which change the way the cross-section rise.
Indeed, as we shall show in the section dedicated to vp
processes, mini-jet models do not expect the rise to be
the same for photons as for protons until such very high
asymptotic energies are reached where only gluons play a
role.

The advantage of the DL formulation is that it pro-
vides a simple and useful parametrization of total cross-
sections, without the need to introduce the question of the
inner structure of protons. The disadvantages are that it
does not connect directly to QCD and it violates the lim-
iting behavior imposed by the Froissart bound

4.6 Hadronic matter distribution

A crucial role in many of the models for the total cross-
section is played by the distribution of matter in the col-
liding hadrons in the plane perpendicular to the initial di-
rection of motion. Practically the only model which does
not use an impact parameter description is the simple ver-
sion of the Regge-Pomeron model by Donnachie and Land-
shoff [60] or phenomenological fits based on analyticity
and other general properties, discussed later in this sec-
tion. However, any dynamical description of hadron scat-
tering uses information about the breaking up of the pro-
ton, which is what is described by the total cross-section.

Models in current usage fall into one of the following
major categories:

— matter distributions obtained from the Fourier trans-
form of colliding hadron form factors (FF),

— parameterisations inspired by form factor (FF) mod-
els, such as the BSW [163], or QCD inspired model by
Block and various collaborators [T68,[169],

— QCD dipole models, based on the BFKL equation in
transverse momentum space [I70,171],

— Fourier transform of transverse momentum distribu-
tion of QCD radiation emitted during the collision,
using k; Soft Gluon Resummation (SGR), extended
to the infrared region, as in the so-called BN model,
described later in this section [I50L04195].

The basic function of these models for the matter distri-
bution in impact parameter space, is to provide a cut-off
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Fig. 4.6. Donnachie and Landshoff universal description of proton, meson and photon total cross-sections with Regge and
Pomeron pole exchange. The figure is courtesy of the authors and is reprinted from [60], ©(1992) with permission by Elsevier.

in space which describes the fact that hadrons have a fi-
nite size, namely that quarks and gluons are confined into
hadrons. From this point of view, models which reflect this
finite size, such as the dipole model for the proton factor,
can be a good description, but the problem in this case
lies in the energy dependence.

Form factors in fact are a phenomenological descrip-
tion of the inner structure and need to be placed in a QCD
context for a model independent understanding. Also, the
problem with form factor models, is that in some cases,
such as the case of photon total cross-sections, the form
factor is not known. One can always use a dipole (for pro-
tons) or monopole (for pions) functional form, but then
one may have to change phenomenologically the scale pa-
rameter. On the other hand, QCD inspired matter dis-
tributions, which are based on parton structure, can be
useful only if they are able to access the Infrared Region
(IR), since the needed impact parameter description has to
describes very large b-values. Thus we require a model for
ultra-soft, infrared, soft gluon emissions. One such model
was proposed in [I50] and its application to total cross-
section will be described in [£:9:4] In order to approach
models based on resummation, we shall dedicate the next
subsections to a discussion of resummation in gauge the-
ories, QED first, and then QCD.

4.7 Role of resummation in QED

We shall here first present a review of resummation in
QED, including the Sudakov form factor.

In this subsection, we shall provide the reader with
a history of resummation beginning with the pioneering
work on the infrared catastrophe by Bloch and Nordsieck
and its importance for subsequent development both in
QED and QCD. The non covariant formulation by Bloch
and Nordsieck was substituted by a covariant one by Tou-
schek and Thirring in 1951. Previously, in 1949 Schwinger
had anticipated the need for resummation in perturba-
tive QED. In the fifties and the sixties, there were further
refinements by Touschek, Brown and Feynman, Lomon
and Yennie Frautschi and Suura. A different path to re-
summation was initiated by Sudakov which later played
a pivotal role in QCD resummation. For QCD, resumma-
tions of soft gluon transverse momentum were developed
by Dokshitzer Dyakonov and Troian, Parisi and Petronzio,
Collins and Soper, Curci Greco and Srivastava, Pancheri

and Srivastava. In a subsection to follow, we shall illus-
trate the highly influential work by by Balitsky, Fadin,
Kuraev and Lipatov, based on the evolution equation for-
malism. Finally, their connection with total cross-section
computations will be established.

The importance of large distance scattering in models
for the total cross-section leads naturally to consider the
importance of very small momentum interactions, namely
the InfraRed (IR) momentum region is dual to the large
distance region. When particle momenta are very small,
resummation of all processes involving small momenta is
necessary. In QED this has been the subject of interest for
almost a hundred years, in QCD for more than 40. In the
following we shall present a mini-review of the problem of
resummation in QED, followed by a discussion of the QCD
case. The latter is of course still not solved, a possible
ansatz to describe the IR region and the connection of
resummation with the asymptotic behaviour of the total
cross-section will be presented later, in the context of the
eikonal mini-jet models.

All total cross-sections reflect the effective area defined
by the (average) perpendicular distance between the two
incident particles and hence are controlled by scattering
at large distances. Long distances correspond to their dual
i.e., small (transverse) momenta. Thus, the importance for
a theoretical understanding -in any model for high energy
total cross-section- of scatterings at very small momenta.
Unbroken gauge theories, abelian[QED] or not [QCD], are
plagued by two types of singularities both originating from
the masslessness of the gauge boson. The exchange of a
massless gauge boson in any elastic scattering between
(generalized) charges gives rise to the Rutherford singu-
larity as the momentum transfer goes to zero. Thus, a
total cross-section becomes infinite simply because of the
infinite range of the potential. There is a further, infra-
red (IR) singularity which arises since any charged parti-
cle can emit and absorb gauge particles of vanishing mo-
menta leading to all vertices and amplitudes be divergent
in this limit [The IR catastrophe|. Hence, the need for
individual IR singularities (in perturbation theory) to be
summed and a discussion of the various ways to accom-
plish this resummation is the purpose of this section. But
before embarking on it, let us pause to discuss briefly the
Rutherford singularity.
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4.7.1 The Rutherford singularity

In QED, the elastic scattering amplitude between say two
electrons in the forward direction is indeed infinite. How-
ever, consider the scattering of a (moderately) high energy
electron from a neutral atom considered as a collection of
Z electrons and a (point-like) nucleus with charge (Ze).
At momentum transfers sufficiently large compared to the
binding energy of the electrons, it would not be mislead-
ing to compute the elastic (eA) amplitude in the Born
approximation -using the impulse approximation- as an
incoherent sum of the incident electron scattering from
the individual charges of the atom [ an atomic “parton”
model]. But, this computation would hardly suffice for a
reasonable estimate of the total cross-section since optical
theorem relates the total cross-section to the [imaginary
part] of the elastic amplitude at zero momentum trans-
fer which in this approximation would diverge by virtue
of the Rutherford divergence. However, as the momentum
transfer goes to zero, the incident electron sees the total
charge of the atom which is zero and thus there should
be no divergence. The answer to this problem is of course
well known: the coherence between the electrons, which is
neglected in the impulse approximation, is the culprit and
can not be neglected. If ¢ is the momentum transfer, the
cross-section contains a factor ([Z — F(t)]?), where F(t)
denotes the form factor of an electron in the atom

do 2ma ., 9

(55) = (222 (2~ Fo)”

Since F(0) = Z, there is no Rutherford singularity and

the cross-section is indeed finite as it should. In fact, a

measurement of the forward differential cross-section has

been traditionally used to determine the charge radius (or
the size) of the atom.

We are recalling these well known facts from atomic
scattering for two reasons. One is to remind ourselves
that elastic scatterings at low momentum transfers de-
pend crucially on the coherence size of the system and
hence they cannot be neglected even at high energies. The
second reason is that for QCD, these facts take on a shade
more relevant. Individual elastic scattering amplitudes for
all coloured particles possess the Rutherford singularity
which however must disappear for hadronic scattering am-
plitudes since hadrons are color singlets [“neutral atoms”].
By analogy from the atomic case, the final amplitudes
must reflect their coherence size i.e., the distribution of
color charges within the hadron.

But this is hardly the end of the story for QCD It is
widely believed (often called IR slavery) that quarks and
glue in QCD are confined through the IR divergences and
that the strong coupling constant «(t) becomes very large
at small momenta t. There are indications for it already in
the divergence of the one-loop asymptotic freedom (AF)
formula for a,(t). Hence, a natural paradigm for QCD
emerges: If the divergence of the (effective) coupling con-
stant at small ¢ is responsible for confinement, the nature
and the intensity of its divergence must set the size of a
hadron. But then, the same must also enter into deter-
mining the size of the high energy total cross-sections. We

(4.7.1)

shall return to these issues later when we discuss models
for total cross-sections.

After this brief interlude, let us now discuss the un-
derlying issues beneath the IR divergences in QED and
QCD.

4.7.2 Infra-Red catastrophe and the Bloch—Nordsieck cure

The Infra-Red (IR) catastrophe was clearly brought to
the fore by Bloch and Nordsieck through their two classic
papers of 1937 [I72][173]. Bloch and Nordsieck observed
that previous analyses of radiative corrections to scatter-
ing processes were defective in that they predicted a di-
vergent low frequency correction to the transition proba-
bilities. This was evident from the soft photon emission
spectrum in the scattering of an electron from a Coulomb
field (as described by Mott and Sommerfeld [I74] and by
Bethe and Heitler [I75]): as the emitted photon frequency
w — 0, the spectrum takes the form dw/w.

The two authors had noticed that, while the ultraviolet
[UV] difficulties were already present in the classical the-
ory, the IR divergence had no classical counterpart. They
anticipated that only the probability for the simultaneous
emission of infinitely many quanta can be finite and that
the probability for the emission of any finite number of
them must vanish.

To cure this “infrared catastrophe” phenomenon, a
semi-classical description was proposed. They noticed that
for emitted photons of frequencies larger than a certain
wp, the probability for emitting each additional photon
is proportional to ;—i log E /hwg, which becomes large as
wo — 0. Thus, the actual expansion is not %i, which would
be small, but a larger number, driven by the logarithm.
This led them to analyze the scattering process in terms
of what came to be called Bloch-Nordsieck states, namely

states with one electron plus the electromagnetic field, and
to substitute the expansion in ;—i with a more adequate
one. The important result they obtained, in a non covari-
ant formalism, was that, albeit the probability of emission
of any finite number of quanta is zero, when summing on
all possible numbers of emitted quanta, the total transi-
tion probability was finite. This was so because, by sum-
ming on all possible frequencies and numbers of photons,
one obtained the result which one would have obtained
by neglecting entirely the interaction with the electromag-
netic field. Since they could show that the probability for
emission of any finite number of quanta was zero, whereas
the total transition probability was finite and the total
radiated energy was finite, then they anticipated that the
mean total number of quanta had to be infinite. Thus the
idea that any scattering process is always accompanied
by an infinite number of soft photons was introduced and
proved to be true (later, also in a covariant formalism).
In the Bloch and Nordsieck paper we see the emergence
of the concept of finite total energy, with exponentiation
of the single photon spectrum which is logarithmically di-
vergent. They obtain that the probability per unit time for
a transition in which ngy light quanta are emitted always
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includes a factor proportional to

wi g
erp{—« hm d /d.Qk x A (4.7.2)
where
_ 1 V v (Hs Vs o
A—[(l_us = - 1_VS)] (4.7.3)

where p and v are the momenta of the incoming and out-
going electron, us and vg the projection of pu and v along
the momentum k of the emitted photon. Because of the
exponentiation of a divergent term, the transition prob-
ability for a finite number of emitted photons is always
zero. On the other hand, when summation is done over all
possible photon numbers and configurations, the result is
finite. Clearly there was still something missing because
the fact that one must emit an infinite number of photons
is obtained by expomnentiating an infinite divergent term,
and there is no hint of how to really cure the IR divergence.
In addition the language used is still non—covariant.

Before going to the covariant formulation, we notice
that the argument relies on the transition probability be-
ing proportional to

=ALEDN

Hs)\efﬁs)\ SA '
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namely to a product of Poisson distributions, each of them
describing the independent emission of ng) soft photons,
and upon neglecting the recoil effects.

4.7.3 Covariant formalism by Touschek and Thirring

Touschek and Thirring reformulated the Bloch and Nord-
sieck problem in a covariant formalism [I76]. They proved

that | nggP, the probability for a transition from a state
xo with no photons to a state with an average number 7
of photons, x{,, was given by e~", which goes to zero as
7 goes to infinity, namely that the probability of emission
of any finite number of quanta was zero.

Let us consider the Touschek and Thiring derivation.
They point out the importance of the Bloch and Nord-
sieck solution and that, although the results they obtain
are not new and have been discussed by several authors,
their solution being the only one which admits an accurate
solution justifies a general reformulation of the problem.
As already noted in [I72] the simplification which enables
one to find an accurate solution rests on the neglect of the
recoil of the source particles.

Touschek and Thirring set out to determine the prob-
ability for the production of a certain number n of quanta
in a 4-momentum interval A. They obtain that the prob-
ability amplitude for the creation of n particles in a state
r is given by

r _ 1 1 S(k2 — 2
(Fixo) = gy \/H/Adkl.../Adkn]L(S(kl 12)
k) (x0(d(k1) + 66 (K1))...(¢(kn) + 00 (kn))x0)

XU:I*(k‘l

where use has been made of a complete set of orthogo-
nal functions u] which satisfy the completeness relation.
Xo is the eigenvector describing an incoming state with no
quanta at all in the interval A, while x{, is the correspond-
ing one for the final state. For the probability to have n
photons in the final state they obtain

1
> IFxol* = — " [xoxo|” (4.7.5)
with
_ 1
n= (2m)? /A dké(k/’2 - M2)|5¢(k)|2 (4.7.6)

and, by imposing that the total probabiity be 1, they ob-
tain the Bloch and Nordsieck result

Ixoxol* =e™" (4.7.7)
For the derivation, it is necessary that the motion of the
source particles be not affected by the emission of soft
quanta, namely that the wave operator describing the
source field be a c-number. Then ¢°%¢ differs by ¢ only
by a multiple of the unit matrix and, transforming to k-
space, it may be written as

out _ 1 2
P () = @ /dk5(k
(4.7.8)

where o (k) = —p(k)e(k), with p(k) the Fourier-transform
of the source density describing the source particles. In
their paper T'T first derive their results for a source scalar
field, then they generalize it to a vector source function
Ju(z) for a point-like electron, i.e.

1%) [0 (k) + 0 (k)]e™™

ju(@) = e / pu(F)S(a — 7p(7))dr (4.7.9)

where p,,(7) = p, for 7 less than 0 and p,(7) = p|, for
7 larger than 0. Notice that the sudden change in mo-
mentum imposes the restriction that in order to apply the
results to a real scattering process, the photon frequencies
should always be much smaller than 1/7, where 7 is the
effective time of collision. Otherwise the approximation
(of a sudden change in momentum) will break down. One
then obtains

Con e pu P
Ju(k) = (2m)3/2 ((pk) (p’k))

and the average number of quanta 7 now becomes

(4.7.10)

(pe)  (p'e)q2
~ R~ e

where € is a polarization vector. Notice that the photon
mass p remains different from zero, so as to ensure conver-
gence of all the integrals. However, this is not necessary
when higher order QED processes are taken into account,
as was shown by explicit Quantum Electrodynamics cal-
culations, starting with Schwinger’s work [177].

(4.7.11)
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4.7.4 Schwinger's ansatz on the exponentiation of the
infrared factor and the appearance of double logarithms

The solution found by Bloch and Nordsieck , and later
brought into covariant form by Touschek and Thirring, did
not really solve the problem of electron scattering in an
external field and of how to deal with finite energy losses.
This problem was discussed and solved in QED, where the
logarithmic divergence attributable to the IR catastrophe
from emission of real light quanta of zero energy was com-
pensated through the emission and absorption of virtual
quanta. This cancellation took place in the cross—section,
and not between amplitudes. In a short paper in 1949 and,
shortly after, in the third of his classic QED papers, Ju-
lian Schwinger [I77] examined the radiative corrections to
(essentially elastic) scattering of an electron by a Coulomb
field, computing second order corrections to the first or-
der amplitude and then cancelling the divergence in the
cross—section between these terms and the cross—section
for real photon emission. The result, expressed as a frac-
tional decrease ¢ in the differential cross—section for scat-
tering through an angle # in presence of an energy resolu-
tion AFE of the scattered electron, is of order o and given
a

5= 22 10g(-E) % P(E,m,0) (4.7.12)
™

AFE
where F(E,m,0) in the extreme relativistic limit is just
log(2E/m). Notice here the first appearance of a double
logarithm, which will play a crucial role in resummation
and exponentiation of radiative corrections.

Schwinger notices that § diverges logarithmically in
the limit AE — 0 and points out that this difficulty stems
from the neglect of processes with more than one low fre-
quency quantum. Well aware of the Bloch and Nordsieck
result, he notices that it never happens that a scattering
event is unaccompanied by the emission of quanta and
proposes to replace the radiative correction factor 1 — ¢
with e~9, with further terms in the series expansion of e =%
expressing the effects of higher order processes involving
multiple emission of soft photons.

In 1949 however, such refinements, namely the expo-
nentiation of the radiative correction factor, were still far
from being needed, given the available energies for scatter-
ing processes as Schwinger points out, estimating the ac-
tual correction to then available experiments, to be about
10%. Almost twenty years had to pass before the expo-
nentiation became an urgent matter for extraction of re-
sults from collider experiments, such those at SPEAR,
ADONE, ACO, VEPP-2M, where the double logarithm
term alog(E/AE)log(2E/m) would climb to 20 + 30%
and beyond [I78§].

IR radiative corrections were also considered by Brown
and Feynman [I79] some time after Schwinger, and the
concept of an external parameter (AE) which sets the
scale of the IR correction was confirmed.

It is not clear whether Touschek and Thirring were
aware of the Schwinger results when they formulated the
covariant version of the Bloch Nordsieck method. They do
not cite his results, and their interest is primarily on ob-
taining a covariant formulation of the Bloch and Nordsieck

method. Quite possibly, at the time they were not inter-
ested in the practical applications of the problem, which
is instead the focus of Schwinger’s calculation.

4.7.5 The Sudakov form factor

The problem of the double logarithms in perturbation the-
ory was investigated by Sudakov|[I80] who studied the ex-
istence of double logarthims for vertex functions and es-
tablished their exponentiation.

Consider the vertex function in QED [e(p) — e(q) +
~(D)] with all three particles off shell in the kinematic limit
12 >> p?,¢®> >> m?. Here the relevant double logarithmic
parameter is computed to be (2ain(12/p?)in(1?/q?)) and
considerations to all orders show that it exponentiates.
Thus, the primitive vertex v* in the stated limit gets re-
placed by
1o [2adn (12 /p*)in (1% /¢*)]

y (4.7.13)

These double logarithms imply that as ¢? becomes very
large, the vertex goes to zero, a rather satisfactory result.
From a practical point of view, it was shown by Abrikosov
et al [181] that the competing process where a large num-
ber of soft real photons are emitted has a far greater prob-
ability and thus it far overwhelms the Sudakov probability.

Incidentaly, the double logarithms are completely sym-
metric in the variables (p?, ¢2,12). Thus, if an electron say
p? >> ¢2,12, a similar result to Eq. holds. The Su-
dakov limit when extended to QCD does become relevant.
For example, in the light-quark parton model of QCD, one
can therefore justify the fact that very far off mass shell
quarks are suppressed through the Sudakov “form factor”.

4.7.6 Status of the field in the early sixties

In the 1950’s, with Feynman diagram technique available
to the theoretical physics community, many higher order
QED calculations came to be part of standard theoretical
physics handbooks.

Many important contributions to the radiative correc-
tion problem appeared in the ’50s and early ’60s [179],
[182], [183], with a major step in the calculation of IR
radiative corrections done in 1961 by Yennie, Frautschi
and Suura (YFS) [I84]. In their classic paper, they went
though the cancellation of the IR divergence at each order
in perturbation theory in the cross—section and obtained
the final compact expression for the probability of en-
ergy loss. Their result is apparently disconnected from the
Bloch and Nordsieck result. In their paper, they compute
higher and higher order photon emission in leading order
in the low photon momentum, showing that the leading
terms always come from emission from external legs in a
scattering diagram. In parallel, order by order, they ex-
tract the IR divergent term from the virtual diagrams,
making the terms finite through the use of a minimum
photon energy. They show that the result is just as valid
using a minimum photon mass, and finally eliminating the
minimum energy, they show the final result to be finite.
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4.7.7 A semi-classical approach to radiative corrections

A semiclassical approach to resummation in QED can be
found in [I54], where the Bloch and Nordsieck approach
is adopted and an important point made that the picture
of an experimentalist as counting single photons as they
emerge from a high energy scattering among charged par-
ticles is unrealistic. It is noted that perturbation theory
is unable to deal with the flood of soft photons which
accompany any charged particle reaction. Then, the ques-
tion of how light quanta are distributed in momentum is
discussed. As discussed above, Bloch and Nordsieck had
shown that, by neglecting the recoil of the emitting elec-
tron, the distribution of any finite number of quanta would
follow a Poisson type distribution, namely

P({n,n}) = —n"e™"

and Touschek and Thirring had recast n in a covariant
form. In [I54] the constraint of energy-momentum con-
servation is added to this distribution. This is a major
improvement, which has sometimes been neglected in sub-
sequent applications of the method to strong interaction
processes.

Let us repeat the argument through which Touschek
obtained the final 4-momentum probability distribution
describing an energy-momentum loss K. The final ex-
pression is the same as the one proposed earlier by YFS,
but the derivation is very different and its physical content
more transparent. Touschek also discusses the different en-
ergy scales which will become very important later, when
dealing with resonant states, and in particular with J/¥
production. The derivation is semi-classical and at the end
it will be clear that the quanta considered are both real
and virtual photons. The underlying reason for this can
be understood from a consideration by Brown and Feyn-
man [I79] in their computation of radiative corrections to
Compton scattering. Brown and Feynman note that it is
difficult to distinguish between real and virtual quanta of
extremely low energy since, by the uncertainty principle, a
measurement made during a finite time interval will intro-
duce an uncertainty in the energy of the quantum which
may enable a virtual quantum to manifest as a real one.

In [154] the probability of having a total 4-momentum
loss K, in a charged particle scattering process, is ob-
tained by considering all the possible ways in which ng
photons of momentum k£, can give rise to a given total
energy loss K, and then summing on all the values of k,,.
That is, we can get a total final 4-momentum K,, pertain-
ing to the total loss, through emission of nj, photons of
momentum ki, ng, photons of momentum ks and so on.
Since the photons are all emitted independently (the effect
of their emission on the source particle being neglected),
each one of these distributions is a Poisson distribution,
and the probabilty of a 4-momentum loss in the interval

d*K is written as
ZHkP {ng, i })6* (K — ank 'K
(4.7.15)

(4.7.14)

where the Block and Nordsieck result of independent emis-
sion is introduced through the Poisson distribution and
four momentum conservation is ensured through the 4-

dimensional § function, which selects the distributions {ng, 7y }

with the right energy momentum loss K. The final ex-
pression is

4 _ d*K 4 .
with

h(z) = /d?’ﬁk(l — exp|—ik - z]) (4.7.17)
which is the same as the expression obtained by YFS
through order by order cancellation of the IR divergence in
the cross—section. In this derivation, which is semiclassical,
no mention or no distinction is made between virtual and
real photons as stated above, but it is clear that the con-
tribution of real photons corresponds to the term which is
multiplied by the exponential e~  since this retains the
memory that the total energy—momentum emission is con-
strained. Thus, single real photons of momentum (k) are
all correlated through the Fourier transform variable x.
The next step was to perform realistic calculations of the
radiative correction factors, using an apparently difficult
expression. The first objective was to obtain the correction
factor for the energy, by integrating Eq. over the
3-momentum variable. Through a very elegant argument
based on analyticity, Touschek obtained the probability
for a total energy loss w as

dP(w) =

do @0 (4.7.18)

NB(E)— (5

where N is a normalization factor [I82[183]. In the high
energy limit,

2E 1
7_5)

Me

E)=—/(lo 4.7.19
B(B) = = (log (47.19)

Integrating the 4-dimensional distribution over the en-
ergy and longitudinal momentum variables, one obtains a
transverse momentum distribution of the total emitted ra-
diation [185] namely

d4 )
d2KL / o IR -
/ 2b eib.Kﬁfdsﬁ(mufe"b"“ﬂ (4.7.21)

1

- (2m)?
This expression, unlike the energy distribution, does not
admit a closed form expression. In an Abelian gauge the-
ory with an energy independent (as in the case of QED),
but not small coupling constant, the corresponding (5 fac-

tor becomes large. A useful approximation for the function
d?P(K | ) was obtained as [185]

B(2m)~L dQKL(
I'(1+ B/2) 2E2A

(4.7.20)

1
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where this approximate expression is normalized to 1, as is
the original distribution, and also admits the same average
square transverse momentum, given by

< K? >=28E*A (4.7.24)

with E the maximum energy allowed to single gluon emis-
sion. (3 is in general obtained from

B = /d4n9(n0)n06(n0 —1)ju(n)j**(n)é(n?) (4.7.25)

with

. e pip,

n) = € 4.7.26
]M( ) (271')3/22 lpi'n ( )
The sum runs on all the emitting particles of momenta
Diy, and with €; = £+ depending on whether the particle
is positively or negatively charged, entering or leaving the
scattering area.

4.7.8 Reggeization of the photon

In the previous subsection, we have discussed photon re-
summation. Here we turn to the question of Reggeization
in QED and, in the next subsection, in QCD. Both play
an important role in models for the total cross-section. In
fact, while the Froissart bound regulates the asymptotic
behavior of total cross-sections, asymptotic Regge behav-
ior of the scattering amplitudes and the optical theorem
allow direct calculation of the total cross-section. Thus,
the question of Reggeization in QED and later in QCD
became the center of attention in the 1960s and 1970s.

The question in the early '70s was whether the photon
reggeizes and soon after the discovery of QCD, whether
the gluon reggeizes. Related questions in QED and QCD
were regarding the vacuum channel leading singularity
which we shall call the Pomeron. Reggeization of gauge
bosons in Abelian and non-Abelian gauge theories, has
played an important role in models for the total cross-
section. These fundamental questions of compelling rel-
evance for the theories as well as for high energy phe-
nomenology were vigorously pursued by several groups
and in Subsect. [£:8:1] we shall discuss the BFKL approach,
starting with Lipatov and Fadin and Kuraev, then by Li-
patov and Balitsky, on the gluon Regge trajectory [186]
T87[188]. These analyses can be followed more easily if a
discussion of the photon Regge trajectory is first intro-
duced. To this we now turn.

Reggeization of elementary particles such as the pho-
ton or the electron was amply discussed in the 1960’s. In
QED, the infrared divergence and its cancellation bore
many complications and the conclusion was that the elec-
tron reggeized, not so for the photon The electron in fact
had been shown to reggeize by Gell-Mann et al. in a mas-
sive photon (Abelian) QED up to the fourth order [I89]
and by Cheng and Wu to the sixth order. Such a the-
ory possesses a conserved current but due to the mass of

the photon, there are no IR divergences. Radiative correc-
tions turned the elementary electron inserted into the La-
grangian into a moving Regge trajectory passing through
j = 1/2 at the mass m of the electron. Such a miracle
did not occur for the massive photon; it did not turn into
a Regge pole. Moreover, in the vacuum channel, in the
leading logarithmic approximation (LLA), no “Pomeron”
trajectory but a fixed square root branch point at the an-
gular momentum j = 1 + (117/32)a? was found [I58].

The question remained open as to what happens in
massless QED. The reggeization of a massless photon poses
a problem in that all charged particle scattering ampli-
tudes have IR divergences which are cancelled in the cross-
sections. Through a summation of IR radiative corrections
(not needed in the massive abelian theory) and imposition
of di-triple Regge behavior, it was found by Pancheri[190]
that a photon trajectory does emerge.

In other words, a reggeized behaviour of QED cross-
sections can be obtained from the well known factorization
and exponentiation of infra red corrections and, from this,
a trajectory for the photon, as was shown in [I90]. We shall
describe it here.

In this approach, just as later in the approach to the
gluon trajectory of Lipatov and his co-authors, reggeiza-
tion arises through the exponentiation of single soft pho-
ton emission accompanying the scattering. Since in QED
any reaction is necessarily an inclusive one because of soft
photon radiation, the process to examine is

e(p1) + e(p2) — e(ps) +e(ps) + X (4.7.27)
where X stays for any undetermined number of soft pho-
tons, hence for which M% << s, where s = (p1 + p2)°.
One can now compare the cross-section for process
with the one corresponding to the di-triple Regge limit in
hadronic physics [T91]. Defining the 5 independent invari-

ants of process Eq. (4.7.27) as

s1.= (p1 +p2 — p3)°, 2= (p1 +p2 — pa)? (4.7.28)
t1 = (p2 — pa)?, ty = (p1 —p3)® (4.7.29)
M% = (p1+p2 — ps — pa)®, (4.7.30)
the limit ¢; ~ to = ¢ with ¢ fixed, and M% << s, s1, 52,
we are within one of the kinematic limits of interest for
the inclusive di-triple Regge limit. For —t << s, M% <<

§ ™~ 81 ™~ 89, the cross-section of interest becomes
d’c M?
— (=X

dtd(M%/s) s A0

(4.7.31)

We have seen that for X corresponding to a four-vector
K? << s soft photon resummation applied to Eq. (4.7.27)
at leading order leads to

5
To__ / dipeiKr—h@) 990 7 a0y

dtd* K dt

where dog/dt corresponds to the Born cross-section for
ete™ — ete™ and the resummed soft photon spectrum is
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obtained from the regularized soft photon spectrum

h(z) = / dBa(k)[1 — e~ 7] (4.7.33)
One can rewrite the single photon spectrum as
3 a3k
dnllk) = Bls.t,u) S F(2) (4.7.34)

where the function f({2;) is normalized to 1 and gives
the angular distribution of the emitted soft photon. With
such a definition, the dependence from the momenta of
emitting particles is specified by £(s, t,u), which is a rel-
ativistic invariant function of the Mandelstam variables.
This compact expression is useful when overall integration
over the soft photon momenta is performed. From

dP(W) 3 d4 dt t— h( )
i iw 4.7.
dew /d K o (4.7.35)
and
h(t) = B(s,t,u) / k — e M (4.7.36)

the overall energy dependence from soft photon emission
is now

dP(w) dw ,w

— N S t U ﬁ(s7t7u)
) = B, 1) ()
where E is a typical scale of the process, and N a normal-
ization factor, i.e.

(4.7.37)

,yfﬁ(s,t,u)
CD(1+ B(s,t,u))

7 being the Euler’s constant. To leading order, E is the
upper limit of integration of the soft photon spectrum, and
can be taken to be proportional to the emitter energy. This
choice of the scale makes it easier to modify Eq. '4.7.3f )
when higher order corrections are considered [T54].

We can now inspect the function (s, ¢, u) which will
lead us to a phenomenological definition of the photon
trajectory through Eqs. (4.7.37) and (4.7.31]). For process

(4.7.27)), one has

Bs,tu) = /

with the four-vector n? = 0, ¢; = +£1, for an electron or
a positron in the initial state, or positron and electron in
the final and the integration is over the angular distribu-
tion d27. Performing this integration leads to the following
expressions

(4.7.38)

2A Z pzuez pg J

(4.7.39)
1,j= 1 P

B(s,t,u) 7{]12+[13_[14_2}
(4.7.40)

Ly = 2(p: pj)/o m? +2y(1 = y)[(pi - p;) —m”]
(4.7.41)

The soft photon approximation is the elastic approxima-
tion of Eq. (4.7.27) and one can now take the Regge limit
s>> —t,—u and s >> m?2, ie.

Iio+11y— 0 t << s, 5 — 00 (4.7.42)

obtaining, in this limit,

2« 9 dy
Flen® =0 [ oy
(4.7.43)

We notice that this function has the correct limit 8(¢) —
0 for t = 0, since this is the exact elastic limit and it
corresponds to no radiation at all at ¢ = 0.

The next step is to integrate Eq. (4.7.37)) up to a max-
imally observable AF using as a scale the c.m. energy of
the process , i.e. s = 4E?. Then, one obtains

dcr_<AE
dt /s

We can now establish a correspondence between the
correction rising from soft photon emission and the di-
triple Regge limit of Eq. m This can be done by
integrating the spectrum of the inclusive mass M% up to
the maximally allowed value, which we can call AE in case
of no momentum resolution. We then immediately get

B(s,t,u) = B(t) =

dO’O

)5“)(%) (4.7.44)

do d?o
— = M2 /s——— 4.7.4
dt /d X/Sdtd(M)Q(/s) (4.7.45)
. (]‘ﬁc)%l—aw(t)) ) (4.7.46)
s Vs
and hence are led to the correspondence
t
a,(t)=1- % (4.7.47)
and to [190]
« 2m? —t VAm2 —t + \/
ay(t)=1——( —1).

e 1 e 1
(4 7.48)

Notice that to establish the above correspondence one had
to assume Eq. , which obtains from the di-triple
Regge limit with a vacuum trajectory ay (0) = 1, i.e. the
cross-section for two reggeized photons into any final state
R,+R,— X (4.7.49)
is controlled at large energy by a trajectory cpgeuum(0) =
1. This assumption seems reasonable [for estimates about
the photon trajectory computed to order o] since the per-
turbative result for the vacuum trajectory is a branch cut,
but whose deviation from unity begins at order 2.
To summarize: the proposed photon trajectory [190]

ar(t) =1 e l(mi=t) [ i

R vy —2] (4.7.50)
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is an expression obtained in the large s, small ¢ limit, from
resummation of all soft photons emitted in the scattering
ete™ — eTe™. In these expressions, m, is the mass of the
fermion which emits the soft photons and the expression
exhibits a threshold behaviour with a square root singular-
ity (Notice that being fermions, the threshold behaviour
is different from the one required for a pion loop, for in-
stance). The above expression may also be expressed as a
dispersion integral

ay(t)=1— %[(2m§ —#)x (4.7.51)

/°° dt
>< ’ ! ’ - 1] =
am2 (t' —t —ie)\/(t'(t' — 4m32))
o o dt' (t —2m?2
e e
T Jam2 t'(t —t —i€)\/(t' (t' — 4m2))
From Eq.(4.7.51f), we may directly compute the imag-

inary part of the photon trajectory, which is positive def-
inite:

(4.7.52)

t — 2m?
Sm oy (t) = 9(t — 4m§)0z(—m€)7 (4.7.53)
V(E(t = 4m2))
and which has the asymptotic limit
Sm a,(t) » «, fort>>4m?, (4.7.54)

exactly the same result found by Lipatov for the iso-spin
one vector boson trajectory in non-Abelian SU(2) model
with a doublet Higgs field [186]. We shall discuss it in the
next subsection.

We see that the trajectory goes to 1 as t — 0, in addi-
tion to having the threshold singularity corresponding to
the fermion loop. The actual ¢ — 0 and |¢| — oo limits are
also easily taken and lead to

—1
a,(t) = 1— (:%QW It << m2 (4.7.55)
e} —t 9
ay(t) - 1— —log e [t] >> 4m; (4.7.56)

namely one recovers the linearity of the trajectory at small
|t| and the asymptotic logarithmic limit at large ¢.

4.7.9 Comments on the reggeization of the photon

In the literature, one finds the statement that in QED the
photon does not reggeize [See, for example Gell-Mann et
al. [189]], apparently in conflict with the Regge trajectory
for the photon «,(t) found and discussed in the previous
section. Hence, an explanation for the seeming discrepancy
is mandatory.

The question of Reggeization in field theory was begun
by Gell-Mann et al. in the nineteen sixties and continued
in subsequent literature [192] [T93] [194]. Precisely to avoid
IR divergences due to the zero mass of the photon, they
and most others, considered massive fermion QED with a

conserved vector current but with a massive photon (vec-
tor boson). Then perturbation theory was used to show
that up to the sixth order the fermion reggeizes whereas
the vector boson (photon) did not.

On the other hand, massless QED requires a resumma-
tion making it non-perturbative and under the hypotheses
stated in the previous section, the photon does reggeize.
Moreover, it was found in [T95] that all gauge vector bosons
-including the photon- reggeize in a grand unified theory
[GUT] based on a semi-simple group with a single coupling
constant. However, it is difficult to assign significance to
the result obtained in [195] in view of the lack of any phe-
nomenological confirmation of GUT.

The problem of reggeization of the gauge bosons in the
electro-weak SU(2) x U(1) theory has been discussed in
the leading log approximation by Bartels et al. in [196].
Through a set of bootstrap equations they find that the
W boson does reggeize whereas the Z° and the photon do
not.

4.8 High energy behaviour of QCD scattering
amplitudes in the Regge limit

In the preceding section, we have described in some detail
the question of gauge boson trajectories because in Regge
theory, the high energy behavior of the scattering ampli-
tude is given by the exchange of Regge trajectories. We
have shown there how an effective Regge-like behaviour
can be obtained in QED, from soft photon resummation
in charged particle reactions. In QCD, the role of soft pho-
tons is taken on by soft gluons, but, as we know, with enor-
mous differences: not only a running coupling constant,
but also un unknown (very likely a singular) behavior in
the infrared. On the other hand, QCD resummation is fun-
damental to the cross-sections, since, at high energy, the
behavior of the total cross-section is dominated by large
distance effects, which correspond to very small momenta,
and this immediately leads to the question of resummation
of such quanta with very small momenta.

While at low energy Reggeons (such as the p trajec-
tory) dominate the hadronic scattering amplitude, at high
energy the leading effect is obtained through a Pomeron
exchange, in correspondence with a leading vacuum sin-
gularity in an even charge conjugation channel, C' = +1.
Thus theoretically, it was natural to identify the Pomeron
as emerging from the exchange of two gluons (accompa-
nied by soft gluon resummation) which does not change
the quantum numbers of the process. Phenomenologically,
the one-to-one correspondence between the asymptotic to-
tal cross-section and the Pomeron trajectory, made the
Pomeron go from a fixed pole (ap = 1) at low energies,
to a moving pole with intercept larger than one, to justify
the rising cross-section observed at the ISR. As for the
C = —1 possible partner of the Pomeron, it is called an
Odderon, but it is an object so far only seen clearly in the-
oretical papers, as recently quibbed in [I97]. The Odderon
is also a QCD effect, and its trajectory so far seems to
correspond to a constant ap = 1. We shall briefly discuss

the odderon in .8.2] and A.8.3]
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Clearly, for phenomenological applications, the dynam-
ics of scattering among quarks and gluons needs to be un-
derstood, from high-p; jets to that of the infrared gluon
emission. In particular, for scattering in the soft region,
the zero momentum region needs to be incorporated ad-
equately. Since the latter, and most important aspect of
the problem, has not yet been completely solved, we can
only try to give here some specific examples of how one
approaches the problem of the total cross-section in QCD,
starting with the preliminary building blocks such as the
Balitsky, Fadin, Kuraev, Lipatov (BFKL) equation inm
followed by the Gribov, Levin and Ryskin (GLR) treat-
ment in and then the Balitsky, Kovchegov, Peschan-
ski equation in A specific model that realizes many
of these QCD notions, the Durham-St. Petersburg model,
will be presented in [4.8.5 and then rediscussed in more
detail in Section |5l Recently an extensive description of
QCD as applied to the high energy scattering amplitudes
in the Regge limit has appeared [198], with both a theo-
retical and experimental up-to-date outlook. The field is
very vast and cannot be covered in depth in this review.
In the following, we shall attempt to outline some of the
most important physics chapters in the story hoping that
our summary would provide a starting point to a worker
interested in the field.

4.8.1 Non Abelian gauge theory with Higgs symmetry
breakdown and the BFKL integral equation

With the advent of SU(2) Yang Mills (YM) theory con-
taining a triplet of vector gauge bosons which acquire
a mass through an iso-doublet Higgs field, investigations
turned into answering the reggeization questions for the
massive gauge bosons and the Pomeron in the vacuum
channel of the theory. Such a theory is renormalizable and
endows the gauge vector bosons a mass M through the
spontaneous symmetry breakdown mechanism.

In a series of papers, Lipatov [I86] and co-workers,
Fadin, Kuraev and Lipatov [199] [200]; Balitsky and Li-
patov [201]; [202] and [203], did fundamental work in this
field which goes under the generic name of BFKL formal-
ism.

trajectory ay goes to 1 at its physical mass ¢t = M?2. Fur-
thermore, the absorptive part of ay (t) reads

(t— M?)
VIt —402))’

and it differs from its corresponding expression Eq.
for Im a,(t) in the replacement (o, me) — (oyar, M)
and in the numerator (¢t — 2m?) to (t — M?). Asymptot-
ically, as stated earlier, the difference vanishes. For large
|t], both imaginary parts go to their respective a or ayy py.

The situation regarding the vacuum channel or the na-
ture of the Pomeron in this YM theory is still rather ob-
scure. In Lipatov’s original paper, it is stated that if only
two particle singularities in the ¢ channel were included, a
bare Pomeron trajectory did emerge which may be tran-
scribed in the form

Sm ay(t) = It — 4AM*)ayy (4.8.2)

a9t =1+ M (2 — 5M2/2) x
™

(4.8.3)

o0 dt
8 /le (t' —t—ie)/({t'(t —aM?))’

But going further and including three particle thresh-
olds in the t channel, led Lipatov to conclude that there is
a branch cut in the angular momentum plane in the vac-
uum channel due to the exchange of two reggeized vector
bosons. This was confirmed in a later paper by Fadin, Ku-
raev and Lipatov. They obtained the result that the lead-
ing j-plane singularity in the vacuum channel is a branch
point at j = 1+ ayp|[8In(2)/n] which for an SU(N)
theory would read

YM __
Apom = 1+ aYM[

]. (4.8.4)
Hence, they conclude that in the main LLA, the total
cross-sections in a non-abelian gauge theory, would vio-
late the Froissart bound. The reason for this violation is
that s channel unitarity is not satisfied in the LLA (which
assumes ay s In(s/M?) ~ 1) and presumably a proper
computation of the vacuum exchange in the ¢ channel
would require excursions beyond LLA which must also

Lipatov et al. found that the gauge vector boson reggeizes include contributions of order ayps In(s/M?) >> 1.

i.e., the elementary iso-vector gauge particle of angular
momentum j = 1 at mass t = M? turns into a Regge tra-
jectory. Their expression may be written as a dispersion
integral

> dt’
ay(t) = 1+OCYTM(t7M2)/4

(4.8.1)
where ayy = ¢%/(4n) and g is the gauge coupling con-
stant. The above expression verifies explicitly that the
gauge vector boson trajectory goes to 1 at t = M?2.

It is instructive to note the remarkable similarity be-
tween the expression Eq.(£.7.51) for a,(t) found in QED
with the gauge vector boson trajectory given in Eq..
o, goes to 1 at the physical mass ¢ = 0 of the QED gauge
boson (the photon), just as the non-Abelian gauge boson

At this juncture, s channel elastic unitarity may be
imposed via the eikonal expansion as proposed by Cheng
and Wu. Such eikonal procedures in various forms have
been followed over the years by various groups as discussed
in various parts of our review.

Development of ideas and results from QED and non-

w2 (' —t —ie)\/(t' (t” — 4M?)) abelian SU(2) with a Higgs mechanism to the theory of

interest namely QCD [unbroken SU(3)colour] runs into a
host of well known difficulties. At the level of quarks and
glue, one can address the question of the reggeization of
the gluon trajectory. Unlike the YM theory with sponta-
neous symmetry breakdown which endows the gauge bo-
son with a mass M as discussed in the last subsection,
gluon remains massless. The difficulty is seen immediately
as M — 0 in the vector boson trajectory Eq.7 which
diverges at the lower limit. The reason for this divergence
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is clear in that all gauge boson thresholds condense at
t = 0 as the gauge boson mass vanishes. [Such is not the
case for QED due to the absence of non-linear couplings
of a photon to itself].

On _the other hand, in the large ¢t limit, we see from
Eq. that for SUN) YM, Sm ay(t) = (§)aym.
Hence, we expect that

3
Sm agruon(t) — (5)045 as t — 00, (4.8.5)

[at least for constant aj].This expectation agrees with
explicit computations by Lipatov, Balitsky and Fadin in
LLA which reads

3t (d?k)
H= 162 | g i

S (o )audn(—/3?),

Qgluon (t) -

(4.8.6)

The scale A corresponds to the lower integration cut-off,
introduced to avoid the IR region where perturbative QCD
cannot be applied.

It is useful to note the similarities and differences be-
tweens BFKL and the approach to the photon trajectory
obtained through resummation in QED, as described in
[A78 In that approach, and its extension to QCD leading
to what we call the BN (for Bloch Nordsieck) model for
the total cross-section (see7 the IR divergence is can-
celled at the level of the observable cross-sections and the
asymptotic behavior is obtained directly from the cross-
section. On the other hand, the BFKL result is obtained
in terms of matrix elements, which are calculated in dif-
ferent orders in the coupling constant through dispersion
relations and unitarity.

In our approach [190] for the photon trajectory, we ob-
tain both a linear term in ¢ for small ¢ values as well as
a logarithmic behavior for large ¢. For large ¢, the corre-
spondence between the two trajectories c,(t) as given by

Eq.(4.7.56) and aguon(t) as given by Eq.(4.8.6) [written

for SU(N.)] is immediate

asN, —t
sfVe (=t
5 n(53),

« —t
Zn(——
T n(4m2

)i — (4.8.7)

from which the substitution @ — (N./2)as maps one into
another. The small t-behaviour is much more complicate,
because of the unknown infrared behaviour of the strong
coupling constant. In we shall describe a model for
the coupling constant, which allows to apply resummation
in the infrared region, and its application to total cross-
section studies.

For high energy hadronic (or, photonic) amplitudes,
we are primarily interested in the nature of the Pomeron
emerging from QCD. The physical underlying picture is
that a Pomeron is a bound state of two Reggeized gluons.
For this purpose the BFKL approach may be summarized
as follows. In LLA, colour singlet hadronic/photonic am-
plitudes are related to their angular momentum ampli-

tudes through a Mellin transform

o+i00 dw

A(s,t = —¢?) = zs/ [—157 f-(¢%)

o 2T

fold?) = / (@) (@K )8 (k, ) B (K ) fo (k. K 1),
(4.8.8)

where k, k' denote the transverse momenta of the exchanged
gluons and the function f,(k, k/; q) can be interpreted as
the t channel partial wave amplitude for gluon-gluon scat-
tering with all gluons off mass shell, with squared masses:
-k, —k?, —(q—k)?, —(¢— k/)2. The gluon propagators
are included in the function f,(k,k';q). The &2 func-
tions describe the internal structure of the colliding par-
ticles 1 & 2. Gauge invariance is then imposed so that

2 (k, q) k=0 = 0 = *2(k, @) |1—q- (4.8.9)
This property is crucial for using a gluon mass p in its
propagator (as in the SSB YM theory of the last sub-
section) because for colour singlet states there is no IR
divergence and the limit p — 0 exists. There is no such
IR safety for colour non-singlet amplitudes.

Armed with the above, for high energy analysis of
colour singlet amplitudes, one may imagine to freely em-
ploy all the results of the SSB YM of the last subsection
extended to the SU(N = 3) case. But, such is not the
case basically because of asymptotic freedom, i.e., ay s
must be replaced by as(q?), which for large ¢* goes to
zero logarithmically

4m
(11N — 3ny)in(q?/A?)

: for ¢? >> A2

(4.8.10)
with ny the number of flavours. On the other hand, for
¢> < A2, a, begins to diverge and hence perturbative
QCD becomes inapplicable. However, one may derive some
useful results in the symptomatic freedom (AF) limit. As
In(q?/A?) >> 1, an infinite set of poles condense to j — 1,
whose behaviour may be approximately described through
a moving cut

O‘S(q2) -

4NIn(2)

™

@Pom (€°)in(q2/42)y>>1 = 1+ | Jas(q?). (4.8.11)

The fixed Pomeron branch cut at a5 = 1—&—[41\”:(2) lay v

found in Eq.(4.8.4) is “made to move” as a;(q?) for large
2
q°.
In various phenomenological models[I88], [204], [205]
on the other hand, the Pomeron trajectory is taken to
asymptote to —oo as g2 — oo

ap(q®) = a(0) — aqin(1 + azq?), (4.8.12)

thus the forward slope of the Pomeron -not directly cou-
pled to a(0)- is given by

ap(0) = ayas. (4.8.13)
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4.8.2 The odderon

In the following, we shall first give a brief introduction
to the odderon. The odderon was first introduced on phe-
nomenological grounds in the early 1970’ s by Lukaszuk
and Nicolescu [206] as a C' = —1 exchange term in the am-
plitude, and further discussed in [207]. Since then, there
has been no experimental confirmation of its existence,
although no confirmation of its non-existence has arrived
either. One reason for this sort of limbo in which the odd-
eron lives is that this is not a dominant effect and since
fitting of the data requires a number of terms and concur-
rent parameters, it is often possible to mimic its presence
by adding some terms.

Consider the crossing-odd amplitudes in pp & pp scat-
terings defined as

1
F_ :*[Fpp_Fpﬁ]'

5 (4.8.14)

Basically, there are three types of odderons classified ac-
cording to their increasing order in energy asymptotic be-
haviour [51]:

— Order zero odderons F' (5231 are real and hence only change

the real parts of the elastic amplitudes

— Order one odderons F O(;()i change the cross-section (be-

tween a pp & pp) by a constant amount

— Order two odderons Fo(jgl [also called maximally sin-
gular] lead to a cross-section difference increasing as
In(s/s,) as well as real parts that are not equal asymp-

totically

Given that the high energy elastic amplitudes are pre-
dominantly imaginary, the zero order odderons are hard to
look for. For obvious reasons, the hunt has been to look for
order two or maximally odd amplitudes. We shall discuss
in various places the results of such searches.

Another quantity which could shed light on the pres-
ence of the odderon, is the parameter p(s), the ratio of the
real to the imaginary part of the scattering amplitude for
hadrons in the forward direction. Possibly, the rather pre-
cise measurements of this parameter at LHC could allow
to draw some conclusions about its presence. From this
point of view, we notice that the somewhat low, prelimi-
nary value for the parameter p at LHC8 could be invoked
to be a signal of the odderon. Also diffractive production
of pseudo-scalar and tensor mesons in ep scattering are
suggested to be a good place were effects from the odd-
eron could be detected.

An extensive review of the status of the odderon ap-
peared in 2003 by Ewerz [208]. The odderon could be re-
sponsible for the difference between the elastic differential
cross-sections for pp, pp, past the forward peak. According
to Ewerz [209] for instance, hadronic exchanges occurring
only through mesonic reggeons are not sufficient to explain
the cancellation of the dip in pp. In this respect however,
one can see that the dip may be slowly reappearing in pp,
as some analysis of the data show. One can in fact observe
that pp data for the elastic differential cross-section from
ISR to the TeVatron indicates that the observed change in
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curvature becomes more and more pronounced as the en-
ergy increases. Whatever the odderon does, it would seem
that as the energy increases, it may disappear.

A discussion of the “missing odderon” can be found
in Donnachie, Dosch and Nachtmann [210] where once
more the evidence for the phenomenological odderon is
discussed and found lacking.

A proposal was made to detect the odderon at RHIC
and LHC by Avila, Gauron and Nicolescu [211]. The model
by Avila, Campos, Menon and Montanha which incor-
porates both the Froissart limiting behavior as well as
Pomeron and Regge exchanges [212] is described later in
the elastic scattering chapter.

4.8.3 Odderons in QCD

In the Regge language, an odderon is defined [213] as a
singularity at the angular momentum J = 1 at ¢t = 0 in
the crossing-odd amplitude. Hence, the obvious question
arose as to whether an odderon could be associated with
3—gluon exchanges in QCD [214] [215] [216] and a definite
affirmative answer in pQCD was obtained in [217].

Presently, apart from the phenomenological interest,
there has been a strong QCD attention paid to NLO cor-
rections to the odderon trajectory [218] and on the prop-
erties of the odderon in strong coupling regime [219].

In [197], a model for soft high-energy scattering, which
includes a tensor Pomeron and vector odderon has ap-
peared with detailed description of Feynman-type rules
for effective propagators and vertices.

4.8.4 Gribov-Levin-Ryskin (GLR) model

In 1984 V.N. Gribov, Levin and Ryskin [220] wrote a pa-
per meant to establish the theoretical basis of a QCD
approach to parton scattering, in which the focus was
on semi-hard scattering. In the first section they defined
semi-hard scattering. The framework is that of deep inelas-
tic scattering as in Fig.[4.7] The focus on DIS has resulted
in introducing an external scale ¢> which rendered the ex-
trapolation to real photons and, for a while, application
to purely hadronic processes difficult.

GLR argument starting point is that, as the fractional
energy of the scattering partons, x, decreases, the increase
of the number of partons can be so high as to give a cross-
section as large, or even larger, as the actual hadronic
cross-section. But this cannot continue indefinitely. When
the density of partons becomes very large, the partons
within a given hadron cannot be any more considered to be
independent and they instead start to interact with each
other. GLR define the probability W (z, ¢?) that partons
interact with each other in a hadron as

Qs (q2)
Ry,

W(z,q*) = F(z,q%) (4.8.15)

where F(z,q¢?) is the parton density function, i.e. gives
the number of partons which interact with the probing
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Fig. 1.1. Deep inelastic scattering,

Fig. 4.7. Deep inelastic scattering representative figure from
[220]. Reprinted from [220], (©(1984) with permission by Else-

vier.

virtual photon, and Rj, the hadron radius. In Eq. [£.8:15]

2
the ratio ()
q

is the parton-parton cross-section and

Ab? = R?/F(z,q¢*) is the average perpendicular distance
between partons, measured through the area where they
are and the number density. This is a semi-classical de-
scription. When the parton-parton cross-section is smaller
than the average distance, W < 1 and for W <« 1 rescat-
tering will not occur, when it is larger, i.e. W < 1 rescat-
tering will occurr. W = 1 is called the unitarity limit. This
function allows then to distinguish three regions in the z-
variable, depending on whether pQCD applies (or does
not apply) for the calculation of the parton density func-
tion F(x,q?). Thus, while there is a whole region where
nothing can be obtained, for W < ay the authors have
been able to obtain interesting results.

It is worth noting that their picture [Fig. 1.9 of their
paper] is at the basis of the subsequent work by this group.
Consider then the function F(x,¢?) rewritten as

R,
A (q2)

which is plotted as a function of x in Fig. The curve
denotes the region W (w,¢?) < 1. The subsequent be-
haviour is controlled by the ratio W/ay, both numbers
being less than 1.

One distinguishes 3 regions, with regions B and region
C separated at a value z;(q?), where F(z,q?) = ¢*R3.

For z < mp, R} < F < fj(IZZ‘)- In region C, W/as > 1.
Here the interactions are very strong and near the unitar-
ity limit, and the authors have not be able to take them
into account. Region A, is where W <« ay, region where
pQCD applies, it correspond to large z ~ 1 and parton
interactions are negligible. In region B, W/a < 1 and, for
W not too large, the authors say that with the Reggeon-
type diagram technique developed in subsequent chapters

F(z,¢*) = W(z,q°)

(4.8.16)

L.V. Gribov e1 al., Semihard processes in QCD

Flxq)

PN
ot (G

2 Rp

Fig. 4.8. z-dependence of the structure function from [220].
Reprinted from [220], ©(1984) with permission by Elsevier.

they are able to take into account interactions in this re-
gion. However, if Wis largish, W ~ 1, they have not been
able to sum all the essential diagrams and only can give
qualitative considerations. We show the three regions in
Fig. A is the region where perturbative QCD can be
applied, B is the result of this paper, C is not to be ob-
tained yet.

There is a useful, again semi-quantitative, argument
to determine the value x(q?), which we reproduce in the
following. The conditions are

F ~ ¢* and hence InF ~ In¢? (4.8.17)
oF  «
— ~ —F 4.8.18
ox x ( )

the second equation indicating that the origin of the par-

tons as the number of partons increase is due to bremsstrahlung

(hence the bremsstrahlung spectrum). Using the running
o expression one obtains

OlnF 1
Olnzx “InF (4.8.19)
from which
In ~ In? ¢* 4.8.20
r,(q?) 1 ( )

After determining this value, the paper goes on to
discuss the inclusive jet spectrum, the authors introduce
the quantity kg which corresponds to the limiting value
xp(k2), ie. 2ko/\/s = xp(kE) and, using Eq. with
q® = k2, they obtain

1 2, 2
In—— ~In*(z 4.8.21
ko ~ eVins (4.8.22)

The last equation obtains by neglecting a In kg term rela-
tive to In? ko in Eq.

As a consequence of the behaviour thus obtained for
the increase in the number of partons below x;(¢?), the



Giulia Pancheri, Yogendra N. Srivastava: Introduction to the physics of the total cross-section at LHC 71

authors find that semi-hard processes have a large cross-
section and contribute substantially to the average multi-
plicity as well. In particular, since the average multiplicity
is proportional to the phase space factor k3, one obtains
also

A~ e2eVins (4.8.23)

The parameter ¢ is determined in subsequent chapters.

The important result of this paper is that semi-hard
processes become responsible for large part of the cross-
section, because of the behaviour with energy described
through the above equations. Just as the average multi-
plicity increases, the average transverse momentum is also
proportional to kg and thus

< qp >~ ko o< AecVInS

(4.8.24)
Therefore at very high energy many jets with compara-
tively large transverse momenta are produced.

The above qualitative description of the region of small
x is then further developed in chapter 2 of the paper. The
authors promise to show how to apply the Leading Loga-
rithm Approximation ( LLA) to the small  region and to
deal with the screening effects due to the parton-parton
interactions. Their aim in the second chapter is to cal-
culate the structure function F(z,q?) when both In ¢?/¢?
and In1/z are large. Two problems are encountered: the
necessity to develop LLA in two large logarithms and how
to deal with unitarity i.e. the increase of the structure
function at very small z.

Notice that in the subsection dealing with unitariza-
tion in the Double Logarithm Approximation (DLA), a
crucial role is played by the quantity

7 k2 a,

efo=0 ) i

with b = 11N — 3N¢. In their Section 2 .2, the struc-
ture of the theory is developed. One of the conclusions
is that it is necessary to take into account not just cor-
rections of the type a,In(1/z)1In(¢?) but also a,In(1/z)
and o, In(g?), that multi ladder “fan” diagrams in the ¢-
channel are crucial for unitarization. It is asserted that all
other corrections are negligible, at least, up to the normal-
ization of the structure functions. The asymptotic limit of
resumming diagrams which grow as (a; In(g?))™ and those
which grow as (o, In(1/x))", i.e. the asymptotic behaviour
in the DLA, gives

Focexp{/2(§ — &)y}

where y = 8N/bIn1/z.

In Section 3, a discussion of the Reggeon Diagram
Techique (RTD) in QCD is given. In this version of RTD,
the primary object is an LLA ladder, which can also be
conventionally called a Pomeron. The vertices of interac-
tion between ladders are also calculated in perturbative
QCD. In Fig. [£.9] we reproduce Fig. 3.1 of the GLR pa-
per, where the Pomeron and the vertices are schematically
indicated.

(4.8.25)

(4.8.26)

Fig. 4.9. The QCD Pomeron from [220] and the triple
pomeron vertices. Reprinted from [220], ©(1984) with permis-
sion by Elsevier.

Before proceeding further, one should notice two im-
portant differences with respect to an approach based on

mini jets and soft gluon resummation, such as the one we
shall describe in [£.9.4¢

1. when dealing with parton-parton probability of inter-
action or even single jet production as in Eq. 4.3 of
their paper, i.e.

Edoiet dé @
the expression for jet-production is linear in «g, not
quadratic; this corresponds to a view in which soft
or semi-hard partons are all treated on equal foot-
ing, whereas mini-jet models distinguish between hard
parton-parton collisions from soft gluon emission, which
is separately resummed.

2. the other consideration is an observation at the begin-
ning of Sect. 3.3 of their paper about infrared diver-
gence. The authors acknowledge that the quarks being
coloured, the quark-quark amplitude is divergent, but
the divergences are absent when discussing the scat-
tering of colourless objects, such as hadrons. The ra-
tionale being that the divergences cancel if one takes
into account the interactions with the spectator quarks
which, together with the interacting quarks constitute
the hadron.

Section 4 of the GLR paper is dedicated to large p; pro-
cesses. It is in this section, that the gluon regge trajectory
is called in to play an important role in the correlations
between two large p; gluon jets. In this case, the double
inclusive cross-section in the region

l< Anpk (4.8.28)

Nas(p?)
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is given by

E.E, do?—7et
d3p0d3pd

36 Ak d?k
- / 14 202(p) (1, k) p(w, k2)

(1672)2p2p; a
%62 (kyy + Koy — Pet — pdt)(4pc;pdt mc(q?)Té
(4.8.29)
with the gluon trajectory given as
ac(q?) =~ 20) 1 O (4.8.30)

27 2’
and p an infrared cut-off introduced because the trajec-
tory is infrared divergent [199,200]. Of course the infrared
divergent part of the reggeization is cancelled by the emis-
sion of real soft gluons. After this is taken into account, it
is given as

~ 3o (p2) i
2 = 8| L ] 4.8.31
O[G(p ) or max{pgz7k8} + (Oés), ( )
with py; = pet — pas. Thus
E.E;do? ¢t 5 266 (q2)d
o *cla) 4.8.32
d3ped3pq Apetpat ¢ ( )
Finally a form factor T is defined as follows:
3o (pQ) q;
Ta(p?, (Ap)?) ~ exp[— ton? 4.8.33
G(pta ( p) ) exp[ A n (Ap)g] ( )

which incorporates the probability that the global mo-
mentum of the emitted (bremsstrahlung) gluons which
accompany the emission of a hard gluon of momentum
p;¢ is smaller than a Ap < p;.

Electron Positron processes and the properties of pro-
duced jets and correlations are both examined in the re-
maining part of Sect. 4, and mostly in Sect.5. After this
section, the authors turn to a discussion of the phenomenol-
ogy of semihard processes from the perturbative QCD
viewpoint.

4.8.5 KMR model with BFKL Pomeron

We shall now examine a specific model in which the the-
oretical input from the BFKL Pomeron is included into
a phenomenological application. Model of this type been
developed by various groups, such as the Durham-St Pe-
tersburg group of Khoze, Martin and Ryskin (KMR), the

cross-section and its extension to elastic scattering can be
found in [223]. In this paper, the discussion is focused on
how to take into account the single and double diffractive
components of the scattering and the following features
are discussed

— an estimate for the diffractive components in a two
channel model and comparison with the Pumplin bound
7]

— the t-dependence of the slope parameter B(t), at dif-
ferent energies and how this dependence is related to
the relative importance of pion loops in the calculation
of the Pomeron trajectory

— survival probabilities of rapidity gaps

A simplified version of the model can be found in Ap-
pendix A of [223]. From the expression for the total cross-
section in impact parameter space

Ototal = 2/d2btAel(bt) (4834)

Oelastic :/d2bt|Ael(bt)|2 (4835)

it is clear that A is purely imaginary in the model. A
two-channel eikonal is considered, elastic p — p and p —
N* — p, see Eq. (33) of their Appendix A, which will be
discussed in more detail in the section of this review on
the elastic cross-section. In the case of a single channel
they write

SmAg = [1 — e 200)/2] (4.8.36)
With an effective (for illustration) Pomeron trajectory
written as ap(t) = ap(0) +apt = 14+ A+ alpt and vertex
with exponential t-dependence fpexp(Bot), the opacity is
written as

Bb(s/50)°" O _i2/am,

02(b,s) = 1By

(4.8.37)

This result is obtained starting with the usual Regge-
Pomeron expression, i.e.

Oép(t)—l
SmAe(s,t) = B3(t) (;) (4.8.38)
0
s DtP(O)*l , ! .
= B%(t) (8) T (4.8.39)
0

The amplitude in b— space is then obtained as the Fourier
transform of Eq. (4.8.39) with t = —¢?

Telaviv group of Gotsman, Levin and Maor (GLM), Ostapchenko

and collaborators, among others, and will be also dis-
cussed in Sect. Here we shall describe the model by
Khoze and collaborators [2211[222] which has been applied
to both the elastic and the total cross-section for quite
some time. A description of the KMR model for the total

1 .
(27 / Fae A

A
_ <S> (Bo/ 2oy 108 /4 (4 8 41

S0

FlA(s, 1)] = (4.8.40)
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BFKL stabilized

A

A = 0p(0) - 1

LL1/x: Ay = G 4In2

Intercept A = ap(0) -1 ~ 0.35
A depends weakly on k;

resummed for low k;

BFKL

03

as
NLL1/x: A=A, (1-65 Q)

Figure 1: The behaviour found for the Pomeron intercept at leading and next-leading log(1/z)
order, where @, = «,/3m. When an all-order resummation of the main high-order contributions is
included, A tends to a value of about 0.35 for reasonably large values of c.

Fig. 4.10. Evolution of the Pomeron intercept from [225].
Reprinted with permission from [225], ©(2012) INFN Frascati
Physics Series.

and then eikonalized, obtaining

Troral = 4TSMA(s,0) = z/d%[l _ e 2b)/2)]

(4.8.42)
2 ap(0)—1
= B,
TDp
(4.8.43)

1
Bp = 530 + a’p log(s/so)
(4.8.44)

In two more recent papers [224.[225] the crucial ques-
tion of the transition from soft to hard is examined again.
We shall first summarize their picture of the transition
from [225] and then, in the next section dedicated to the
elastic differential cross-section, describe their latest re-
sults. The (QCD) Pomeron is here associated with the
BFKL singularity. It is noted that, although the BFKL
equation should be written for gluons away from the in-
frared region, after resummation and stabilization, the in-
tercept of the BFKL Pomeron depends only weakly on the
scale for reasonably small scales. We reproduce in Fig. [1.10]
their description of the connection between the intercept
of the BFKL Pomeron and the value for a,. The figure
shows how the intercept A goes to a smooth almost con-
stant behaviour as o, increases.

Basically, the Pomeron picture by these authors is sum-
marized as follows [226]. In the soft domain, Reggeon
field theory with a phenomenologically soft Pomeron dom-
inates. In the hard domain, perturbative QCD and a par-
tonic approach must be used. In pQCD, the Pomeron is
associated with the the so called BFKL vacuum singu-
larity. In the perturbative domain, there is thus a single
hard Pomeron exchanged, with a%"¢ = 1.3+« _t with
@ e S 0.05 GeV 2. In mini-jet language, which we shall
describe in the next subsection, this corresponds to having
the mini-jet cross-section rising as ~ s%3. The slope is as-
sociated to the size of the Pomeron, i.e. o/ ox 1/ < k? >.
Thus the bare Pomeron is associated to the hard scale,
of the order of a few GeV. In a mini-jet model this hard
Pomeron is obtained from parton-parton scattering folded

Table 6. Values for various total cross-section components, in
the original KMR model [227], prior to the LHC data.

energy || Ototal Oel UE)BM UlDogM
TeV mb mb mb mb
1.8 72.7 | 16.6 4.8 0.4
7 87.9 | 21.8 6.1 0.6
14 96.5 | 24.7 7.8 0.8
100 122.3 | 33.3 9.0 1.3

Table 7. Values for various total cross-section components
in t the KMR 3-channel eikonal from [224], inclusive of LHC
TOTEM data at /s = 7 TeV.

energy || oiotar | el Ber | olown | olown
TeV mb mb | GeV ™2 mb
1.8 79.3 17.9 18.0 5.9 0.7
7 97.4 | 23.8 20.3 7.3 0.9
14 107.5 | 27.2 21.6 8.1 1.1
100 138.8 | 38.1 25.8 104 1.6

in with the densities and summed over all parton mo-
menta. This is their perturbative description. But then
transition from hard to soft takes places, as one moves
to smaller k; values. In KMR approach, this is due to
multipomeron effects, while in k;-resummation language
(see next subsection), this comes about because of resum-
mation of soft k;-effects, which lower the scale determin-
ing < k7 > from the hard scale, to the soft one. As a
result, in the case of the BFKL Pomeron, the slope in-
creases by a factor ~ 5, while at the same time the inter-
cept decreases and one has an effective linear trajectory,
a;ff ~ 1.084-0.25¢. A behaviour such as this, a transition
from soft to hard, from a bare to an effective trajectory for
the Pomeron, was also found by the authors to be present
in virtual photo production of vector mesons at HERA.

After this general overview of the model, let us see how
KMR apply it to elastic scattering. The basic building
blocks of this model are the following parameters:

— the bare Pomeron intercept A = ap(0)—1, s-dependent

— the bare Pomeron slope o/ ~ 0

— a parameter d, which controls the BFKL diffusion in
Ky

— the strength A of the triple-Pomeron vertex

— the relative weight of the diffractive states -, deter-
mined by low mass diffractive dissociation

— the absolute value N of the initial gluon density.

KMR have discussed this model in comparison with the
recent TOTEM data and the values obtained by this pro-
gram for the total, elastic and diffrative cross-section are
given, in this paper, in Tables [6] and [7] for two different
models, the original KMR [227] and the 3-channel eikonal
[224].

4.9 Mini-jet models

When ISR confirmed the rise of the total cross-section
already hinted at by cosmic ray experiments, an interpre-



74

Table 8. Table of predicted values for o(otai by Gaisser and
Halzen [228].

Vs DT min  Ojet Gaisser Halzen
GeV GeV mb

43 1.25 4

540 2 26

4330 3.2 63

43300 6 127

tation was soon put forward that the rise was due to the
appearance of partonic interactions [56]. This early esti-
mate of jet production contribution to the rise of the total
cross-section and a comparison with existing cosmic ray
and accelerator data can be seen from Fig. [2.:4]in[2.3] In
this figure, one could see the appearance of the first parton
model for the rise of the total cross-section and its com-
parison with data, with the shaded area to represents an
estimate of the parton contribution. Subsequently, models
in which the hard component in the rise could be calcu-
lated from pQCD or could be inspired by pQCD have been
put forward, as shall be discussed below.

4.9.1 Non-unitary mini-jet model by Gaisser and Halzen

When data at the CERN SppS gave further evidence of
the rise of the total cross-section, the idea was subse-
quently elaborated by Gaisser and Halzen [228], who made
a model in which the rising part of the total cross-section
was obtained from the QCD two jet cross-section, calcu-
lated using QCD parton-parton cross-sections, folded in
with parton densities. In this calculation,

Ototal = 00 + Ojet(PTmin) (4.9.1)
with
Ojet (DTmin) = /4 . %dml (4.9.2)
DT min/s V1
and
do T

- = 2*)(
dry 1807 in

X /deF(xvaz)F(x%Qz)ai(Qz)H(zlv‘mQa4xp%’min)

(4.9.3)

with H (21,2, 4zp%,,.,,) obtained from the cross-sections
for parton-parton scattering, integrated over all scatter-
ing angles and parton density functions F(z;, Q?). In the
above equation, there appear the by-now familiar parame-
ter prmin, which regularizes the parton-parton cross-section,
otherwise divergent as 1/p3. , . for small momenta of the
outgoing partons. Since these jet cross-sections rise very
rapidly with energy, the parameter pr,.;, was taken to be
energy dependent. In Table [§] we reproduce the values of
Prmin Needed to describe existing total cross-section data
from low energy to high energy values. With oy = 38 mb,
Fig. shows the corresponding plot, up to cosmic ray
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Fig. 4.11. The first model for the total cross-section which
used QCD calculated jet cross-sections to describe the rise,
is shown, from [228]. Reprinted with permission from [22§],
Fig.(1), ©(1985) by the American Physical Society.

energies. This model had no flexibility to satisfy unitar-
ity. It was just a simple parametrization, but it already
had the merit of including soft-hard partonic interactions.
The importance of such semihard processes had been high-
lighted in [220], also discussed in [229/[230L23T1232].

4.9.2 Eikonalization of mini-jet models

A subsequent step which would avoid an energy depen-
dent value of the parameter pr;,;n, was the introduction of
multiple scattering, as had been pointed by Durand [233].
This possibility was realized by Durand and Pi in [46]
who proposed to use the mini-jet cross-section as input to
the total cross-section through the eikonal representation.
Their proposed expression enforced the idea that QCD
processes at high energy drive the rise of the total cross-
sections, while at the same time satisfying unitarity. The
price to pay, as always the case when using the eikonal rep-
resentation, was the introduction of the impact parameter
distribution for the scattering partons. In this, as in most
other models, the impact parameter distribution at high
energy was taken to be different from the one at low en-
ergy. At low energy, the distribution was considered to be
dominated mostly by quark scattering, and, accordingly,
taken to be a convolution of the proton electromagnetic
form factors, while for the gluons, it was a convolution of
a proton-like and a pion-like form factor. In the following,
we shall reproduce the expressions they use and the values
of the parameters which give the fits shown in Fig.
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Fig. 4.12. Description of the total cross-section in the eikonal
mini-jet model by Durand and Pi from ref. [46]. Reprinted
with permission from [46], Fig.(1), ©(1989) by the American
Physical Society.

The pp and pp elastic scattering amplitudes were writ-
ten as

Fovam = i / bdbJo (VDL — e Xremr®9]  (4.9.4)

with
x =x"+ix (4.9.5)

We use here the notation of Ref. [46], noting that the
definition of x has a —i with respect to the more usual
definition, for instance the one in the model described in
M.9.6l The normalization is such that

do

=l (s, 1)

7 (4.9.6)

and then, using the optical theorem, one has the usual
expressions

Ototal = 47'('%771]0(8, 0 :)

0o
= 47’('/ bdb[l — COS XI(b7 S)e_XR(b,s)](4.9'7)
0
Oclastic = 27T/ bdb|]_ — e—X(b,s)|2
0

= 27r/ bdb[1 — 2 cos ' (b, S)G*XR(b,S)
0

+ e~ 2x"(09) (4.9.8)

Tinel = 27 / bdb[1 — e~ 2x"(0:5)] (4.9.9)
0

The authors had emphasized that the term e=2X® can
be interpreted semi-classically as the probability that no
collision takes place in which particles are produced. The
function y® is calculated using parton-parton scattering,
impact parameter distributions as mentioned, and, through
this function, the remaining component x! is obtained

from a dispersion relation. This allowed them to obtain
both the real and the imaginary part of the amplitude
and through these, the p parameter.The QCD contribu-
tion was calculated from mini-jet cross-sections and was
input to the two, even and odd, eikonals in which the pp
and pp eikonal functions are split. Namely, they write

(4.9.10)

Xpp = X+ + X—» Xpp = X+ — X—

The QCD-like contribution is input to the even eikonal.
At very high energy, if no odderon is present, the two
cross-sections for pp and pp are equal and one can hope to
be able to calculate this part of the eikonal using pertur-
bative QCD. Actually, even at high energy, there will be
a residual contribution from processes which dominate at
low energy, and thus the eikonal is split into a soft and a
hard part, namely

X(b, 8) = Xsoft(bv S) + XQCD(bv S)

(4.9.11)
2s < o xT(b, )
I 9
XQCD(b, 5) = *?P/O dslm
(4.9.12)
R 1 1 21/
XQC'D(bv S) = Je XQCcD = 5 Z ﬁ X d°b d.’Eld.’EQ
— 1 + 045
ij
. db . .
<[ AT o b~ ) i )
Q..  dlt|

(4.9.13)

One then assumes an approximate factorization between
impact space and energy distribution, namely the proba-
bility functions to find a parton of type 7 with fractional
momentum x at a distance b from the initial proton di-
rection, are factorized as

fi(a,1,1b]) = f;(x,8)p(b) (4.9.14)
where p(b) is a function describing matter distribution in-

side the colliding hadrons. One then can write

1
= 5A(b)UQRCD (4.9.15)

XSCD (bv 5)
with
A(b) = /d2b/p(b/)p(|b —b|) (4.9.16)
and [ d?*bA(b) = 1.
For the impact parameter distribution, for the soft part
the following expressions were used:

= 7*(Vib)3’(:3(uib) (4.9.17)
with KC3(vb) the special Bessel function of the third kind
which comes from the convolution of the dipole-type ex-
pression of the proton e.m form factor. These functions
will enter the even and odd soft eikonals. For the hard
part, on the other hand, one takes into account that glu-
ons are distributed differently from the valence quarks and
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the expression which is used is the convolution of gluon
form factors given by
G2 = (1+ k2 /v2) 21+ K2 /)~ (4.9.18)

To complete the picture, the authors set the soft eikonals
as

a .
W t.soft = Ar (D)0sops = Ay (b)[o0 + Sfaem/ﬂ (4.9.19)

R p
2X—s0ft = A,(b)ﬁe_”/‘l (4.9.20)

with o9 = U§ + iaé; a, o adjustable parameters.

The model, a part from the QCD inputs, namely den-
sities and Q2,;,,, has now 8 parameters, oy = ol +iol, a, o
and R for the cross-section type terms and vy, u for the
impact parameter distributions. The parameters are then
fixed so as to obtain a good fit to the total cross-sections,
elastic and total, to the elastic differential cross-section

and to the p and slope parameters, given by

p=Ref(s,0)/Imf(s,0) (4.9.21)
Bls)= Sl ety (4029

Within this framework, one obtains the description of
the total cross-section shown in Fig. 4.12| and good de-
scriptions of the elastic cross-sections and their energy
dependence up to SppS data. Notice that the slope pa-
rameter B(s) is thus fully determined.

We have dedicated a rather long and detailed exposi-
tion to this model since many other models follow a simi-
lar outline and models similar to this one have been used
(and still are) in MonteCarlo simulations such as PYTHIA
[234]. Many of the features of the Durand and Pi model
are also present in the QCD inspired model which will be
described in the next section.

Durand and Pi in [46] made an effort to obtain a de-
scription of the p parameter which could accomodate the
UA4 measurement [235], namely p = 0.24 £+ 0.04 and the
parameter values for the overall description were influ-
enced by this choice. To explain such a large value, it
turned out to be quite difficult, in most case it was related
to a possible anomalous rise of the total cross-section. The
measurement of the p parameter at the Tevatron by E-
710 [I47] and E811 Collaboration [146] however did not
confirm such a high value for p, which had in any event
already been measured again by UA4,s obtaining a lower
value, in line with theoretical expectations. That the p pa-
rameter could not be this high was pointed out in 1990 by
Block et al. [236] who discussed the theoretical implica-
tions of such measurements, using a previously developed
model [I68]. We now turn to this model.

4.9.3 QCD inspired models, Aspen model

Applications of the mini-jet idea to the description of the
total and elastic cross-sections were developed around the
90’s by many groups, for instance in [237238]. We shall

illustrate here the one developed by Block with Fletcher,
Halzen, Margolis and Valin [236], where the contribution
of semi-hard interactions was fully parametrized, sepa-
rately indicating quark and glun contributions. This model
is also sometimes labelled as the Aspen model E| and is at
the basis of subsequent developments, where it was ap-
plied to photon processes [148] and to the extraction of
the proton-proton cross-section from cosmic ray experi-
ments [49].

In this model, a QCD-inspired eikonal parametrization
of the data is used. For the total cross-section, a result
similar to simple In*[s] analytic considerations [12] is ob-
tained. One starts with

Trotar = AnSmfy (4.9.23)

%‘Z =7|fn|? (4.9.24)

fy =i / bdbJo(bw/—0)[1 — e=P:9)/2] (4.9.25)
P(b,5) = Pyg(b, s) + Pyy(b, s) + Pyg(b,s) (4.9.26)
Pyj(b,s) = Wij(b, pij)oij(s) (4.9.27)

In the above equations, the probability function P(b,s)
is seen to be parametrized in terms of three QCD-like
terms, corresponding respectively to gluon-gluon, quark-
gluon and quark-quark interactions. The impact distribu-
tion functions for proton-proton scattering are obtained
from the convolution of the two proton-like form factors,
and for i = j

szi
967
For the gluon-gluon terms, which become more important

at high energy and which drive the rise of the cross-section,
they write

Wii (b, pii) = (piib)* Ks (piib) (4.9.28)

Pyy(b,s) = Wy,(b)s’—* (4.9.29)

where J gives the large s behaviour of the gluon-gluon
cross-section integrated over the gluon PDF’s in the pro-
ton. For the probabilities involving quarks, and which are
important at low energy, the parametrization is inspired
by the x-behaviour of the parton densities and they are
written as

%} (4.9.30)

m
Pyg = W(\/Bqaliggb)a’ + V' In 72}

Pag =W (pigqb)[a +b
(4.9.31)

The difference at low energy between pp and pp cross-
sections is obtained by first ensuring the correct analyt-
icity properties through the substitution s — s~*7/2 and
then introducing an ad hoc odd-crossing amplitude as

Poga = W(uoddb)a”%e*”/ : (4.9.32)

5 This name was given by one of us, G.P, as a testimony of
the contribution to the field from Martin Block, who spent his
latest years in Aspen, working further, and until very recently,
on the problems of the total cross-section.
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FIG. 1. Total cross sections calculated and measured for pp

(dashed curve and crosses) and pp (full curve and squares). The
parameters in the calculation are €=0.05, u,=0.89 GeV,
Hge =0.73 GeV, p34=0.53 GeV, m;=0.60 GeV, a=41.8 mb,
b=220.6 mb, a’=—3.56 mb, b'=1.22 mb, a’’= —57.68 mb,
Opp = 9mal /8% =0.0634 mb.

Fig. 4.13. Description of the total cross-section in the QCD
inspired model by Block et al., from [236]. Reprinted from [236],
Fig.(1), ©(1990) by the American Physical Society

The overall set of parameters can be found in the cap-
tion of Figure 1 from [236]. We reproduce this figure for
the total cross-section in Fig. This model has 11
parameters.

Finally, notice an important feature of this model, i.e.

how the Froissart-type large energy limit is obtained through

the mini-jet contribution in combination with the impact
parameter dependence. The authors search for the critical
value of the parameter b for which P;; < 1 and, using
the large energy behaviour of the mini-jet cross-sections,
namely s/~ they find

-1
J lni+(9(lnlni)
Hgg S0 S0

b, = (4.9.33)

Thus, the energy dependence of the QCD cross-sections
transforms the s/~! behaviour at lower energy into the
black-disk cross-section at high energy, i.e. into

Jo1 1]21n2 il

4.9.34
s ” ( )

Ototal = 27T[

4.9.4 Resummation and mini-jets

A model which incorporates many features of QCD is
the one developed in [94], following [I50] and completed
in a number of subsequent papers, in particular in [95].
The model embodies the idea that resummation down
into the infrared region is a crucial component of total
cross-section asymptotics and provides a phenomenologi-
cal structure linking the infrared behaviour of QCD to the
asymptotic limit of the total cross-section.

The model is labeled following the idea that expo-
nentiation of the spectrum of soft emitted quanta when
k — 0, first proposed by Bloch and Nordsieck (BN) for
QED [I72], must be extended to the soft gluons for the
QCD processes and that it must be carried through into
the infrared region.

Thus, the model is developed along two basic ideas,
that the rise of the total cross-section is driven by hard
processes, called mini-jets [229231] and that the soften-
ing of the rise into the smooth behaviour consistent with
the Froissart bound arises because of soft gluon emission,
resummed and extended down into the zero momentum
region of the spectrum of the emitted quanta [I1]. To
investigate this region, use is made of the ansatz about
the infrared behaviour of the effective quark-gluon cou-
pling first introduced in [239] for the intrinsic transverse
momentum of Drell-Yan pairs, and later implemented to
describe the impact parameter distribution of partons in
high energy collisions [I50], as we have described previ-
ously.

The basic structure of this model exhibits some of the
same features advocated by the work of GLR, KMR or
GLM, described in other parts of this review, describ-
ing implementation of BFKL dynamics, namely soft ex-
changes (the soft Pomeron) and perturbative QCD (hard
Pomeron) for medium energy partons, but the hadronic
amplitude at t = 0 of this model is built through a proba-
bilistic structure, with the soft resummation contribution
built as a term factored from the hard parton-parton scat-
tering, not unlike what one does in QED when applying
infrared radiative corrections.

4.9.5 Hadronic matter distribution and QCD soft k;
distribution

Because of its obvious relevance to total cross-section esti-
mates through the transverse interaction size of hadrons,
we shall start by investigating the transverse momentum
distribution of soft quanta in QCD.

The expressions for transverse momentum distribution
discussed in the context of QED in cannot be ex-
tended simply to QCD, since the coupling constant is mo-
mentum dependent. When taken into account, the trans-
verse momentum distribution due to soft gluon emissions
became extremely interesting. This was first realized by
Dokshitzer and collaborators [240], who generalized to
QCD the Sudakov form factor expression, originally ob-
tained in QED [I80] and discussed above. The application
of resummation techniques to the K -distribution of pu
pairs of mass Q produced in hadron-hadron collisions was
shortly after studied in [241]. In this paper, it was argued
that the “soft limit of QCD could be treated in full anal-
ogy with that of QED with the minor [Author’s note : not
so minor!] technical change of « into a(k))”.

Today the problem of transverse momentum distribu-
tions in QCD is still not completely solved. The reason lies
in the lack of our certain knowledge about the momentum
dependence of the strong coupling constant a(k) ) when
the gluon momentum goes to zero, as is the case for the
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soft gluons needed in resummation. Actually, what one
needs to know is the integral of as(k;) over the infrared
region. The IR limit of ay enters only when the gluon
momenta are close to zero, i.e. only in the resummation
process, which implies exponentiation of an integral over
gluon’s momenta with a momentum-dependent «a;. Be-
cause the coupling constant in QCD grows as the momenta
become smaller, a Bloch and Nordsieck type resummation
of the zero momentum modes of the soft quanta emitted
by coloured quarks becomes mandatory. In this case, the
applicability of the above methods requires a knowledge
of (or, an ansatz for) the strong coupling constant in the
IR region.

Following the semiclassical derivation of Eq.
the exponent describing the b-dependence for QCD now
reads

h(b, E) = ?

/E os(ht) dhey 2B 50

4.9.35
m kt kt ( )

Its use is complicated by the asymptotic running of the
coupling constant on the one hand and our ignorance of
the IR behaviour of the theory, on the other.

To overcome the difficulty arising from the infrared
region, the function h(b, E'), which describes the relative
transverse momentum distribution induced by soft gluon
emission from a pair of, initially collinear, colliding par-
tons at LO, is split into

h(b, E) = co(p, b, E) + Ah(b, E), (4.9.36)
where
Ah(b, E) = 16/E ) g gy 2 g 2
U T e T
(4.9.37)

The integral in Ah(b, E') now extends down to a scale y #
0, for pr > Agcp and one can use the asymptotic freedom
expression for as(k?). Furthermore, having excluded the
zero momentum region from the integration, J,(bk;) is
assumed to oscillate to zero and neglected. The integral of
Eq. is now independent of b and can be performed,

giving
{ In(
E

—In(—) ;.

ol
A being the scale in the one-loop expression for a,. In the
range 1/E < b < 1/A an effective hs;(b, E) is obtained by
setting u = 1/b [241]). This choice of the scale introduces a
cut-off in impact parameter space which is stronger than
any power, since the radiation function, for Ny = 4, is
now

32
© 33 —2Ny

Ah(b, E) %) {m(m(i)) - ln(ln(%))

(4.9.38)

In(1/6242)

e hesr(0,E) [
In(E?/A2)

] (16/25) In(E%/ A?) (4.9.39)

which is Equation(3.6) of ref. [24I]. The remaining b
dependent term, namely exp[—co(u,b, E)], is dropped, a
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reasonable approximation if one assumes that there is no
physical singularity in the range of integration 0 < k; <
1/b. This contribution however reappears as an energy in-
dependent smearing function which reproduces phenomeno-
logically the effects of an intrinsic transverse momentum
of partons. For most applications, this may be a good
approximation. However, when the integration in impact
parameter space extends to very large-b values, as is the
case for the calculation of total cross-sections, the infrared
region may be important and the possibility of a physical
singularity for a; in the infrared region becomes relevant
[T1]. It is this possibility, which we exploit in studying scat-
tering in the very large impact parameter region, b — oo.

Our choice for the infrared behaviour of a4(Q?) used
in obtaining a quantitative description of the distribution
in Eq. , is a generalization of the Richardson po-
tential for quarkonium bound states [242], which we have
proposed and developed in a number of related applica-
tions [243\[244]. Assume a confining potential (in momen-
tum space) given by the one gluon exchange term

7(Q) K(“sgf )

where K is a constant calculable from the asymptotic form
of as(Q?). Let us choose for Q? << A2 the simple form

), (4.9.40)

as(Q%) = ﬁ, (4.9.41)
(with B a constant), so that V(Q) for small Q goes as
V(Q) — Q20+p), (4.9.42)
For the potential, in coordinate space,
Vi) = / (0251?3 T (), (4.9.43)
Eq. implies
V(r)— (1/7“)3 2 Lo r(2p_1), (4.9.44)

for large r (C is another constant). A simple check is that
for p equal to zero, the usual Coulomb potential is re-
gained. Notice that for a potential rising with r, one needs
p > 1/2. Thus, for 1/2 < p < 1, this corresponds to a
confining potential rising less than linearly with the in-
terquark distance r, while a value of p = 1 coincides with
the infrared limit of the Richardson’s potential and is also
found in a number of applications to potential estimates
of quarkonium properties [245].

Then, again following Richardson’s argument [242], we
connect our IR limit for o (Q?) to the asymptotic freedom
region using the phenomenological expression:

2 1 D

as(k)) = ——— (4.9.45)
bo In[1 + p(55)?)
with 1/by = (33172% The expression of Eq. (4.9.45)

coincides with the usual one-loop formula for values of
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k; >> A, while going to a singular limit for small k;, and
generalizes Richardson’s ansatz to values of p < 1. The
range p < 1 has an important advantage, i.e., it allows
the integration in Eq.(4.9.37) to converge for all values of
ki = |k.|. Some considerations for the case p ~ by can be
found in [246].

Using Eq. , one can study the behaviour of
h(b, E) for very large-b values which enter the total cross-
section calculation and recover the perturbative calcula-
tion as well. The behaviour of h(b, F) in various regions
in b-space was discussed in [04], both for a singular and a
frozen ais, namely one whose IR limit is a constant. There
we saw that, for the singular oy case, the following is a
good analytical approximation in the very large-b region:

b> ! >i
N, A~ M
%p [-02A% (v 4k oM
h(b,M,A) = =L |b — In=—
(6, M, 4) ﬁl2/0k2plnk
2 _ NeA gk M - (M gkind
+=F l2b/12p/ b E
™ % k;D k NPA k lnz
2cp b 5 2 1
= (B2APP [2In(2Mb) + ——
- 8(1_1))( ) n( )+1_p +
E(b%ﬁ)? [2 In(Mb) — 1} +
2p D
b 1
| -2In— 4+ = |+
2pN3p|: ANp p:|
_ M In M In N,
In— |In—4 — L
bnA[nlan +ln%11

where N, = (1/p)*/?", c¢p = 4/3 for emission from quark
legs and b = 127/(33 — 2N;). The upper limit of integra-
tion here is called M, to indicate the maximum allowed
transverse momentum, to be determined, in our approach,
by the kinematics of single gluon emission as in [247]. The
above expression exhibits the sharp cut-off at large b val-
ues which we shall exploit to study the very large energy
behaviour of our model.

The possibility that as; becomes constant in the in-
frared can also be considered. We found that such possi-
bility does not contribute anything new with respect to
the already known results. In fact, using the expression
[2411248,249]

127 1
s kz =
(k) = 33 oN, a2 1 12/ A7)

(4.9.48)

with @ > 1, in the same large b-limit as in Eq. (4.9.46)), we
have [94]

b s L
A~ M
(4.9.49)
h(b, M, A) = (constant) In(2Mb) + double logs
(4.9.50)

namely no sharp cut-off in the impact parameter b, as ex-
pected. More precisely, we have the following approximate
expression:

h(b, M, A) = %F{égu +21n(2Mb)] +

™

2@ [In(Mb) In(aAb) — % In? (aAb)] +

M In M
In—In—4 —1In— 4.9.51
"4 na na/l]} (49.51)

b

with a5 = 127/(33 — 2Ny) In(a?). These approximations
are reasonably accurate, as one can see from [94], where

(4.9.46) both the approximate and the exact expressions for h(b, M, A)

have been plotted for the singular as well as for the frozen
a, case. Notice that, in the following sections, we drop for
simplicity the explicit appearance of the A in the argu-
ment of h(b, M, A).

The above expressions derived for the overall soft gluon
emission in a collision, are input for the QCD description
of the total cross-section [I50]. In this description, the
impact factor is defined as in

Ctotal = Q/de[l - 6*(Qsofr,(S’b)+ﬂhard(b»8)] (4.9.52)
-Qhard(ba S) = ABN(b7 S)O'jet (3)
Apn = N/dQKe“"KdQP(K) (4.9.54)

(4.9.53)

(4.9.47) N being a normalization factor such that fd2bABN =1

and the subscript BN indicates that this impact factor is
obtain through soft gluon resummation. The detailed ap-
plication of such model and the phenomenological results
are described in the subsection to follow.

4.9.6 Bloch and Nordsieck inspired model for the total
cross-section

As discussed above, in the BN model soft gluons of mo-
mentum k; are resummed up to a maximum value ¢nqz,
and partons, mostly gluons at high energy, of momentum
pe. Thus, there are three regions for the emitted parton
transverse momentum and hence three scales:

(i) pt > Ptmin, With pynin ~ 1 GeV, one can apply per-
turbative QCD (pQCD) and calculate the mini-jet con-
tribution to the scattering process,

(ii) A < ki < Gmaz =~ (10 — 20)%pimin, where k; indi-
cates the transverse momentum of a single soft gluon
which corresponds to initial state soft radiation from
partons with p; > pgmin, and for which one needs to
do resummation, and A ~ 100 MeV ~ m,,

(iii) 0 < k¢ < A for infrared momentum gluons, which re-
quire resummation but also an ansatz about the strong
coupling in this region.
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In the pQCD region, parton-parton scattering and stan-
dard Leading Order (LO) parton densities are used to cal-
culate an average mini-jet cross-section as

\/5/2 1 1
/ dpt/ dry / dzo
p 4p7/s 4p?/(z15)

tmin

Omini—jets = intB(s) =

délF(3)

2 2 i

XijzklfiA(zlapt)ij(anpt) ﬁ
(4.9.55)

Here A and B denote particles (v, p,...), i, j, k, 1 are
parton types and x1, x2 the fractions of the parent particle
momentum carried by the parton. § = xjxss and & are
hard parton scattering cross—sections.

Eq. is a LO parton-parton cross-section av-
eraged over the given parton densities, through the phe-
nomenologically determined parton density functions
fi‘A(a:,pQ), DGLAP evoluted at the scale p; of the mini-
jet produced in the scattering. As is well known, however,
for a fixed pymin value, and as pymin/v/s — 0, gluon-gluon
processes become more and more important and, since the
LO densities of gluons are phenomenologically determined
to increase as x'T¢, the mini-jet integrated cross-section
will increase as s¢, with € ~ (0.3 + 0.4) depending on the
densities. This rise of the parton-parton cross-sections, av-
eraged over the parton densities, has its counterpart in the
hard Pomeron of BFKL models, where a behaviour s4
corresponding to hard Pomeron with very small slope is
seen to describe the rise of the profile function, before sat-
uration starts changing the hard behaviour into a softer
one. Multiplying oparq with the average probability for
two colliding partons to see each other (and interact) at a
distance b would give the average number of collisions at
impact parameter b when two protons collide. This num-
ber can become very large as the energy increases and so
proper eikonalization and unitarization is introduced, just
as in the QCD mini-jet models we have described earlier.

Implementation of unitarity through the eikonal for-
mulation reduces the rise from this hard term, but unless
one has a cut-off in the impact parameter distribution, the
rise will not be adequately quenched.

We now let the mini-jet model morphe into an eikonal
mini-jet model for o4yt i-€.

Ototal = 2 / d?b[1 — cos Rex(b, s) e~ SmX(E5)]  (4.9.56)

where the s-dependence of the imaginary part of the eikonal
function x (b, s) is driven by the mini-jet cross-section and,
in first approximation, the eikonal has been taken to be
purely imaginary. Since the total cross-section is domi-
nated by large impact parameter values, and, at high en-
ergy, p(s,t = 0) ~ 0.1, this is reasonable approximation
at high energy and in the calculation of the total cross-
section.

The name mini-jets was first introduced by M. Jacob
and R. Horgan to describe the flood of small transverse
momentum jet-like events expected to dominate at the
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SppS collider [250,251]. The importance of mini-jets con-
cerning the rise of the total cross-section was doubted how-
ever, as discussed for instance by Jacob and Landshoff in
[252]. In particular they think impossible for mini-jets to
contribute to the total cross-section at /s ~ 5 GeV. This
may be true, or, at least we do not know how to incorpo-
rate pQCD at such low hadronic c.m. energies, however
our phenomenology indicates that the mini-jet contribu-
tion start being noticeable around /s 2 10 GeV. It also
appears that when performing a parametrization of the
low energy contribution, the hard part plays a role to ame-
liorate the overall description, from low to hard energies.
Examples of these two different procedures can be found
in our application of the BN model to pion scattering [151]
and to studies of inelastic cross-section at LHC7 [42]. In
addition, from a microscopic point of view, mini-jets are
the only pQCD phenomenon to which one can ascribe the
drive of the rise of the total cross-section. Their contri-
bution can be seen as the microscopic description of the
hard Pomeron advocated by Reggeon field models.

We now turn to the question of the impact parameter
distribution in eikonal mini-jet models. As discussed at
length in [94], the standard use of hadronic form factors
together with standard library Parton Density Functions
(PDF) in the mini-jet cross-sections does not allow to re-
produce both the initial fast rise of the cross-section as
well as well as moderating the rise.

The difficulty to use the EM form factors with stan-
dard LO pQCD techniques has been one of the problems
plaguing the eikonal mini-jet approach. We thus intro-
duced soft gluon resummation to solve this problem. How-
ever, as discussed previously, resummation outside the in-
frared region and in asymptotic freedom region, even at
higher orders or beyond the LLA, can hardly touch the ba-
sic question: how to introduce a cut-off in impact parame-
ter space or, otherwise stated, how to link the asymptotic
behavior of the cross-section with confinement?

We shall now discuss the model in detail, but we antici-
pate its outline in graphic form here. We show in Figs.
[4.15}14.16{and [4.17 our cartoon representation of the build-
ing of the total cross-section. All these figures are reprinted
with permission from [253], with (©)(2007) by Acta Phys-
ica Polonica B. We have discussed in our sugges-
tion for the impact parameter distribution. The underly-
ing physics is that this distribution is probed in the scat-
tering when partons start a brownian like motion inside
the protons, each successive change of direction generated
by emission of soft gluons. Thus, a matter distribution
A(b, s) can be obtained as the normalized Fourier trans-
form of the expression for soft gluon resummation in trans-
verse momentum space. Through it, the average number
of hard collisions is calculated to be

< n(b7 S) >= Afgd(b’ qmal‘)o-mi"i_jets(S7pt7nin)
e_h‘(bvs)
= T @pe i Imini=iet(5: Pimin) (49.57)

where we have introduced the notation BN to induce that
this function is calculated using soft gluon k;-resummation,
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Fig. 4.14. LO Partonic picture of mini-jet role in hadron-hadron scattering and representative mini-jet calculation from [253].
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and the upper limit of integration ¢4, carries energy de-
pendence from the scattering partons. We have followed
the early work by Chiappetta and Greco about resum-
mation effects in the Drell-Yan process, where this upper
limit is defined by the kinematics of single gluon emission
[254]. Namely for a process such as

q(x1) + q(w2) = X(Q) + g(ke)

with the subenergy of the initial (collinear) parton pair
defined as § = /sx1xs. In the no-recoil approximation,
@? is the squared invariant mass of the outgoing parton
pair X, with parton transverse momentum p; > Demin.
Kinematics then leads to

R Vs Q? 1
N=""1 -y
Gmaz (8,9, Q%) (1==) e

and y is the rapidity of the outgoing partons [254]. In
our simplified model for the total cross-section, we have
approximated ¢naz(8,y, @%) with its maximum value at
y = 0 and averaged its expression over the parton densi-
ties, namely

(4.9.58)

(4.9.59)

NG

Qmaz =< Qmam(s) >= —X

2
’Jf dfllfz/a zy) [ dmfa/b (o mf AL=2)
J f & fz/a x1) f f]/b T2) lemm(dz)
(4.9.60)

Furthermore, as discussed in [42], we have made the ansatz
that the LO contribution to the resummation effect comes
from emission from valence quarks. Emission from gluons
is certainly to be included, and will be be dealt with in
further work on the model. For a discussion of this point
see also [93].

Following the interpretation by Durand and Pi, as dis-
cussed before, and in the spirit of Moliére theory of mul-
tiple scattering, we now obtain the pQCD contribution to
the imaginary part of the scattering amplitude at ¢ = 0
and hence the total cross-section through the identifica-
tion x(b, s) =< n(b,s) > /2, i.e.

Ototal = 2/d2b[

The perturbative calculation we have outlined does not
suffice to account for all the process which contribute to
the total cross-section. Other partonic processes with mo-
mentum p; < Pimin enter, and, at low energy constitute
the dominant contribution. By definition, pmqn» separates
parton-parton scattering with a pQCD description, from
everything else. Thus one needs to parametrize the low
energy part, and in our model we propose a simple ap-
proximate factorization of the average number of collisions
as

e~ <n(0)>/2] (4.9.61)

< n(b7 S) >=< n(b7 S) >pt<pt'm.in +< n(b7 S) >pt>ptmin:

< n(b7 S) >soft + < n(b, S) >hard
(4.9.62)

We have proposed two different low energy parametriza-
tions:

-<n >SBO]}Q: Agj}'tao[l + 2%/5] with € = 0,1 according
to the process being pp or pp.
— < n >g0p= polynomial in 1/\/s

As discussed in Ref. [95], the first of these two low energy
parametrizations has the same expression for A(b,s) as
in the hard pQCD calculation, except that the value of
Qmaz 18 chosen ad hoc to reproduce the low energy data.
The second parametrization is self explaining, and we have
started using it when describing 7-p and w7 scattering
[I51]. Then the elastic and the inelastic total cross-sections
follow from the usual formulae. Numerically, the sequence
of the calculation is as follows:

1. choose LO densities (PDF's) for the partons involved in
the process to study, such as 7, 7y, protons, antiprotons
and thus calculate the mini-jet cross-section

2. for the given pymin and chosen LO densities calculate
the average value for ¢4, the maximum energy car-
ried by a single soft gluon, through the kinematic ex-
pression given before in Eq.

3. choose a value for the singularity parameter p in the
soft gluon integral and, with the ¢,q. value just ob-
tained, calculate Ahwd(b, s)

4. parametrize the low energy data to obtain < n(b, s) >0+

5. eikonalize and integrate

Different choices of the PDF's call for different values of
the parameters p and pimin. The sequence of calculations
and some typical results for different Parton Densities can
be found in [253] and are shown in the right hand panels
of Figs. [4.14], [A.15], {.16] and .17l This approach led to
the band of predictions shown in Fig. |.18|from [255]. In
particular we notice that the upper curve of our predicted
band nicely accommodates the TOTEM result, as we have
already shown in Fig. reproduced at the beginning of
this Section.

The above is a rather general parametrization of the
total cross-section (of hadrons and photons) which we
have developed over the past two decades. The central
ingredients are pQCD, i.e. mini-jets, and soft resumma-
tion in the infrared with a singular but integrable effec-
tive couling constants for gluons and quarks, and where
unitarization is achieved through the impact parameter
distribution. Not all the details could be specified here,
but most can be found in [94] and [95].

4.9.7 Soft gluon k;-resummation and the Froissart bound

The physics embodied in the phenomenology described in
the previous subsection is that soft gluon resummation in
the infrared region provides a cut-off in impact parameter
space, which leads to a smooth logarithmic behavior. In
our model such behavior depends on the ansatz about
limit of the effective quark-gluon coupling constant when
ky — 0. To see this, we start with taking the very large

s-limit in Eq. (4.9.61)).
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Fig. 4.18. Comparison of the BN model, described in the text,
with data and other model predictions. Reprinted from [255],
©(2007) with permission by Elsevier.

At extremely large energy values, we neglect the low
energy part, and have

Ttotal =+ 2 / d?b[1 — e (b:naralbs)/2] (4.9.63)
With the QCD jet cross section driving the rise due to
the increase with energy of the number of partonic colli-
sions in Eq. , let us recall the energy behaviour of
the mini-jet cross-sections. In the v/s >> pimin limit, the
major contribution to the mini-jet cross-sections comes
from collisions of gluons carrying small momentum frac-
tions x1,2 << 1, a region where the relevant PDF's behave
approximately as powers of the momentum fraction =7/
with J ~ 1.3 [256]. This leads to the asymptotic high-
energy expression for oje;

1 |: s :| J—1
p?min 4p?min

where the dominant term is a power of s. Fits to the mini-
jet cross-sections, obtained with different PDF sets [257],
confirm the valuee = J — 1 ~ 0.3.

To match such energy behaviour as in Eq. with
the gentle rise of the total pp and pp cross-sections at
very high energy, we inspect the impact parameter dis-
tribution we have put forward using resummation of soft
gluons in the infrared region. Let us consider the inte-
gral for the function h(b, ¢mas), which is performed up to
a value @mqq, corresponding to the maximum transverse

(4.9.64)

Ojet X

momentum allowed by kinematics of single gluon emission
[254]. In principle, this parameter and the overlap func-
tion should be calculated for each partonic sub-process,
but in the partial factorization of Eq.(#.9.57) we use the
average value of ¢4, obtained by considering all the sub-
processes that can happen for a given energy of the main
hadronic process, as seen before. The energy parameter
Qmaz 18 of the order of magnitude of pspn. For present
low—z behaviour of the PDFs, in the high energy limit,
Qmaz 1S a slowly varying function of s, starting as In s, with
a limiting behaviour which depends on the densities [253].

From Egs. (4.9.46]) and (4.9.64]) one can estimate the very

large s-limit
nhard(ba 5) = ABN(ba S)Jjet($7ptmin) ~

Ao(s)e mbama) g () (4.9.65)
S0

and, from this, using the very large b-limit,

—(bA)?P (i)s

4.9.
> (4.9.66)

nhurd(b: 8) ~ AO(S)Ule

with Ag(s) o< A% and with a logarithmic dependence on
Qmaz, 1.€. a very slowly varying function of s. The large
b-limit taken above follows from Eq. . We also
have
- - CFB
A= Ab,s) = A

m[ln(quam(S)b) PRI | SVE

1

I—p

(4.9.67)
It is now straightforward to see how the two crucial pa-
rameters of our model, namely the power ¢ with which
the mini-jet cross-section increases with energy and the
parameter p associated to the infrared behaviour of the
effective quark-gluon QCD coupling constant, conjure to
obtain a rise of the total cross-section obeying the limita-
tion imposed by the Froissart bound, namely, asymptot-
ically, osotar < (Ins)?. Call or(s) the asymptotic form of
the total cross-section,
[ee]
or(s) ~ 2 / db?[1 — e~ hara(6:9)/2] (4.9.68)

0
and insert the asymptotic expression for oje; at high en-
ergies, which grows as a power of s, and the large b-
behaviour of Agn(b,s), obtained through soft gluon re-
summation, and which decreases in b-space at least like
an exponential (1 < 2p < 2). In such large-b, large-s limit,
one has .,
Nhara = 2C(s)e” V™ (4.9.69)

where 2C(s) = Ag(s)o1(s/s0)¢. The resulting expression
for o7 is

—(bA)2P

op(s) & 27r/ db?[1 — e=C)e ] (4.9.70)

0
With the variable transformation u = (Ab)??, and neglect-
ing the logarithmic b-dependence in A by putting b = 1/4,
Eq. (4.9.70) becomes

duu/P7H1 — =€ (4.9.71)
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Since, as s — oo, C(s) grows indefinitely as a power
law, the quantity between square brackets I(u,s) = 1 —
e~C(®)¢™" has the limits I (u,s) — Latu = 0and I(u,s) —
0 as u = co. Calling ug the value at which I(ug,s) = 1/2
we then put I(u, s) =~ 1 and integrate only up to ug. Thus

2 to 1—-p
Aop(s) = (?ﬂ-)/ duu™» = 27Tu(1)/p (4.9.72)
0
and since, by construction
_1.C0)
o = In| o ]~elns (4.9.73)
we finally obtain
27 541/
~ —[eln —]"7P (4.9.74)

or = ﬁ S0
to leading terms in Ins. We therefore derive the asymp-
totic energy dependence
or — [eln(s)] /P (4.9.75)

apart from a possible very slow s-dependence from A2.
The same result is also obtained using the saddle point
method.

This indicates that the Froissart bound is saturated if

p = 1/2, but also that we have the two following asymp-
totic limits

Ototal —7 (hl 8)2 p— 1/2

p—1

(4.9.76)

Ototal — Ins (4977)

depending on our approximate singular expression for the
strong coupling in the infrared. We notice that the limits
1/2 < p < 1 are a consequence of our infrared description.
Namely, from the request for the soft gluon integral to be
finite (p < 1) follow that the cross-section should grow
at least like a logarithm, while the limitation p > 1/2 is
to ensure the confinement of the partons. Confinement of
partons is essential in creating a “mass gap” leading to
massive hadrons. Once we have massive hadrons, we have
a Lehmann ellipse for hadrons [II]. We recall that the
existence of a Lehmann ellipse is essential for obtaining the
Martin-Froissart bound for total cross-sections. Through
our model, we have delineated the two limits: up to a linear
confining potential (p — 1) or down to a barely confining
one (p — 1/2).

Before closing this subsection and the description of
the BN model, in Fig. from [93], we show how LHC
data up to y/s = 8 TeV can be described by this and other
currently used models for the total cross-section.

As can be seen from Fig. from [255] it has been
the practice to reproduce total cross-section data for both
pp and pp, up to the TeVatron results. However, the large
differences among the Tevatron measurements did not al-
low a precise description at higher energies, such as those
explored at LHC. Once the LHC data have been released,
and as it has been the case for all models for the total
cross-section, we have updated our analysis. To this aim,

we have used only pp accelerator data, ISR and the recent
LHC measurements, namely pp points are shown, but have
not been used for the phenomenological fit, nor the Cos-
mic ray extracted values for pp. A more recent set of LO
densities, MSTW [96] has been included in the set of pre-
dictions for the BN model. The values of p and py.4,, which
better reproduce the LHC result are obtained by varying
DPimin = 1+ 1.5 GeV and 1/2 < p < 0.8. The result, for
the total pp cross sections, is shown in Fig.

The BN results, now stabilized at /s = 7 and 8 TeV
by tuning the parameters to TOTEM data, show marked
differences in the high cosmic ray region. The difference
is ascribable to the different low-x behaviour of the PDF's
used in the mini jet calculation, GRV and MSTW, as dis-
cussed in [93]. In addition, and as we shall briefly discuss at
the end of Sec.[7] as of 2016 there is some tension between
measurements by the two experiments presently providing
values for the total cross-section, TOTEM and ATLAS.

min

E 160 62V - MSTW2008LO, p=0.66,p = 1.30 GeV
s
©

Block-Halzen - Phys.Rev.Lett. 107 (2011) 212002
----—- Fagundes-Menon-Silva - J.Phys.G 40 (2013) 065005
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Fig. 4.19. The one-channel predictions from the one-channel
QCD mini-jet with soft gluon resummation model and pp total
cross section (BN model) are compared with accelerator data
at LHC, from TOTEM [I04258] and ATLAS measurements
[259]. The BN model results are compared with one- channel
model from Khoze et al.[260]. The red dot-dashed curve corre-
sponds to fits to the total cross section by Block and Halzen
[261], the dot-dashed blue line represents the fit by Fagundes-
Menon-Silva [262]. The figure is from [93]. Reprinted with per-
mission from [93], Fig.(3), ©(2015) by the American Physical
Society.

4.10 AdS/CFT correspondence and the total
cross-section

A short, but compact discussion of the Froissart bound
in the context of the string/gauge duality can be found
in [263]. In [263], the Pomeron is defined as the leading
contribution at large N, to the vacuum exchange at large
s and fized t. It is stated that in both strong coupling
and pQCD, the Pomeron contribution grows as s'*¢ with
€ > 0, so that, in order not to violate the Froissart bound,
higher order corrections need to be taken into account.
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For the scattering of particles 1 and 2 into particles 3
and 4, the standard eikonal representation for the ampli-
tude in the case of large 't Hooft coupling is then gener-
alized to the expression [264]

A(s,t) = —2is/dzdz'P13(z)P24(z') X
></deeiﬂ‘b[eix(sﬁba“”—1] (4.10.1)

where the wave function P;;(z) refers to the left moving
particles, 1 into 3, and right moving particles, 2 into 4.
The variables z and 2z’ correspond to the convolution over
moving direction in AdS3 and they are normalized so that,
when confinement is implemented, f Pijdz = 6.

In this description, one obtains the total cross-section
through the standard geometrical picture oot ~ b2,,,
and the problem is, as usual, that of finding b4

In this picture, the quantity

Ototal(8,2,2') = 23%e/d2b[1 — X502 (4.10.2)

is the bulk cross-section and the physical cross-section is
obtained after convolution with the wave functions.

The picture in the bulk is split into two regions, re-
spectively called diffractive and black disk, as follows:

diffractive: in this region Smy < Rey, and it is Rey ~ 1
which sets the limit for contributions to the scattering,
with bz = bdiff~

black disk: in this region Smy > Rey , the interaction
is dominated by the weak coupling Pomeron and the
maximum byqcr at which scattering still takes place
corresponds to where absorption is of order 1, namely
Smy ~ 1.

For the example of an even-signature Regge exchange in
4-dimensions, according to [263], one can write

bolack ~ )\*1/4m51 In(Bs/s0)

bdiff ~ mal IH(BS/S())

(4.10.3)
(4.10.4)

where in the fixed 't Hooft coupling A = g% ,,N., and my
is the scale for the trajectory exchanged with

t
ar =2+ d(

— 1) (4.10.5)

With o ~ A~Y/2 « 1, one obtains baifr > bvlack-
Thus, a unique result of the strong coupling regime is that
the eikonal is predominantly real.

Scattering in the conformal limit, leads to a otota; ~
s'/3 in the strong coupling regime. But with confinement
the situation is different and the spectrum has a mass gap
which then leads to a logarithmic growth. Tan [263] writes

1
baigy = In(N?s/mg) (4.10.6)

A full discussion of all these regions and the resulting ex-
pressions can be found in [264].
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Fig. 4.20. The total proton cross-sections, as compiled
before the start of the LHC and hence before of the
TOTEM and ATLAS measurements, by the COMPAS col-
laboration for the 2009 RPP [265] with model input from
[266] ( COMPETE Collaboration). Figure downloaded from
http://pdg.1bl.gov /2009 /figures/figures.html.

4.11 Phenomenogical fits to the total cross-section

We shall now describe two different phenomenological fits
used to describe pp and pp total cross-section, published
by the Particle Data Group, one before and the other after
the start of LHC.

4.11.1 Cudell and COMPETE collaboration

For the two reactions pp and pp of interest here, we show in
Fig. £:20] the data compilation from fig. 40.11 of the 2009
Particle Data Group (PDG) [265]. We shall start by sum-
marizing ref. [267] where an overview of the COMPETE
program is given. In this paper, the authors describe their
data base policy and give a number of web access informa-
tion, which allow to download and run fitting programs.

The region to be focused on is the Coulomb-nuclear
interference region, and to do this one needs to use, for all
the experiments, the following common set of theoretical
inputs:

— common parametrization of electromagnetic form fac-
tors, where there is a problem with the usual VMD
term, since a fit to the do.;/dt alone gives a better
x?/d.o.f than the fit to the combined data set of do;/dt
and GE/G]\/[,
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— common procedure to analyze data in the Coulomb
interference region,

— common set of strong interaction elastic scattering pa-
rameters,

— common study of Regge trajectories : already there is a
problem here since the slope of the meson trajectories
is different depending on the flavour content, although
not so much for the baryons.

The problem with the above program, of course, is that the
Regge description may be only a (albeit good) approxima-
tion and while it may eliminate the systematic differences,
it will still have a model dependence. But more about this
later.

The COMPETE collaboration had been cleaning and
gathering all total cross-section data [266] then available
at the PDG site [265]. Data have been fitted with the
expression

S S
oap = 2% + BIn® (=) + Y ()™ + Y50 (5
S0 S s

-)
(4.11.1)
)

(

8772

S S S
Oap = 2 + 10 () + YO (ST = V()

4.11.2)

S0

where Z%, B, Yﬂb are in millibarn, s, sg, s, are in GeV?.
The scale s, is fixed to be 1/GeV?, whereas V50 = 5 GeV.
The physical interpretation of this fit is that the power law
terms reproduce the Regge behaviour from the imaginary
part of the forward scattering amplitude, with two Re§ge
poles if 71 # 12, whereas the constant term and the In”[s]
term reflect the so-called Pomeron exchange. For a sum-
mary of the numerical values of the various parameters ,
we refer the reader to the PDG review.

The first two terms in Eqs. (4.11.1)), reflect
the bulk of semi-perturbative QCD processes which start
dominating the total cross-section as soon as the c.m.
energy of the hadronic process goes above /s =~ (10 +
20) GeV. There are various ways to refer to these terms.
In our QCD model [94[95] the term which brings in the rise
is the one which comes from gluon-gluon scattering tem-
pered by soft gluon emission from the initial state, as we
have described in[4.9.4] The constant term is more compli-
cated to understand. It is probably due to quark scatter-
ing, well past the Regge region. Notice that in the simple
Donnachie and Landshoff successful original parametriza-
tion [60], there is no constant term in the cross-section.
The cross-sections only apparently go to a constant, which
is where the minimum of the cross-section lies, just after
the Regge descent and just before the cross-section picks
up for the asymptotic rise. Indeed, whereas the Regge
terms can be put in correspondence with resonances in
the s-channel, the constant term is harder to interpret,
except as the old Pomeron which was supposed to give
constant total cross-sections.

Let us now review a comprehensive discussion of fits
to pre-LHC total cross-sections data [268]. Cudell notes
the difficulty to make precise predictons at LHC because
of a number of problems with present data on the total
cross-section:

Vs (TeV)

Fig. 4.21. The range of values predicted for the total
proton-proton cross-section by the COMPETE Collaboration
as shown in [268]. Figure is courtesy of J-R Cudell. Reprinted
from [268], in CERN Proceedings CERN-PROCEEDINGS-
2010-002.

— No data are available between the ISR energy, /s =
(60-70) GeV and the SppS at /s ~ (500 600) GeV

— at Tevatron energies, /s = 1800 GeV, there is a 20
discrepancy between the value calculated by two TeVa-
tron collaborations, E710 and CDF

— the t dependence of the differential elastic cross-section
as t — 0 may not be a simple exponential exp(Bt)
where B assumed constant in t thus affecting the mea-
surement of the total cross-section.

To the above one should add that total pp cross-section at
cosmic ray energies have very large errors, mostly due to
the theoretical uncertainty in the procedures adopted to
extract pp total cross-section from p — air cross-section, as
discussed. Predictions from the COMPETE collaboration
from [268] are shown in Fig

Many of the problems discussed by Cudell can be re-
lated to the type of unitarization scheme. A new analytic
unitarization scheme was proposed in [269], but the actual
problem is the difficulty of doing a good fit to both elastic
and total cross-section data.

In [266], it is pointed out that there are problems with
the p parameter data, where p = p(s) = ReA(s,t =
0)/SmA(s,t = 0). Hence, it is said, that the first and
safest strategy is to obtain constraints from the reproduc-
tion of oot only. However, the final result is obtained by
fitting the total cross-section and p.

In [266] the fits to lower energy total cross-sections are
parametrized with

0% = LR ()£ R () + PP (s)+ H®(5)) (4.11.3)

S
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with
RY%®(s) =Y - (s/51)*, with s; = 1 GeV?
R™%(s) = Y& - (5/51)°(4.11.4)

wherein
Pab(s) — Scab’

describes a simple Pomeron pole at J = 1 and H(s) is
the rising term, which can be

(4.11.5)

— a supplementary simple pole with larger than one in-
tercept

— a double pole at J = 1, namely L, = s(Bap In(s/s1) +
Aab)

— atriple pole at J = 1, namely Lq, = (B In?(s/s1) +
Aab)

Thus, their parametrization for ;.4 is a sum of various
I,, terms, with the parametrization for p given below.

For the p parameter, in the Appendix, the authors list
the following parametrization:

Ry = —1, cotlm/20.] (4.11.6)
R =~y tan[r/2a_] (4.11.7)
Ry = gSCL (4.11.8)
Rpy =msIn(s/s0)CL2 (4.11.9)
where
I;role = CJF(S/SQ(X+ 4.11.10
Ly =FC(s/s1) 4.11.11

I, =Crsln(s/s1)

IL2 = CL2 1112(50)

4.11.12

)
)
)
4.11.13)

(
(
(
(

At the end of all this, the result favoured now and found
in 2008 PDG [267], is the one given by Egs. ([£.I1.1),
EIL).

The paper [266] also contains a rather long discussion
about the sign in front of the logarithmic terms, which
might hint at the result we had originally found in our
Pramana paper [270].

Apart from fits to the total cross-section, Cudell and
Selyugin in [271] also address the question of the measure-
ment itself, which, as described previously in this review,
is based on two methods, the optical point and the lu-
minosity based one. The optical point type measurement,
also called the non-luminosity measurement, is based on
the extrapolation of the elastic differential cross-section
to the value ¢ = 0. The extrapolation has been usually
done assuming an exponential behaviour exp|[B(s)t] for
the differential elastic cross-section near the ¢ = 0 point.
However it is known the exponent is not stricly linear in
t. In this paper [271] the authors examine the possibility
that at the LHC expectations based on simple Regge pole
models are modified and that the usual expectation of
Ototal =~ 90 + 125 mb be superceded by the higher val-
ues predicted from a number of unitarization schemes,

such as hard Pomeron, which would give cross-sections
around 150 mb or U-matrix unitarization which can give
cross-sections as high as 230 mb. The impact of such dif-
ferent expectations is discussed, together with the possi-
bility that p has a strong ¢t-dependence. In this paper this
t-dependence of the p parameter is considered to be a pos-
sible reason for the difference in the measurement of o4y
at the Tevatron.

Closing this example of a recent fit, we recall the latest

results from the TOTEM collaboration, namely o124, (8 TeV) =

(101.7£2.9) mb [104] and the preliminary result p(8 TeV) =
0.104 £ 0.027(stat) = 0.01syst presented at the 2014 Ren-
contre de physique de La Thuile. As of 2016, both TOTEM
and ATLAS collaboration have released data at /s = 8
TeV, as we briefly discuss in Sec. [7]

4.11.2 COMPAS group( IHEP, Protvino)

The COMPAS group has presented (in a version of PDG
2012 [272], updated in the first half of 2013) a phenomeno-
logical fit to all total hadronic cross sections and the ra-
tio of the real-to-imaginary parts of the forward elastic
scattering hadronic amplitudes. New data on total pp col-
lision cross sections from CERN-LHC-TOTEM and new
data from cosmic rays experiment have been added. They
note -in agreement with we what we also find and as we
have discussed elsewhere in the present review- that, the
models giving the best fit of accelerator data also repro-
duce the experimental cosmic ray nucleonnucleon data ex-
tracted from nucleon-air data with no need of any extra
phenomenological corrections to the data.

COMPAS uses four terms in the total hadronic cross-
section for hadron a* on hadron b:

ab
M
Rab S —-Mm :l:Rab S —n2
+ 1 ( ab) 2 ( ab) .
SM SM

ot (ath) = H[ln(si)]2 + pab
(4.11.14)

The adjustable parameters are defined as follows:

— H =7/M? (in mb) is named after Heisenberg.

— the scaling parameter s3% = (m, + my, + M)2.

— A factorizable set P (in mb) stands for a constant
Pomeron.

— Two factorizable sets R (in mb), (for i = 1,2) stand
for the two leading Regge-Gribov trajectories.

— The data for purely hadronic reactions used were p, p,
7%+ and K+ on p,n,d; ¥~ on p.

— Also used, were fits to yp, vd and 7.

The above parameterizations were used for simultaneous
fits to the listed reactions with 35 adjustable parameters.
To trace the variation of the range of applicability of simul-
taneous fit results, several fits were produced with lower
energy /s > 5,> 6,> 7,...GeV cutoffs, until the unifor-
mity of the fit across different collisions became acceptable
with good statistical value. Downloadable figures are avail-
able on the PDG site. Fig. reproduces their results
for various total cross-sections.
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Fig. 4.22. Total cross-sections, as compiled by the Compas
Collaboration for PDG [272]. Reprinted with permission from
[272], Fig.(46.9), ©(2012) by the American Physical Society

4.12 Asymptotic total cross sections in theories with
extra dimensions

The search for asymptotia has been driving many mod-
els, with the question asked as to whether present mea-
surements of the total cross-section have reached a stable
situation, where one cannot expect new phenomena to be
detected in the energy behavior of .. In this subsection,
this question will be addressed by focusing on behavior
reflecting extra-dimensions.

The rate at which cross sections grow with energy is
sensitive to the presence of extra dimensions in a rather
model-independent fashion. In [273], one can find a re-
view of how rates would be expected to grow if there are
more spatial dimensions than 3 which appear at some en-
ergy scale, making connections with black hole physics and
string theory. The salient point -as discussed for example
in [274]- is that the generalization of the Froissart-Martin
bound for space-time dimensions D > 4 leads generically
to a power law growth rather than the maximum square
of logarithm growth with energy allowed in D = 4.

4.12.1 Asymptotic relation between cross-section and
entropy

A clear physical argument for estimating the total cross
section at a high energy s = E? was given by Eden, a long
time ago[275]. It runs as follows:

(i) If the elastic scattering amplitude at high energy is
dominated by the exchange of the lightest particle of mass
1, then the probability of the exchange at a space-like

distance r between the particles, reads

P(r,E) = e 20 +S(E) (4.12.1)
where the entropy S(E) (in units the Boltzmann constant
kp) determines the density of final states.

(ii) The probability becomes of order unity at a distance
R(E) = S(E)/(2u)

(iii) The total cross section is then given by

s

1ot (E) = 21 R(E)* = 22

S(E)? (4.12.2)

The asymptotic total cross section at large E is thereby
determined by the entropy S(E).

A typical entropy estimate may be made via the fol-
lowing reasoning: The equipartition theorem for a gas of
ultra-relativistic particles implies a mean particle energy
(€) varying linearly with temperature € = 3kgT. A Boltz-
mann gas of such particles has a constant heat capacity.
A system with a constant heat capacity C obeys

dE dE
E = CoT = Coos = dS = Co(

=) (4123)

leading to the following important logarithmic relation-
ship between entropy and energy

E
S(FE) = Cxln(=) (4.12.4)
E,
Hence, the total cross-section for a constant heat-capacity
system saturates the Froissart-Martin bound:

(=),

oE:
orot(E) (2 7 E,

(4.12.5)

In a more general thermodynamically stable situation, the
entropy S(E) is determined parametrically by the heat
capacity as a function of temperature[273]:

S(T) = / h C(T')d;:/.

(4.12.6)

The saturation Egs.(4.12.3)) and (4.12.5) will then hold
true only in the high energy and high temperature limit
of a stable heat capacity C(T — o0) = Cw.

To compute the total high energy cross section for
models with extra dimensions, the central theoretical prob-
lem is to understand the entropy implicit in such models.
Below we list the entropies and total cross-sections for a
Hagedorn string and for n = (D — 4) extra compact di-
mensions.

4.12.2 Entropies for higher dimensions and string theory

A Hagedorn string entropy grows linearly with energy in
the asymptotic limit[276}277]

S(E) - 5

4.12.
T (@12.)
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where Ty is the Hagedorn temperature. The Hagedorn
entropy for bosonic and fermionic strings have a similar
linear growth with energy but with different coefficients.
Thus, for such theories the total cross-section is expected
to grow as oyt (s) ~ s.

On the other hand, above the threshold for the obser-
vation of n = (D —4) extra compact dimensions, the total
cross-section would grow as[273]

s ](n+2) /2
So

(4.12.8)

Otot(s) ~ |

Thus, once even if one such threshold is crossed (that is
forn =10r D =5), 0torar(s) — (5/5,)%/2. It is fair to con-
clude from the recent LHC total cross-section data that
no such extra dimension thresholds have opened up until
Vs = 8 TeV, and notwithstanding large errors with the
AUGER cosmic ray data, not even until /s = 57 TeV.
Such a result is in consonance with the fact that no evi-
dence for beyond the standard model physics such as that
due to extra dimensions has been found in any data from
LHC for /s < 8 TeV.

The arguments presented in [273] have been accepted
in [278] with an aim to extend it and the latter authors
suggest that higher dimensions might be ruled out to ar-
bitrarily high energies via the same arguments.

4.13 Concluding remarks

In this section, we have attempted to give an overview of
the existing models for the total cross-section, highlighting
the chronological order of its long history. The total cross-
section, as the imaginary part of the forward scattering
amplitude describes the very large distance behavior of the
interaction, but understanding of the underlying strong
interaction dynamics can only be completed by studying
the amplitude for —¢ # 0. This, we shall approach in the
next section dedicated to the elastic cross-section.
AUGER

5 The Elastic-cross-section

We shall now summarize the state of the art of the dif-
ferential elastic cross-section, discuss some representative
models and present their predictions. We shall try to put
in perspective the phenomenological work developed over
more than 50 years, up to the latest measurements made
at the LHC running at /s = 7 TeV (LHCT7) and 8 TeV
(LHCS) [279,[10412591280].

In Fig. [5.1] we reproduce the first plot of the elastic dif-
ferential cross-section measurement by the TOTEM Col-
laboration at LHC [279]. It was the first time since al-
most 40 years, that the distinctive dip in the pp differential
cross-section had been seen again, shifting to the left by
a factor 3, as the energy increased more than a hundred
times.

As clearly shown in Fig. [5.2] elastic scattering is char-
acterized by the following quantities: the optical point,
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Fig. 5.1. The first TOTEM measurementof the differential
elastic cross-section from [279]. Reprinted with permission,
from [279], ©(2011) by IOP.

i.e. imaginary and real parts of the scattering amplitude
at t = 0; the precipitous decrease at small t, related to
the slope B(s,t = 0); the change in slope and occurrence
of the dip where the imaginary part of the amplitude be-
comes smaller than the real part; the |¢| behaviour after
the dip and connections with perturbative QCD. It is wor-
thy to note that at ISR no dip is observed in pp, but only
a change in slope, whereas the dip is quite pronounced in
pp, both at lower and higher energies.

The TOTEM experiment has measured oiotai, Tinels
Celastic, doer/dt at LHC energies /s = 7, 8 TeV and, from
these, has given values for the slope parameter B(s,t), at
different —t-values, the position of the dip and provided a
functional form for the behaviour of do.;/dt after the dip
[2582811282]. From these data, one can extract the ra-
t10 Gelastic/Ttotar and check whether the asymptotic black
disk limit has been reached. At the time of this writing,
data for the total and elastic cross-sections at /s = 8 TeV
have been published from both the TOTEM [104] and
ATLAS [280] Collaborations, with new data appearing
from the TOTEM Collaboration for the differential cross-
section [283]. In Table [9] we present the available results
from TOTEM for some of these quantities. In addition,
most recent data at /s = 8 TeV (LHCS8), have shown
that a pure exponential behavior for the slope in the re-
gion 0.027 < —t < 0.2 GeV? can be excluded [283] with
significance greater than 7 standard deviations.

An exhaustive discussion of all the quantities defining
the elastic differential cross-section can be found in [12].
Although the review of Ref. [12] pre-dates both the TeVa-
tron and LHC measurements, most of its content and some
of its conclusions are still very much valid. In the following
we shall describe these different quantities, and the asymp-
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Fig. 5.2. ISR cross-sections from 11th Workshop on Non Perturbative QCD, Paris 2011, talk by K.Eggert,

https://indico.in2p3.fr/event /6004 /session/7/contribution/116 /material /slides/0.pdf. Reproduced with permission.

Table 9. TOTEM results, with Ginet = Ototal — Tctastic, for 7 TeV [258] and for 8 TeV [2841[104], luminosity independent

measurements
\/g Ototal B Oeclastic Tinel Uelastic/Utotal Uelastic/ginel
TeV mb GeV ™2 mb mb
7 98.0£2.5 199403 | 25.1£1.1 | 729+ 1.5 | 0.257 £ 0.005 | 0.345 £ 0.009
8 101.7+£2.9 271414 | 747+ 1.7 | 0.266 £ 0.006 | 0.362 £0.011

totic theorems which govern their energy dependence. Ta-
bles and figures for each of them, oyotar, B(s,t), p(s,t),
tqip are available at the Particle Data Group (PDG) site,

here we shall reproduce them as encountered in describ-
ing models.

We shall define the following measures of asymptotia:
the total cross-section itself o414, satisfaction of asymp-
totic sum rules for the elastic scattering amplitude, the
forward slope B(s), the ratio oejastic/0totai- Then, we shall
examine representative models for elastic scattering, start-
ing from the simplest possible case, the black and gray disk
model.

Models for the elastic and total cross-sections, are based
on two major approaches: the Pomeron-Regge road and
the unitarity-Glauber formalism. The Pomeron-Regge the-
ory expresses the differential elastic scattering amplitude
in terms of power laws s*(¥), and it has provided more
than 50 years of good phenomenology for both elastic and
diffractive scattering. However, this raises problems with
unitarity and the Froissart bound. As well known, the elas-
tic scattering amplitude cannot be just described through
a simple pole, since then the high energy behavior of the
total cross-section would violate the Froissart bound; on
the other hand, the diffraction peak is well represented by
a Pomeron pole. Thus the problem is that at ¢ = 0, the
elastic differential cross-section is proportional to o2,
(modulo a small contribution from the real part), hence
for t ~ 0, the cross-section at the optical point can in-
crease at most as the fourth power of logarithm, while,

5 http://pdg.Ibl.gov/

at the same time, the differential elastic cross-section, as
soon as t # 0 does indeed exhibit the exponential behavior
characteristic of the Pomeron pole contribution.

The Glauber-type description is unitary and it can eas-
ily embed the Froissart bound, as we have discussed, for
instance, in the context of the QCD inspired model of
Block and collaborators or our BN mini-jet model, both
of them discussed in Sec[d] However, a one channel eikonal,
for both elastic and inelastic scattering, fails in its capacity
to describe separately the three components of the scatter-
ing, elastic, inelastic and (single and double) diffractive,
as measured up to present energies. This is immediately
obvious if one considers the expression for the inelastic
total cross-section obtained in the one channel eikonal:

F(s,t) =i / d?be'Tb[1 — X)) (5.0.1)
Ctotal = 2/d2b[1 — cos Rex (b, s)e‘gm"(b’s)] (5.0.2)
Oelastic — /d2b|[1 - eiX(b7s)]|2 (503)

Oinel = Ototal — Oelastic = /d2b[1 - e—QSmx(b,s)] (504)

where t = —g?. It must be noted that Eq. can be
obtained by summing all possible inelastic collisions inde-
pendently distributed in b-space. Assuming in fact that
for every impact parameter value the number of possi-
ble collisions n(b, s) is Poisson distributed around a mean
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number of collisions 7(b, s), i.e.

e—’ﬁ(b,s)

P({TL, 'ﬁ’(bv S)}) =

it immediately follows that a sum on all possible colli-
sions together with integration on all values of the impact
parameter, leads to

(b, s)" (5.0.5)

n!

Oindependent collisions — /d2b[1 - eiﬁ(b’s)] (506)

Comparing Egs.(5.0.4]) and (5.0.6)), shows that one can ob-
tain Smx (b, s) from 7(b, s), but also that Eq. (5.0.4) for

the inelastic cross-section only includes independent col-
lisions. Since diffractive processes, single, double, central,
do exhibit correlations, these processes need to be dis-
cussed with a formalism beyond the one-channel eikonal.

Thus the question arises in eikonal models as to how
to include correlated inelastic processes, which are identi-
fied through particular final state configurations. Among
the models which embed some of these properties, are
those due to Khoze, Martin and Ryskin (KMR), Gots-
man, Levin and Maor (GLM), Ostapchekp, Lipari and
Lusignoli, to be seen later in this section.

The way we choose to present this part of the review
is to start with general definitions and properties of quan-
tities defining the scattering and some comparison with
data from LHC at /s = 7 TeV (LHCT). Then, models
for the elastic differential cross-section from the optical
point to past the dip will be presented, both in their his-
torical development and in their contribution to describe
TOTEM data. We shall conclude this section on elastic
scattering with a short review of models specifically ad-
dressing diffraction and a discussion of the inelastic part
of the total cross-section.

Each of the items above, is discussed as follows:

— general features of the elastic cross-section are dis-
cussed in [B.1] with
— the slope parameter in [5.1.1]
— the real part of the scattering amplitude in [5.1.2]
and
— sum rules for real and imaginary parts of the scat-
tering amplitude at b=0, in[5.1.4]
— asymptotia and the ratio oejastic/Ototal I
— the dip structure and geometrical scaling in [5.1.6
and
— early models in impact parameter space and their up-
dates are to be found in [£.2] with
— the Glauber picture applied to pp scattering in[5.2.1
and
— the black disk picture in[5.2.3]
— models with Regge and Pomeron exchanges are pre-
sented in .3 with
— an early model by Phillips and Barger (PB) and its
updates in [5.3.1
— a model by Donnachie and Landshoff in
— a model in which the slope parameter increases
with energy at the same rate as the total cross-

section in [5.3.3]

— models including an Odderon exchange can be found
in

— eikonal models are discussed in [5.5]

— selected models including diffraction are to be found in
with a comment on single-channel mini jet models
with soft gluon radiation in [5.6.7]

— a parametrization of diffraction to obtain the total,

elastic and inelastic cross-section from one-channel eikonal

models is presented in

5.1 General features of the elastic cross-section

As stated earlier, elastic scattering is characterized by the
following quantities:

— the optical point, i.e. the imaginary and real parts of
the amplitude at ¢t = 0,

— the precipitous decrease at small t, related to the for-
ward slope B(s,t = 0),

— the change in slope and occurrence of the dip where
the imaginary part of the amplitude becomes smaller
than the real part,

— the |t| behaviour after the dip and connections with
perturbative QCD.

In the following we shall describe these different quan-
tities, and the asymptotic theorems which govern their
energy dependence.

5.1.1 About the slope parameter

An earlier rather complete discussion of this issue can be
found in [12]. Here we discuss its definition and show the
present experimental status.

Although most models do not attribute a single expo-
nential behaviour, and hence a single value for the slope,
to the small-¢ behaviour of the elastic differential cross-
section, experimentalists usually describe the diffraction
peak with a single slope and a single term, i.e.

doe/dt(t ~ 0) = (doe /dt)—g eB* (5.1.1)
This expression leads to the approximate result
1 o2,,(1+p?
Bs) = - Ttota1T77) (5.1.2)

167

Oclastic

We plot in Fig. [5.3] the values for B(s), reported by ex-
periments from ISR to LHC7, using Eq. defini-
tion. For the TOTEM experiment, the value for B(s) at
LHC7 corresponds to the measurement in the interval
0.02 < |t| < 0.33 GeV~? [285]. There are general con-
siderations which relate the asymptotic behaviour of B(s)
to that of the total cross-section, in particular one can
derive the asymptotic relation, so called MacDowell and
Martin bound [287], discussed recently in [288], given as

(oF [oF
B(S) > total total
18 Oclastic

(5.1.3)
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Fig. 5.3. The energy dependence of the slope parameter,
Eq. (5.1.1), from ISR to LHCT7. Data are from [286] for lower
energies, from [285] for LHC7. We also include the TOTEM
result at /s = 8 TeV from [283], for the case of a single expo-
nential fit in the 0.027 GeV? < —t < 0.2 GeV? region.

Since the ratio oiotal/Telastic > 1, the above relation im-
plies that the rise with energy of B(s) will at some point
catch up with that of the total cross-section. We men-
tion here in passing that at LHC7, the right hand side of
the above inequality is approximately 18 GeV ™2 and the
measured slope on the left hand side is about 20 GeV 2.
Hence, the inequality is near to saturation.
To reiterate, if and when the total cross-section will have
reached an energy such as to saturate the Froissart bound,
then one should expect B(s) to grow with energy as (Ins)?.
Fig. [b.3]indicates that up to the TeVatron measurements,
data could to be consistent with a logs type behaviour.
After the LHC7 TOTEM data appeared, the possibility of
a stronger rise was examined in [6I]. However, the LHCS
result (red dot in Fig. sheds doubts on the single
exponential slope analyses, and it would need to be redis-
cussed when higher LHC data, at 13 and 14 TeV, will be
available.

One way to describe the variation in ¢ as one moves
away from ¢ ~ 0 has been to introduce the curvature pa-
rameter C(s) and parametrize the diffraction peak as

doe/dt = (doe/dt)—g eBITHCEE (5.1.4)

Such a parametrization needs a change in sign for C'(s) as ¢
moves away from the very forward direction. Higher pow-
ers, such as a cubic term ¢3 are also discussed in the recent

2015 TOTEM analysis for the slope [283]. More generally,
away from t ~ 0, the slope parameter is a function of both

t and s, defined as

d
Beff(s,t) = %logdael/dt (515)
Since models differ in their parametrization of the forward
peak, depending on the extension in ¢, if the dip region
has to be included, Eq. (5.1.5)) is to be used. One can
distinguish the following basic modelings for the forward
peak

— impact parameter models

— one or more Pomeron pole exchanges

— di-pole and tri-pole exchanges

— Pomeron exchanges unitarized via eikonal representa-
tion

— soft gluon resummation and exponential damping (work
in progress).

We see in what follows the results from some of these
models.

5.1.2 The real part of the elastic scattering amplitude, at
t =0, and the energy dependence of the p(s) parameter

The elastic scattering amplitude has both a real and an
imaginary part. At t = 0, the imaginary part is propor-
tional to the total cross-section, but there is no such simple
way to obtain the real part, although arguments, based
on asymptotic theorems, have been used to extract an
asymptotic value for p(s) = ReF(s,t = 0)/SmF(s,t =
0) = 7/lns as s — co.

In the next paragraph we shall describe how one can
construct asymptotically a real part for values of ¢t # 0. In
this paragraph, we show an analysis of various high energy
data, by Alkin, Cudell and Martynov [289], aimed at de-
termining the parameter p(s) = ReF'(s,t = 0)/ImF (s,t =
0) through integral dispersion relations. The authors use
various Pomeron and Odderon models, employing sim-
ple Pomeron or double and triple poles. Recall that these
three different cases correspond to an asymptotic behaviour
for the total cross-section given by a power-law, a loga-
rithmic rise, or a (log s)?, while the Odderon term is al-
ways rising less than the Pomeron. Ref. [289] contains a
rather clear description of the phenomenology implied by
these different models. We show in Fig. from [289] a
compilation of data for the p parameter for pp scattering,
compared with four different models.

If one uses the LHC7 TOTEM result to gauge which
model gives the best value for p, then the result of this
analysis seems to select the simple Pomeron model, since
this is the model which gives a total cross-section clos-
est to the TOTEM measurement, i.e. 040 (7 TeV) =
(94.9+96.4) mb vs. o LOTEM — 98 3+(.25t 12 85Vt mp.
In such case, p(7 TeV) = (0.138 + 0.186). The triple-
pole Pomeron model also gives an acceptable total cross-
section, with oot (7 TeV) = (94.1 = 95.1) mb, corre-
sponding to p(7 TeV) = (0.130 = 0.142). We note here
that the determination of the total cross-section initially
released, used the predictions from [290] with p(7 TeV) =
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Fig. 5.4. Data for the p parameter for pp scattering compared
with different models as indicated, from [289]. Figure is cour-
tesy of J-R Cudell, reprinted from [289], (©(2011) by Springer.
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0.13815-0L while the most recent TOTEM analysis, as of
this writing, [283], uses a value p(8 TeV') = 0.140 £ 0.007,
using the COMPETE collaboration favoured value [290].

Using the model by Block and collaborators [I48], we
reproduce data and predictions for p for both pp and pp in
Fig. Just as in the previous figure, this figure shows
that, at high energy, p has been measured to be positive,
swinging from the negative values at energies below the
ISR, to values p ~ 0.12 at the Tevatron.

Following [291], the behavior of p(s) can be seen to
arise rather naturally from present phenomenological anal-
yses of the total cross-section alone. Consider the asymp-
totic terms of a frequently used parametrization for the
even amplitude at ¢t = 0,

L2y ¢

SmFy(s,0) = i ”

2
S ™
+ H, 1ns— + (ZH1 + Hs)] (5.1.6)
0

1 1
ReFy (s,0 = = [HyIn— + — H,] (5.1.7)
4 So 2

While the coefficient H; is obviously positive, as it is re-
lated to the asymptotic behavior of the obviously positive
total cross-section, the sign of Hs is a priori undefined.
Fits to off, give Hy < 0, even when the p paramerer is
not part of the fits. This immediately gives that p(s) can
go through zero, as it does for 10 GeV < /s < 30 GeV.
Asymptotically then one has

TI'[Hl hli + %HQ]
[Hl(ln i)Q =+ HQ lni =+ (%zHl + Hg)}

pils) = (5.1.8)

= a Fs )[1 + non — leading in Ins/sg] (5.1.9)
n s
So
Thus, we see that analyticity coupled with the assump-

tion of Froissart limit saturation predicts that, at suffi-
ciently high energy, p ~ m/logs. While p rises at low
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energy, data from the SppS and the Tevatron region are
non-committal and consistent with a constant ~ 0.12. In
our proposed Eikonal Minijet with soft gluon resumma-
tion, the imaginary part of the forward scattering am-
plitude is proportional to [logs|*/?, with 1/2 < p < 1.
Through the substitution s — se~*"/2, the expression for
the scattering amplitude is made analytic and one can see
that p ~ w/2plog s.

The behavior of p as the energy swung through the ISR
region, and of%, began rising, became an object of intense
scrutiny in the early ’70’s and led to the first suggestion
of the existence of the Odderon, [discussed later] in [5.4.1]
In [206], the observed rise of the total cross-section at ISR
was the occasion to propose that both the imaginary and
the real parts of the amplitude could behave asymptot-
ically as (Ins/sg)? and fits to both o}%, and p(s) in the
then available energy range were seen to be compatible
with p(s) passing through a zero in the ISR region. We
shall mention later, in how this proposal was then
applied to study charge exchange reactions and then mor-
phed in an added term named the Odderon. One notices
the obvious fact that p(s) changes sign in the energy re-
gion where the total cross-section changes curvature. The
change in curvature is attributed in mini-jet models to the
fact that perturbative QCD processes become observable,
which is also the region where an edge-like behavior has
been noticed by Block and collaborators in the scattering
amplitude [292].

5.1.3 The asymptotic behaviour of the real part of the
scattering amplitude at ¢ # 0

We shall discuss here how one can construct an asymptotic
ReF(s,t) given the imaginary part ZmF(s,t). A discus-
sion of some of the issues presented here can be found in
a 1997 paper by Andre’ Martin [293].

The construction of the elastic scattering amplitude
at asymptotic energies uses a number of asymptotic the-
orems. The imaginary part at ¢ = 0 is anchored to the
optical theorem and its asymptotic value is bound by the
Froissart theorem. The real part at t = 0 is asymptoti-
cally obtained through the Khuri-Kinoshita theorem [I3].
At t # 0, models for the imaginary part also allow to
obtain an asymptotic value for the real part. This is dis-
cussed in an early paper by Martin [294]. According to
Martin, if the total cross-section behaves asymptotically
as log? s, then the real part of the even amplitude Fi(s,t),
again asymptotically, behaves as

ReFy (s,t) ~ p(s) d

%[tSmF+(s, t)]

(5.1.10)

where, as usual, p(s) = ReF,(s,0)/ImFL(s,0). The re-
sult of Eq. (5.1.10)) is obviously consistent with the expres-
sion for the differential cross-section at t = 0, namely one
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has
do N 2 d . 2
(E)tzo ~ (constant){(SmF(s,0))* + (%t\smF(s7 t)i—0}
(5.1.11)
= (constant)(ImF(s,0))*[1 + p(s)?]
(5.1.12)

It is also interesting to note that the asymptotic expression
given by Martin, automatically satisfies one of the two
asymptotic sum rules for the elastic amplitude in impact
parameter space, which will be discussed later, in [5.1.4

Eq. was derived by Martin in the asymptotic
regime Oiotqr ~ log2 s, but it is actually more general and
holds also for oyotar ~ (log s)l/p with 1/2 < p < 1. Let us
start with the case p = 1/2. Defining the even amplitude

Fy(s.1) = Fu(s,0)f(1) (5.1.13)
f(0)y=1 (5.1.14)

and assuming the asymptotic behaviour
F, (5,0) ~i3(log s/s0)?, (5.1.15)

the real part is built using the amplitude properties of
analyticity and crossing symmetry. Using the additional
property of geometrical scaling obeyed by the asymptotic
amplitude [291]), the argument then runs as follows:

— introducing the scaling variable 7 = tlog® s, geometri-
cal scaling [291] says that

f(s,t) = f(s,7) = f(t(logs/s0)?) (5.1.16)

— for small values of ¢, the even amplitude must be cross-
ing symmetric, i.e. symmetric under the exchange s —
se~"/2 and the Froissart limit and the geometric scal-
ing variable turn into

F,(s,0) = iB(logs/sq — im/2)?
(5.1.17)
~ iB(logs/s0)? + B log s/sg
7 — t(logs/so — im/2)? ~ t(log s/s¢)? — imtlog s/sg
i
a logs/so)
(5.1.18)
. T df
_mlogs/soa
ot df
_mlogs/soa
(5.1.19)

—7(1
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so that
Fi(s,t) = Fi(s,0)f(7)

[iB(log s/s0)* + B log s/so][f(T) — mlog 2/80 %]

. tf
= i[flog 5/50)* (1) — 7

+f(7)Bmlogs/so + Blog s/sowt%

~ if(log s/50) () + B log s/so () + L]

d(tf(t))
dt
(5.1.20)

7r
log s/sq

~ iB(logs/s0)*f(T) + B(log s/s0)?

Since asymptotically, the Khuri-Kinoshita theorem says
that

T
~ .1.21
)= = (5.1.21)
we thus have that if
SmF,(s,t) ~ B(log s/s0)>f(t) (5.1.22)

then J
ReFy (s, 1) = p(s) o, (1SmEL (s, 1))

The demonstration leading to Eq. ([5.1.10]) holds even if the
total cross-section does not saturate the Froissart bound,
namely we can also start with

SmFy (5,0) = flogs/s0)/?
with 1/2 < p <1 and still obtain Eq. (5.1.10)), with

p(s)

(5.1.23)

™

~ 5.1.24
2plog s/sg ( )

The limits on p are obtained here from the phenomenolog-
ical requirement that the total cross-section is asymptot-
ically rising at least like a logarithm, i.e. the case p = 1,
and that it satisfies the Froissart bound, corresponding
to p = 1/2. We have seen, when discussing our mini-jet
model in [£.9.7] how to relate these requirements to a phe-
nomenological description of confinement in the infrared
region.

For p # 1, we shall now sketch the demonstration,
which runs very close to the one just given for p = 1/2.

Let the asymptotic behaviour of the even amplitude at
t = 0 be such that F, (s,0) ~ 3(logs/s0)*/?. Then

Fy(s,0) ~iB(logs/sy — im/2)}/P (5.1.25)
. i
~ iB(log s/s0) Pl — m] (5.1.26)

Now the scaling variable 7 ~ tF, (s,0) = t(logs/so)'/?,
and the scaling in the variable 7 gives

ImT
2plog s/sg

N imT df
V=IO Sptogofse ar)
(5.1.27)

fr) = f(r
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and
F(s,t) = Fy(s,0)f(7) (5.1.28)

Following steps similar to the p = 1/2 case and using p(s)
given by Eq. (5.1.24)) gives the same result as before, i.e.

ReF, (s,t) ~ p(s) d

ﬁ(t%mFJr (s,t))

(5.1.29)

This expression can be used to obtain a real part in eikonal
models with a purely real eikonal function. One would
obtain, for the full amplitude at t = —¢?,

As,q) =i / bdb(1 — e X)) 1y (bg)

+ [ bab(1 = XN (b)) — pls) B a0

(5.1.30)
which leads to
doe/dt = w{I3 + p*[Io — th]?} (5.1.31)
with
Iy = / bdb(1 — e X)) Ty (gb) (5.1.32)
I = / b2db(1 — e~ X("%)) 1 (gb) (5.1.33)

Before leaving this discussion of the real part of the scat-
tering amplitude, we notice that the above is valid for the
dominant high energy part of the amplitude. Real terms
can be present at non leading order in the amplitude, such
as the one proposed by Donnachie and Landshoff, arising
from a three gluon exchange [295], and described later in
this section.

5.1.4 Asymptotic sum rules for the elastic scattering
amplitude at impact parameter b =0

Here we shall derive two asymptotic sum rules which are
integrals over momentum transfer for the real and the
imaginary parts of the elastic amplitude [296,297].

At high energies, ignoring all particle masses, let the
complex elastic amplitude F'(s,t) be normalized so that

do

o1ot(8) = 4nSMF(s,0); o

=7|F(s,t|>.  (5.1.34)

With this normalization, the elastic amplitude in terms of
the complex phase shift §(s, b) reads

F(s,t) =i / (bdb) Jo(by/—t)[1 — eOrls:b)e=201(s:b))

(5.1.35)
and its inverse

) 1
1— 2i0R(s,b) ,—261(s,b)] — _ '7/
[1-e € ) '3

0

dtJo(bv/—t)F (s, 1).
- (5.1.36)

Rewriting Eq. as
1 — [cos(20R(s, D)) + isin(20r(s, b))]e~ 21 (D)) =
—i% [ OOO dt.J, (/=B [ReF (5, 1) + iSmF (s, 1)),
(5.1.37)
we have

0
1 — cos(20g(s,b))e" 201050 = % / dtJ,(bv/—t)ImF (s,t)]
) (5.1.38)

1 0
sin(205(s, b))e 201 (50) = 5/

—00

dtJ,(by/—t)ReF (s,t)
(5.1.39)

Consider the hypothesis of total absorption. This is a
stronger hypothesis than the one which leads to the Froissart-
Martin bound, namely that there must exist a finite angu-
lar momentum value, below which all partial waves must
be absorbed. Under the stronger hypothesis that in the ul-
tra high energy limit, namely in the central region (b = 0)
a complete absorption occurs, and in the black disk limit
of §7(s,0) — oo, we have the following two asymptotic
sum rules

1 (o]
&:5[w

1 o
Ssz/ dt ReF(s,t) — 0 as s — oo.
2 — o0

dt SmF(s,t) — lass— o0, (5.1.40)

(5.1.41)

Satisfaction of these sum rules is a good measure to gauge
whether asymptotia and saturation of the Froissart-Martin
(FM) bound have been reached. Notice that the FM bound
is obtained under a weaker hypothesis than complete ab-
sorption and one has S; — 2 and Sg — 0. Our phe-
nomenological analysis of TOTEM, presented in [5.3.1
leads to Eq. thereby reducing the FM bound by
a factor 2. According to the phenomenology presented in
[298], at TOTEM(7TeV), S; ~ 0.94 and Sg ~ 0.05
bolstering our faith in the sum rules.

If ReF'(s,t) is constructed through the Martin recipe

Eq.(5.1.29)), then the second sum rule Eq.([5.1.41]) is auto-

matically satisfied.

5.1.5 Elastic vs. total cross-section: the ratio and the
unitarity limit

The ratio of the elastic to the total cross-section plays
an important role in all discussions about asymptotic be-
haviour. We shall start our analysis by recalling some gen-
eral characteristics of this ratio from considerations about
total absorption.

Let us write the expression for the total and the elastic
cross-sections in term of real and imaginary parts of the
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complex phase shift d(s) i.e.

fer(q) = i/deeiq"’[l — 2009 (5.1.42)
= 2mi / bdbJy(gb)[1 — e29r(=)=201]  (51.43)
or = 2§Re/d2b[1 — e2OR=201](5.1.44)

0ol = /d2b|1 — e20r=201\2 (51 45)

Then examine two limiting cases
— elastic scattering only, §; = 0, i.e.
o) = 2/d2b[1 — cos26z] (5.1.46)
ol = /d2b|1 — e20n )2 = 2/d2b[1 — cos20] (5.1.47)
Thus o¢.; = o7, and all the scattering is purely elastic.
— a different limit, 6 = 0, i.e.
(2) _ 2 d2b =267
oy = [1 —e 7] (5.1.48)
(2 _ de _,—261\2
o, = (1—e )% (5.1.49)
o — 202 = 2/d2be—251[1 — e 21> 0 (5.1.50)

i.e. UelastiC/Utotalg ]./2 for (S[ > 0.

Other important limits are examined in detail in the
Block and Cahn 1984 review [I2], and we reproduce here
parts of their discussion on the black and grey disk limit.

Using Block and Cahn convention, with ¢ = —¢2, in
the c.m. given by t = —2k?(1 — cosf*), one has

k )
fem(t) = = / d?be'?®q(b, 5) (5.1.51)
m
_ 1 2 —iqb
a(b,s) = 5 | e fem(q) (5.1.52)
4
Ototal = %smfcm (t = 0) (5153)
dogg  wdog —w 9
dt — k2d* kz‘fcm(t” (5.1.54)
Writing the amplitude a(b, s) as
alb, s) = %[1 — e2ix(b:9)] (5.1.55)
one then has
Oelastic = 4/d2b ‘a(b78)|2 (5156)
Ototal = 4/d2b%m Cl(b, S) (5157)

The black and grey disk model case corresponds to a scat-
tering amplitude zero outside a finite region in impact pa-
rameter space, i.e.

1A

a(b,s) = 79(R(S) —b) (5.1.58)

where the radius R(s) of the disk is in general energy
dependent. In this very simple model

Ototal — 2A7TR2(S)
Oelastic = WAQRQ(*S)

(5.1.59)
(5.1.60)

In the optical analogy, also extensively described in [128],
total absorption corresponds to A = 1, i.e. xg = 0 and
X1 = 00, and Oiptal = 20¢iastic- Purely elastic scattering
is A = 2. Defining the ratio

Rel = =
Ototal

there are the following cases : i) A = 2, all the scatter-
ing is elastic, a possibility close to the model by Troshin
and Tyurin, characterized by large elastic component, re-
cently rediscussed in [299], ii) A = 1, total absorption, the
scattering is equally divided between elastic and inelastic
scattering, iii) A < 1, the total inelastic scattering contri-
bution, which includes also diffraction, is larger than the
elastic. It is common practice to refer to the cases A =1
and A < 1 as the black and the gray disk model respec-
tively [12].

The black disk model is rather simple, but it is of
present interest to investigate whether at LHC, the black
disk limit has been reached [261]. Using both the TOTEM
data at LHC7 and the cosmic ray data from the Auger
Collaboration for the inelastic cross-section [300,30T1302],
it is possible to estimate how close one is to the asymp-
totic black disk limit. We show this in Fig. where the
ratio R¢; is obtained from accelerator data (black trian-
gles) [280], including TOTEM’s [2851279], and the value
extracted from Auger. The ratio at 57 TeV is obtained by
using Block and Halzen (BH) estimate for the total cross-
section [261] o1 (57 TeV) = (134.8 + 1.5) mb, which
is based on the analytic amplitude method of Ref. [303].

We then obtained oejastic(57 TeV) = oBH — aﬁgfg;;m =
(44.8 + 11.6) mb. We also show the asymptotic result
(green dot) from Ref. [261]. For a recent published ref-
erence see [86]. From this compilation and a similar one
in [304], E] the Re; = 1/2 limit does not appear to have
been reached yet, not even at the highest energy of 57
TeV. One may wonder whether it can in fact be reached.
There are good reasons to expect that a more realistic
limit is

el g (5.1.61)

Oelastic 1 Odif fractive

Re = < (5.1.62)

N =

Ototal
where 04;¢fractive include single and double diffraction.
This is the limit advocated by Jon Pumplin [305L[72,[73].
In the subsection dedicated to diffraction we shall describe
Pumplin’s model for diffraction and see how the limit of

Eq. :5.1.62 ) arises.

” This analysis indicates a larger error than the one in [298].
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Fig. 5.5. The ratio of the elastic to the total cross-section, us-
ing accelerator data, including TOTEM [279/285] and a com-
pilation which uses the Block and Halzen estimate for the total
cross-section at /s = 57 TeV and extraction of the inelastic to-
tal cross-section from Auger Collaboration data [30013011302].
The green dot represents the asymptotic estimate by Block and
Halzen, the figure is from [298]. Reprinted from [298], (©(2012)
with permission by Elsevier.

5.1.6 The differential cross-section and the dip structure

A very interesting characteristic of the data released by
the TOTEM experiment [279] is the return of the dip,
namely the observation of a very distinctive dip at |t| =
0.53 GeV?, signalling that the dip, observed at the ISR
only in pp scattering, and not seen or measured in pp,
is now reappearing, in pp. The dip position has moved
from ISR energies, where —tg;, ~ 1.3 GeV? to —tgip =
0.53 GeV? at LHC7. Further shrinkage is expected, but
the question of how to predict its energy behavior is model
dependent, as we show in Fig. where the position of
the dip, as measured at various energies, is compared to
a linear logarithmic fit [306] and expectations from geo-
metrical models [307]. The uncertainty is related to the
difficulty with most models to describe the entire region
from the optical point to past the dip, from ISR to LHC
energies. Some models which had described this structure
at ISR, failed to accurately predict its position and depth
at LHC, others describe very well the behavior for small
and/or large |t|, but not the entire region, as we shall see.

In Fig. the dashed and dotted lines (blue) are
obtained through models for the amplitude in which Geo-
metrical Scaling is partly embedded [307]. Clearly so long
as Re # 1/2, two energy scales are present in pp scat-
tering, one from the elastic and the other from the total

o

3 typ = -2.014 + 0.0837Ins
o -ty =-a/[1+b’In’ ] - a = 2.15 GeV?; b = 0.0097
02 ------- typ from PLB 718 (2013) 1571 - o = 1.47
& ty, from PLB 718 (2013) 1571 - o = 1.52 3
®  ISR31 g
0.4 ISR45
v  ISR53
+  ISR63
-0.6 ] LHC7
typ (LHCB) = -0.510 GeV?

- t4,(LHC8) = -0.518 GeV?
77777 ty,(LHCB) = -0.495 GeV?
typ(LHCB) = -0.511 GeV?
- 14,(LHC14) =-0.471 GeV?
typ(LHC14) = -0.417 GeV?
,,,,, ty(LHC14) = -0.439 GeV?

typ(LHC14) = -0.452 GeV?

o
®
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Fig. 5.6. The position of the dip as the energy increases, ex-
tracted from geometrical models [307] and a linear logarithmic
fit. The figure is courtesy of D. Fagundes after [306].

cross-section. In [5.1.7] we shall discuss this point in more
detail.

5.1.7 Geometrical scaling

The idea of geometric scaling is originally due to Dias de
Deus and it has been extensively studied in the literature
[308] [309], [310], [311], [307], [306] both for elastic and
inelastic amplitudes, for particle multiplicities, etc. For a
recent review, see [312].

We shall here limit ourselves only to its application to
elastic amplitudes and the position of the dip as a function
of the energy that is of timely relevance for the LHC data
on elastic pp data between /s = (7 = 14) TeV.

As shown in Fig. the black disk limit is not reached
even until \/s = 57 TeV and the geometrical scaling dip
structure being anchored upon it, is hence violated. How-
ever, we show in the following that a mean geometrical
scaling based on the two scales works quite well for the
position of the dip versus energy.

The elastic amplitude F'(s,t) has a real and an imag-
inary part. In the forward direction ¢ = 0, the imaginary
part is anchored on the total cross-section

g tot(S)

47
and thus is positive-definite and obeys the Froissart-Martin
bound. To a certain extent so is real part in the forward

direction. It has an upper bound via the Khuri-Kinoshita
theorem

SmF(s,0) = (5.1.63)

~ ReF(s,0) T
pls,0) = SImF(s,0) In(s/so)’

provided the Froissart bound is saturated. By contrast,
we have no such general results for ¢ # 0. As discussed
in [5.1.4) we have two sum rules we expect to be satisfied
asymptotically

(5.1.64)

1 o
Sr = 5/ dt SmF(s,t) — lass— o0, (5.1.65)
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1 o
Sk = 5/ dt ReF(s,t) — 0ass—o0o0. (5.1.66)
—o0

Geometrical scaling as applied to the imaginary part of the
elastic amplitude -for example- may be stated as follows:
that at high energies

SmF(s,t) = [SmF(s,0)]¢(r); where T = (—t)ot0t($)
with ¢(7 =0) =1
(5.1.67)

For ReF(s,t), Martin uses analyticity and a saturation
of the Froissart-Martin & the Khuri-Kinoshita limit, to
obtain the form

ReF(s,t) = p(s,O)%[t%mF(s,t)] (5.1.68)

5.2 Early Models in impact parameter space

Let us now examine various models and fits. Empirical fits
abound in total and elastic cross-section description. They
are helpful in developing models, as a guide toward under-
standing data. To be most useful, of course, empirical fits
should follow constraints imposed by general theorems on
analyticity, crossing symmetry and unitarity, all of which
(or, more realistically as much as possible) should then be
satisfied by the models one builds.

Between 1967 and 1968, Chou and Yang [314] and Du-
rand and Lipes [315] presented a framework for calcula-
tion of the elastic scattering amplitude between elemen-
tary particles based on the impact picture and on physi-
cal ideas very similar to those in the Glauber model. The

It is easy to see that the sum rule for the real part Eq.(5.1.66) Presence of kinks in the elastic differential cross-section

is identically satisfied, i.e., Sg = 0, if Eq.(5.1.68]) is obeyed.
On the other hand,

/Oo(dT)¢(T) = (87)S; — (87) as s —» oo. (5.1.69)

Now let us focus on the movement of the dip in the elastic
cross-section as a function of s. Geometric scaling would
imply that

taip(s)oor(s) — a constant as s — co. (5.1.70)

Writing the high-energy cross-sections assuming a simple
diffraction pattern, we have (for —t = ¢?)

Orot(8) = 2mb2; oo(s) = mwb?
d£ _ [Utzot(s)] [2J1(qR)
dt 167 qR

so that the optical point is correct. In the black disk limit,
br=b. = Ry REP = 2L 5 1)2.

Otot
For the black disk, the dip occurs at the first zero when
qﬁf br =~ 3.83. Defining the geometric scaling variable

Tas = q0r and as shown in the left panel of Fig, it
does not work.

On the other hand, we can define a mean geometric
scaling with by # b. where the radius R in Eq.
is taken as the geometric mean and the mean geometric

scaling variable 7/§%" reads

1% (5.1.71)

(5.1.72)

R = /brbe; 185" = ¢*\/oaTor (5.1.73)
The dip is now given by
3.83)27mv/2
— taip(s) = qaip(s) = [¥] (5.1.74)

Rei(8)0t0t(5)

On the right hand panel of Fig(5.7), we show a compar-
ison of our mean geometrical scaling prediction with ex-
perimental data. The agreement is quite good. We men-
tion in passing that this is yet another example that the
black disk limit is quite far from being reached even up to
57 TeV. On the other hand, we notice a recent work by
Block and collaborators [292], which we shall see in
where the Black Disk limit is used to make predictions at
very, extremely, large energies.

was discussed. We shall start with Chou and Yang and
then discuss the results by Durand and Lipes.

5.2.1 The Chou and Yang model

The Chou and Yang model was first discussed in 1967 and
fully written in 1968.To discuss particle scattering, rather
than that of nucleons on nuclei, Chou and Yang had to put
target and projectile on equal footing, and comply with
existing phenomenology. They started in [314], with the
partial wave expansion of the scattering amplitude (as we
have described in the first section). From

a=X ;(21 + 1)Pl(cost9)%(1 - 9)

(5.2.1)

the high energy limit was obtained by transforming the
sum into an integral, through the substitution P;(cosf) —
Jo(by/—t) and the definition b = X(I + 1/2). This led to
the eikonal expression for the scattering amplitude

! /(1 — 9)e'?®d?p

alt) = 5= (5.2.2)

with t = —¢2.

The crucial assumption of the Chou and Yang model
was that the attenuation of the probability amplitude for
two hadrons to go through each other was governed by the
local opaqueness of each hadron. In this model, the trans-
mission coefficient S is only a function of the impact pa-
rameter b, and Chou and Yang proposed to calculate the
transmission coefficient S(b) through the Fourier trans-
form of the form factors of the colliding particles. Sub-
sequently the authors proceeded to show that their pro-
posal for particle scattering was the same as the Glauber
proposal for nucleon-nucleus scattering, with the two di-
mensional Fourier transform of the form factors playing
the role of the nuclear density of the Glauber model. In
formulating this connection between the two models, a
limit of infinitely many nucleons was postulated, namely
the nucleus was seen as a droplet of very finely granu-
lated nuclear medium, in the spirit of the droplet model
formulated previously by Byers and Wu [316].
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Fig. 5.7. Data up to LHCT7 for energy dependence of the dip —taip(s) from geometric scaling [left panel] and from mean
geometric scaling [right panel]. Green and red crosses are predictions at LHC8 and LHC14 from the empirical model of [306].

Reprinted with permission from [313], ©(2013) by Springer.

The quantity < s >= —log S(b) is called the opacity,
with the name deriving from the following physical inter-
pretation: if an incoming wave hits a slab of material of
thickness g, the slab partly absorbs and partly transmits
the wave and the transmission coefficient through the slab
would be

S=e (5.2.3)

Thus log S(b) would be proportional to the thickness of
the slab and can be considered as the opaqueness of the
slab to the wave. For particle scattering, the thickness of
the slab represents how much hadronic matter is encoun-
tered by the incoming wave, when the wave passes through
the hadron at impact parameter b. Thus S is a function
of the impact parameter b, which is then integrated over
all possible values. S(b) was considered to be asymptoti-
cally energy independent, and so would then be do.;/dt.
This was consistent with the fact that, at the time, data
suggested that all cross-section would reach an asymptotic
limit, independent of energy. It should in fact be be noted
that the Chou and Yang model, was formulated before
1970, i.e, before ISR experiments definitely proved that
the total cross-section was rising.

To compare with experimental data for dog;/dt, two
different phenomenological expressions were considered, a
single exponential in ¢, i.e. a gaussian in b-space, and a
sum of two exponentials. The resulting fits to the data
available at the time, are shown in Fig. [5.8] where they
are labeled with A and B respectively. A further compar-
ison with data is done by using the form factor expression
instead of the ansatz on exponential ¢ behaviour of the
amplitude, a comparison which we show in the right-hand
plot in Fig. 5.8

As a conclusion, the major points of this model can be
summarized as being the following:

1. the transmission coefficient S(b) can be obtained from
the convolution of the form factors of the scattering
particles,

2. this model, with the amplitude expressed through the
transmission coefficient S includes the limit of a model
previously proposed with T.T. Wu [317], in which the
scattering differential elastic cross-section do/dt was

proportional to the fourth power of the proton form
factor,

3. correction terms are important, namely one needs to
use the full (1 —5)

4. one can expect the appearance of a distinctive diffrac-
tion pattern in the squared momentum transfer in the
elastic differential cross-section, with dips and bumps.

5.2.2 The diffractive model of Durand and Lipes

A diffractive picture in impact parameter space, in a close
correspondance to the Chou and Yang model, was formu-
lated by Durand and Lipes in 1968 [315].

In [315], it is shown that the elastic scattering diffrac-
tive amplitude should exhibit two diffraction minima, which
can be filled by the real part of pp scattering amplitude
and that at large momentum transfer the amplitude is
proportional to the product of the form factors of the
scattering particles. The model uses the impact param-
eter picture and the paper follows along the lines of Wu
and Yang [317] and Byers and Yang [310].

The suggestion that the pp scattering cross-section at
large momentum transfer be proportional to the fourth
power of the proton form factor, suggested by Wu and
Yang [317], was prompted by the observations of the rapid
decrease of the cross-section away from ¢ = 0. Namely,
such a decrease could be seen as the breaking up of the
proton extended structure as the momentum transfer was
becoming large. For small momentum transfer values, on
the other hand , the coherent droplet model by Byers and
Yang [316] supplied inspiration.

The basic physical assumptions underlying the diffrac-
tion model by Durand and Lipes were : i) elastic scattering
at high energy results from the absorption of the incoming
wave into the many inelastic channels which are opening
up at high energy as the extended proton structure (where
partons are confined) breaks up, ii) at high energy, the ab-
sorption depends on the amount of relative interpenetra-
tion of the two scattering protons, namely on the distance
between the scattering centers, in impact parameter space.
With these assumptions and the form factor expression for
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Fig. 5.8. Comparison between the Chou and Yang model from [314] and existing data for the differential cross-section. The
two figures correspond to different approximations, left panel, and to a comparison between the form factor expression and their
model for doe;/dt, right panel. Reprinted with permission from [314], Figs.(1,2) ©(1968) by the American Physical Society.

the matter distribution in two hadrons, Durand and Lipes
wrote the scattering amplitude in the (now) familiar form

f(s,t) =i / bdbJo(by/—t)[1 — S(b)] (5.2.4)
S(b) = e~ kelb) (5.2.5)
Ga(t)Ca(t) = /0 ™ bdbp(b) Jo(bv/=D) (5.2.6)

where the density of matter inside the scattering region is
obtained as the convolution of the form factors of the two
particles A and B in the initial state.

The absorption coefficient x was understood to be a
function of the initial energy. Using the dipole expression
for the proton electromagnetic form factor, they obtained

S(b) = e~ sAD Ks (D) (5.2.7)
with A proportional to the absorption coefficient . Pre-
dictions including both a real and imaginary parts for A
were given, fitting the real part of A through the total
cross-section. The results of such a model, with value of
the parameter 2 = 1 GeV?, are shown in Fig. from
[315]. The comparison with data in the very forward region
shows a very good agreement with the model. Notice the
prediction of two dips which are filled partially through a
complex absorption coefficient with a non-zero imaginary
part. Some of the observations drawn by these authors,
still of interest are :

— asymptotically, this diffraction model should describe
high energy scattering at fixed momentum transfer,
although the asymptotic limit described by the model
can also be ascribed in a different language to asymp-
totic contributions from the Pomeron trajectory (called
Pomeranchuk Regge trajectory in this paper) and its
cuts, with other contributions, which will disappear
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FIG. 1. Comparison of predicted asymptotic pp-scat-
tering cross section with present experimental data.
Curve a, prediction for case of pure absorption, p?
=1.0 (GeV/c)?, A=1.64. Curve b, prediction including
real part, u2=1.0 (GeV/c)?, ReA=1.62, ImA=0.34. Ex-
perimental data from Foley et al. and Cocconi et al.,
Ref. 17.

Fig. 5.9. In this figure from [315] comparison is made with ex-
isting data and the diffraction model by Durand and Lipes. The
two curves labelled respectively a and b refer to fits made with
a purely real or an imaginary absorption coefficient. Reprinted
with permission from [315], Fig.(1), ©(1968) by the American
Physical Society.

at increasing energy, describable by other Regge ex-
changes,
— two diffraction minima appear in the diffraction model.
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5.2.3 The black disk model

One of the most popular representations of the proton as
it emerges from high energy scattering, is that of the pro-
ton as a black disk. This definition of a black or gray disk
is related to the picture of scattering as one of total or par-
tial absorption. To show its making, and before entering
into a description of models including diffraction, we shall
present here the discussion of some simple elastic scat-
tering models from Sect.4 of the Block and Cahn review
[12]. For definitiveness, these models were illustrated by
fixing the parameters so as to reproduce the total cross-
section and the value of the B-parameter at ISR, respec-
tively o40; = 43 mb and B = 13 (GeV/c)~2.

With a(b, s) the scattering amplitude in impact space
space and related quantities as in Eqgs.(5.1.51}[5.1.52}|5.1.53|
the following models are considered,

— an amplitude which is purely imaginary with a con-
stant value a = iA/2 inside a radius R, corresponding
to a purely black disk for A = 1, so that near the
forward direction one has

do J1(qR)
— =7mA?RY——)2 2.
priakl RY| R ] (5.2.8)

In this model, the real part can be added as shown in

Eq. (5.1.29), i.e. one has

J1(Rq)

doer/dt| Blackdisk = TR(s)*A%{] ]2+

02
T (Ra)*} (5.2.9)

Variations of this model include an s-dependent ra-
dius, as in the model obtained by Ball and Zachari-
asen [3I§] in solving the multiperipheral equation for
diffractive elastic scattering, with R = Rglogs, A =
k[log(s/s0)] !, and giving a total cross-section increas-
ing as log s, and an elastic cross-section which is con-
stant,

— aparabolic shape, i.e. a = iA[1—(b/R)?] inside a radius
A, and zero outside,

— a gaussian shape in impact parameter space,

a = 1/2Aexp[—(b/R)?] (5.2.10)

which leads to ooy = 2T AR?, 0o = TA2R? /2

— Chou and Yang [3T4319] model, or the Durand and
Lipes model[315].

As in both Chou and Yang and Durand and Lipes model,
the matter distribution inside the hadrons is described
through their electromagnetic form factor, i.e. through the
convolution of the Fourier transform of the dipole expres-
sion. Writing

(1 —e 90 (5.2.11)

DN | =

27

2(b) = A= (Ab)> K3(Ab) (5.2.12)

ool —
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and fitting the results to reproduce the total cross-section
at ISR, it is found that A% ~ 0.71(GeV/c)?. In Fig. [5.10)
we show the profiles of the amplitudes in b-space at left,
and the differential cross-sections resulting from the dif-
ferent shapes at right, as obtained in [12].

These figures bring to focus the basic difference be-
tween models with a Gaussian matter distribution and
the others: the Gaussian shape leads to an exponential de-
crease in —t, with no wiggles or dips and bumps, whereas
all the other distributions, grey disk, parabolic shape, or
Chou and Yang model, exhibit a diffraction pattern with
minima and maxima. Such difference among models per-
sists till today.

5.3 Exponentials and parametrizations through Regge
and Pomeron exchanges

The models in impact parameter space summarized so far
underline the optical nature of scattering, without specific
dynamical inputs, except for the hadron form factors. On
the other hand, data on elastic scattering from ISR ap-
peared to conform to a picture in which the elastic scatter-
ing amplitude obtains from Regge-Pomeron exchange. We
shall examine some of such models. An additional group of
models embeds Regge-Pomeron exchanges into the eikonal
representation, thus ensuring satisfaction of unitarity, in
addition to analyticity of the input Born scattering ampli-
tude. Some of these models include QCD and diffractive
contributions, as we shall discuss in a separate subsection.

5.3.1 The model independent analysis by Phillips and
Barger (1973)

In 1973, Barger and Phillips (PB) proposed what they
called a model independent analysis of pp scattering [320)].

They propose two slightly different parameterizations,
using a phase and two exponentials to describe the differ-
ent slope of the cross-section as a function of momentum
transfer in the range —t = (0.15 = 5.0) GeV?2. The first,
and more model independent parametrisation, is given as

do

= = [A(s,8) + Cs, e (5.3.1)
As 1) = iv/Ae2 B (5.3.2)
C(s,t) = iv/Ce2 Pt (5.3.3)

Data from pigp = 12 GeV to pip = 1496 GeV (/s =~
(5+53) GeV) were fitted with this expression. The first ex-
ponential is seen to have normal Regge shrinking, namely

B = By +2a'logs o ~03GeV?  (53.4)
while the second exponential term is almost constant. The
values of the parameters at each energy value are given
in Table Notice that, with this parametrisation, the
phase ¢ is fitted to be always larger than /2, so that
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FIG. 8. Semilog plot of the differential elastic cross sections for
the shapes shown in Fig. 7: dot-dashed curve, gray disk; dotted
curve, parabolic shape; solid curve, Gaussian shape; dashed
curve, Chou-Yang model.

Fig. 5.10. Shown are Figs. 7 and 8 of [12] with examples of profile functions, Sm a(b, s) (at left), and the resulting elastic
differential cross-section (at right): dot-dashed curve, grey disk; dotted curve, parabolic form; solid curve, Gaussian shape,;
dashed curve, Chou-Yang model. Reprinted with permission from [12], Figs.(7,8), ©(1985) by the American Physical Society.

Table 10. From [320], parameters obtained from a fit to pp
data in the interval (0.15 < || < 5.0) GeV? for the model given

in Eq. (5.3.1).

pLAB | /s VA B Ve D @
GeV | GeV | Vmb/GeV | GeV~2 | vVmb/GeV | GeV~2 | rad
12.0 | 4.84 7.47 7.33 0.370 1.66 |2.06
14.2 | 5.25 7.53 7.79 0.305 1.69 [2.12
19.2 | 6.08 7.96 8.00 0.232 1.73 |2.12
24.0 | 6.78 7.97 8.07 0.194 1.76 |2.16
29.7 | 7.52 7.82 8.41 0.175 1.81 [2.16

1496.0 | 52.98 6.55 10.2 0.034 1.70 |2.53

the interference term is always negative and, in the energy
range examined here, the fitted phase is energy dependent.

To understand better the role played by the energy de-
pendence, the authors proposed a second parametrisation,
clearly inspired by Regge phenomenology, i.e.

do

s (2 B+a'logs—ia/n/2)t @ o 1Dt2
- = iV Ael2 +(= i/ Coo)ez P
(5.3.5)
with an explicit energy dependence and the following pa-
rameter values, valid for all the energies: vA = 6.88, B =
5.38,a/ = 0.306,/Cy = 10.3,v/Cs = 0.035, D = 1.78, in
the units of Table [0} The results are presented in the two
panels of Fig. [5.11and the figure shows that the quality of
the two fits is good and about the same for both models.
The PB parametrization applied to the preliminary
TOTEM data at LHC7 gave the results discussed in [298].
This parametrization however misses the optical point by
some 5-10%, but the description of the region 0.2 < |t| <
2.5 GeV? is quite satisfactory. We shall return to the ques-
tion of the very small —t behavior later.

In [320], it is also suggested that the “second exponen-
tial” can be identified with a term proportional to p;147
valid, according to the authors, for all available pp data for
s > 15 GeV?. Following this suggestion, and mindful of
the fact that the form factor dependence of the amplitude
would contribute as (—t)~8, we have tried a slight modi-
fication of the Barger and Phillips model, which consists
in substituting the second term in Eq. with a term
proportional to the 4th power of the proton form factor,
namely to write

. C(s i
A(S, t) = ’L[\/ A(S)eBt/2 + (—t—i—(to))46 ¢] (536)
do £/ Cl(s )
= = [VA()eP2 + It +(t0))4ez¢|2 (5.3.7)
which leads to
do g C VAV TeBt2
pri Ae”" + [T + 2cos ¢7(—t o) (5.3.8)

When applied to LHC7 data, this parameterization would
comprehend both the proposal by Donnachie [3211[322]
(further discussed at the end of this section), who ad-
vocates a power law decrease of the type t=8, as well as
the fit proposed by the TOTEM collaboration, ¢t~", with
n="7.8=% 0354 £ 0.15y5 [279].

A discussion of how these two models, two exponentials
and a phase or one exponential, a form factor and a phase,
would be realized at LHC, reading data from [279], can be
found in [298].

That the behaviour past the dip at LHC is consistent
with an exponential was also noticed in [299].
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Reprinted from [320], ©(1973) with permission by Elsevier.

One can see however that the expression

Ototal = 4\/%[\/"Z + \/ECOS ¢)] (539)
gives a value for oi,tq; below the data at all energies, in-
cluding at LHC7, where the fitted value misses TOTEM
datum by some 5%, but particularly so at low energy and
that the t-dependence of the t B.ss for ¢ ~ 0, while rea-
sonably well described at LHC, is less so at lower energy
values. These two points are connected, since we have al-
ready noticed that at very small |¢| values at ISR the slope
seems to increase. An interpretation of this effect is given
in the Durham model [223], with pion loops contributing
to the effective Pomeron trajectories at very small t-values
[323] and shall be discussed together with diffraction.

To overcome this problem and still provide a useful
tool, we have proposed an empirical modification of the
original BP model amplitude [306], i.e.

A(s, t) = i[G(s, t)\/A(s)ePO?2 4 ¢90) | [C(5)eP )1/,
(5.3.10)

and
G(s,t) = FA(t) = 1/(1 — t/to)* (5.3.11)

With free parameters in Egs. (5.3.10}[5.3.11)), the resulting
analysis of elastic pp data at LHCT7 is shown in Fig.
This figure includes a comparison with a parametrization
of the tail of the distribution given by the TOTEM collab-
oration (dotted line). Such a parametrization, (—t)~8, was
suggested in [295], and recently proposed again in [322],
where it is shown to describe large —t data from ISR to
LHCS, and both for pp and pp, as we shall discuss shortly.

Before leaving this model, we remark that the dip
present both at lower and higher energies in pp is only
a faint appearance in pp. The simple expression for the
amplitude with two exponentials and a phase may still be
a valid phenomenological tool also for pp, but one can-
not draw any conclusion about the energy dependence of
the parameters from this channel; as one gets close to the
dip, and the first term dies out to zero, non leading terms,
present in pp and not in pp fill the dip and probably need
to be added to the original model, namely one has, as

mh Z(Ge\)?

Aer /eit
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Fig. 5.12. Fits to the LHC7 data sets with model of Egs.
(5.3.105.3.11)) (labeled FFBP in the frame), with ¢y a free
parameter. Data sets and parameter values can be found in
[306]. Inset: LHCT data near the optical point are shown in
comparison with the present model, which includes the proton
form factor modification. Figure is from [306]. Reprinted from
[306], Fig.(2), ©(2013) by the American Physical Society

pointed out in many models, a situation such as

Aps = App + R(s,t) (5.3.12)
where R depends on the Regge trajectories exchanged in
the t—channel, including a possible odderon, as we shall
see later.

Concerning the coefficient B(s), we notice that in the
two exponential model just described, this coefficient is
related to the slope as defined in Eq. through the
relation

- d(fel/dt

[ABePt 4 CDePt + VAVC(B + D)eB+HP)/2 cos ¢)
(5.3.13)

Beff(S, t)

The PB model can be seen as an attempt to describe
the elastic differential cross-section without appealing to
unitarity. It was defined as model independent analysis,
but it could also be understood as a modeling of elastic
scattering through Regge and Pomeron exchanges. Since
then many fits to data have appeared with a few Pomerons
or many Reggeons and Pomerons. We shall next look at
recent contributions, along these lines, by Donnachie and
Landshoff.

5.3.2 Soft and hard Pomeron exchanges in Donnachie and
Landshoff model

In [3211[322] the authors stress that the data from the
TOTEM experiment do confirm the results of Regge the-
ory, which is in many ways a major success of high energy
physics. At high energy however such success depends on
interpreting a power law as the ultimate solution, and at
the end, as we shall see, resulting in using models to de-
scribe the details of the data. Indeed if one believes that
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the Froissart bound is actually reflecting the existence of
confinement, power laws, which contradict the Froissart
bound, must at a certain point give up to the true asym-
potic behaviour.

In Ref. [321] a hard Pomeron had been invoked to de-
scribe LHC7 data, but in the more recent contribution of
Ref. [322], this is not considered necessary. Instead, a dou-
ble Pomeron exchange is seen to provide a better fit, as
they show. Of particular interest here is the fact that in
both their modeling of the data, it is triple gluon exchange,
ggg term, which describes the decrease of the elastic dif-
ferential cross-section past the dip in the tail region. This
is a purely real contribution, which behaves as ~ (—t)~8
and could be energy independent.

In [321] three different types of data are analyzed:

— pp elastic scattering at the ISR, /s = 30.54 GeV

— HERA data for the proton structure function F(x, Q?)
at small x, used to determine the hard and soft pomeron
powers

— the TOTEM pp data for both the elastic differential
distribution as well as the total cross-section.

The expression used to fit the LHC data is

Apr(s,t) =Yg 5 Yie 270 (20a)*()(5.3.14)
w=1%(s—u) Y,=-X;(i=0,1,2) Yy = iXs
with Xg, X1, X2, X3 real and positive. The 4 Regge tra-

jectories are parametrized as

a;(t) =1+¢ + ajt (5.3.15)

with €; treated as free parameters and

— ag(t) is the hard Pomeron, with
ap=0.1 GeV ™2, which, they find, works well
— aq(t) is the well known soft Pomeron, with
o) =0.25 GeV ™2,
— «s(t) is the degenerate f3,aq trajectory, with
oby = 0.8 GeV 2
— as(t) corresponds to w, p trajectory, with
ob =0.92 GeV~?

The normalization of the amplitude is

oTOTAL — s~ 1QmApy (s,t). (5.3.16)
The parameters ¢; are related to the proton structure func-
tion. Thus a simultaneous fit to the HERA data and to
LHCT gives the figures shown in Figs. [5.13|and [5.14] where
the differential elastic cross-section is computed without
and with a hard Pomeron, respectively.

The difference between the two figures is due to the
fact that, since the total cross-section cannot come out
right without a hard pomeron, a hard Pomeron is added
to obtain the total cross-section as given by TOTEM.
This gives the parameters for the hard pomeron as «f =
0.1 GeV~? and ¢ = 0.362.

At large t, the authors add a real term to the amplitude
of the type Cst~* which they understand as due to triple
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Fig. 5.13. The elastic differential cross-section at LHC7, with-
out inclusion of a hard Pomeron [321]. Figure is courtesy of the
authors.
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Fig. 5.14. The elastic differential cross-section at LHC7, with
inclusion of a hard Pomeron, from [321]. Figure is courtesy of
the authors.

gluon exchange [324,295]. In order to make it finite at
t = 0 a possible expression is proposed as

Cs

o (5.3.17)

It is pointed out in this paper that in order to correctly
model the dip, both the real and the imaginary parts must
become very small at the same value of t.

In the more recent contribution [322], where no hard
Pomeron is invoked, the amplitude is given as three sin-
gle Pomeron exchange terms, one double exchange and
a triple gluon term. We show a representative fit of the
LHC7 data from this paper in Fig. [5.15

105

1000
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Fig. 5.15. The elastic differential cross-section at LHC7 from
[322], revisited as described in the text. Figure courtesy of the
authors, reprinted from [322], ©(2013) with permission by El-
sevier.

Each one of the three single-exchange terms is related
to a trajectory a;(t), with

X .
A(S,t) B F(t) [ _ Tpe—%m’ap(t)(2yaip)ap(t)
1%

_ Xk~ Fimar (0 (9, )0 PO

e 3ime-0 (200 )*-](5.3.18)

for the pp/pp amplitude, respectively, v = (s—u)/2m, and
F(¢) is a form factor. The three trajectories are parametrized
as

ai(t) =1+4¢+ Oé;t

To these single-exchange terms, a double Pomeron ex-
change, PP term, is then added. It corresponds to a tra-
jectory

(5.3.19)

1
app(t) =1+ 2ep + =a'(t) (5.3.20)

2
but the corresponding amplitude term is non just a power
s*PP(®) and additional logarithmic terms appear at the
denominator.

The tail of the distribution is given by triple gluon
exchange [295], and is such that at large |t| one has

3
g(t) = c%g (5.3.21)
A joining with the other parts of the amplitude is obtained
by trial and error, as the authors say, and is parametrized
with

C 20-e/83)
to

The small |¢| in the Coulomb region is included as

(5.3.22)

OEM

- (5.3.23)
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The description of data from ISR to LHC for pp is very
good, less so the description of pp data, but this is common
to many present fits. The values for the 12 parameters
which give the best fit to total and elastic data are given
in the paper, with in particular ep = 0.110.

5.3.3 The model by Schegelsky and Ryskin

In [6I], the emphasis is on the small-t behaviour and a
concern that the elastic slope may not be just a simple
linear power in logs. The authors start with the usual
Regge and Pomeron parametrization for the elastic scat-
tering amplitude, namely

Ty = Fu(t)Fy(t)Cps®r® 4 Fr(t)s*r®  (5.3.24)
where the first term corresponds to the Pomeron, the sec-
ond to a Reggeon and would be negligible at high energy.
The differential elastic cross-section at high energy thus
takes the form
dogp ot 9 5.9 /
= —LF () F(t)(—)> et

(5.3.25)

where the slope of the Pomeron trajectory accounts for the
growth of the interaction radius caused by a long chain of
intermediate (relatively low energy) interactions. Agree-
ment with data, with an elastic slope given by

Be = By + 205 log Si (5.3.26)
0

is obtained by assuming a Gaussian type behaviour for
the form factors F2(t)F2(t) = exp(Bot). The second term
in Eq. is supposed to be universal, and the value
obtained by examining fixed target experiments, i.e. up to
Vs =24 GeV, is given as o/ = 0.14 GeV 2. On the other
hand, the original analysis by Donnachie and Landshoff
[138] at /s = 52.8 GeV would lead to o/ = 0.25 GeV 2.

This discrepancy points to the fact that the energy
dependence of the elastic slope may be more complicated
than a simple logarithm. The first idea is that as the en-
ergy increases, multiple interactions take place. In Regge-
language, these multiple interactions are described by mul-
tiple Pomeron diagrams.

One important point is that in impact parameter rep-
resentation, as the energy increases towards the black disk
limit, the imaginary part of the elastic scattering ampli-
tude — 1. However, while asymptotically going to the
black disk limit, at the periphery the amplitude is still
growing. This leads, according to the authors, to an effec-
tive growth of the slope. The reason is that the continuing
increase of the amplitude at the periphery of the impact
parameter space implies an increasing radius. In this way
the authors understand the discrepancy between their re-
sult for o/ relative to Donnachie and Landshoff. They also
provide another way to understand this behaviour, namely
the interplay between one and two Pomeron exchanges,
which have different signs, so that as the two Pomeron
effect increases, the amplitude drops more rapidly.
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Assuming an s-dependence different than the simple
logarithm of Eq. ([5.3.26]), may explain why a}fff # alp.
The authors propose

S

Ba = By + by log < + by log? =
S0 S0

so that, if one rewrites Eq. ([5.3.27)) as
/e S S S
B, = By + apff(s) log — = By + by log — + by log? —
S0 S0 S

(5.3.28)

one would obtain a;ﬁff(s) = by + bylogs/sg. To deter-
mine the coefficients, the authors plot the results from
a series of experiments, as we show in the left panel of
Fig. [5.16l For s = 1 GeV?, the coefficient by is con-
sistent with zero, while, for by, the authors obtain by =
0.037 + 0.006 GeV~2. Since by is consistent with zero,
the authors propose to drop this term altogether and re-
fit the data with only a (logs/sg)? term. This fit gives
by = (0.02860 = 0.00050) GeV 2.

Their result is then discussed in light of the fits done by
Block and Halzen in [261] and the possible saturation of
the Froissart bound. Unlike Block and Halzen, the authors
here do not think that the black disk limit is yet reached,
and believe the proton to be still relatively transparent,
so that oo = 27R?, with By = R?/4, is not yet at
its geometric value. One word of caution is however put
forward by these authors, namely that the non linear log-
arithmic rise of the elastic slope is basically determined by
the recent TOTEM measurement of B(7 TeV) ~ 20 GeV~.
Up to and including the TeVatron measurement, a linear
logarithmic energy rise for B; is in fact actually still com-
patible, as one can see from Fig. [5.16

(5.3.27)

5.4 Analyses with Pomeron, Odderon and Regge
exchanges

The dip structure has been connected to C-odd exchanges
in the t-channel, phenomenologically referred to as the
Odderon. The existence of such a state is predicted by
QCD and has been advocated in particular by Nicolescu,
also in collaboration with other authors [325,213].

As we have mentioned in Sect.[d] the QCD treatment of
the Odderon began in 1980 [214] [216]. It was examined
extensively by Bartels and others in non-abelian gauge
and color glass condensate theories. Present QCD stud-
ies of the Odderon trajectory focus on NLO contributions
[218] and properties in the strong coupling limit[219]. Still,
the major question to face is whether and how to detect
its presence in LHC experiments and this takes us to the
many phenomenological analyses which include Reggeons,
Pomerons and Odderons..

5.4.1 Phenomenological analyses with and without the
Odderon contribution

To discuss the proposal to detect the odderon at RHIC
and LHC by Avila, Gauron and Nicolescu (AGN2006)
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Fig. 5.16. From [GI]: at left, the effective slope for the elastic differential cross-section from a set of experiments, compared

with the proposed effective parametrization of Eq. li At right the energy dependence of 2alpef I Reprinted with permission

from [61], Figs.(1,2), ©(2012) by the American Physical Society

[211], we start with the model by Avila, Campos, Menon
and Montanha (ACMM2006) which incorporates both the
Froissart limiting behavior as well as Pomeron and Regge

exchanges [212].

In [212], the elastic amplitude is normalized so that

do
= F F(s, ¢*)|? 4.1
i 16“2\%6 (s,4%) +iSmF(s,q°)| (5.4.1)
Cx,
Tror(s) = M 5.4.2
(5.4.3)

Although, unlike the total cross-section, both the real and
the imaginary parts of the scattering amplitude enter the
elastic differential cross-section, in the small ¢-region, |t| <
0.2 GeV?, the cross-section can be expected to be still
mostly imaginary. The steep decrease in this region region
can be empirically parametrized in terms of an exponen-
tial, i.e. one writes

(5.4.4)

Experimental data suggest that their energy dependence
can be parametrized in terms of polynomials in log s. The

difference between pp and pp is then introduced as :
Z a;
Z i

\ymep s q S ()

Jmep S, Bi)?

a;(s) = Ai + B;log s + C;log?(s)

@i(s) = A; + B;log s + C;log?(s)

Bi(s) = D; + E;log s

Bi(s) = D; + E;log s (5.4.5)

The above parametrization implies 10n — 1 parameters,
having imposed the constraint

n

D (Ci—Ch) =

i=1

(5.4.6)

which is valid when the Froissart bound is reached and
can be considered a generalized form of the Pomeranchuk

theorem [212].

Concerning the real part of the amplitude, the authors
make use of the first order derivative dispersion relations
for the even/odd amplitudes, defined as

Fpp(s,¢°) = Fi(s,6°) + F_(s,4°) (547
Fpp(s,4%) = Fy(s,q*) — F_(s, %) (5.4.8)
which lead to

3%6F+(S,q2) _ 5 d %mF-i-(&qQ)

T
- A.
s s * 2 dlogs 5 (5.4.9)
ReF_(s,¢*) d SmF_(s,q?)
—=—(1 4.1
S 2( + dlog s S ) (5:4.10)
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Fig. 5.17. Predictions for the elastic differential cross-section
by Avila et al. [212] at LHC and the TeVatron for pp and pp.
Reprinted with permission from [212] (©(2006) Springer.

The validity of the above expressions only extends to a
region 0 < ¢? < ¢2,,, and depends on the value chosen
for ¢aez- In the subsequent fit to the experimental data,
different values of ¢4, are considered, leading to different
parameter sets.

The above parametrization, applied to the vast set of
lower energy data up to the Tevatron, gives the result
shown in Fig. We see that, for the energy /s =
14 TeV, the parametrization does not show existence of a
dip.

The above approach has been discussed because its no
dip at LHC result in contrast with the TOTEM measure-
ment, can falsify some of the assumptions, or lead to the
need to introduce the Odderon, as done in a subsequent
work with Nicolescu, as we discuss next.

Avila, Gauron and Nicolescu (AGN2006) [211] exam-
ine the data in light of the possible existence of the odd-
eron, a QCD effect corresponding to a singularity in the
complex J-plane at J = 1 at t = 0 in the amplitude F_,
which is odd under crossing. The odderon is considered
a non-leading QCD effect, which can only be detected
in the elastic differential cross-section. In this analysis,
its contribution is parametrized according to the proper-
ties of a number of Regge, Pomeron and Odderon tra-
jectory exchanges, in the context of total cross-sections
saturating the Froissart bound. With such parametriza-
tion, at LHC energies a dip is expected both for pp and
pp scattering, something which cannot be proved experi-
mentally at LHC. In [2T1] the suggestion is advanced to
try to check the presence of the dip at RHIC, namely at
/s =500 GeV.

The AGN2006 analysis describes the ISR data at /s =
52.8 GeV where both pp and pp elastic differential cross-
sections were measured. At this energy, while pp shows
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Fig. 5.18. Data for the elastic differential cross-section for pp
scattering from the three experiments at the TeVatron, com-
pared with UA4 data, from [326]. Reprinted with permission
from [326], Fig.(12), ©(2012) by the American Physical Soci-
ety.

a dip, pp does not, and the model with the Odderon de-
scribes these features well. At /s = 200 GeV and 500 GeV,
where only pp scattering was present, the dip has morphed
in a break in the slope, with not much difference between
the two processes, with the pp curve remaining slighly
higher. At 900 GeV, the break is predicted to be more
pronounced and at the TeVatron energies there is the hint
of a dip developing, with pp points remaining higher. Un-
til recently, experimental data at the TeVatron did not go
beyond |t| ~ 0.6 GeV?. Presently published data from the
DO Collaboration [326], plotted in Fig. indicate a
pronouced break in the slope (as at SppS' ), possibly even
a dip. This would correspond to the fact that the terms
from Regge exchange are becoming increasingly negligible.

There are no predictions for LHC7, but at /s = 14 TeV
the dip is now predicted both for pp and pp. At LHC run-
ning at /s = 14 TeV (LHC14) the position of the dip
is expected at [t| ~ 0.35 GeV?, to be compared with the
position at the ISR at [t| ~ 1.3 GeV? and the position at
LHC?7 reported by TOTEM at |t| ~ 0.53 GeV?.

We will discuss now in detail the parametrization in
[211]. The starting point is the maximal asymptotic be-
haviour of the total cross-sections, consistent with data,
ie.

(5.4.11)
s — oq5.4.12)

2
Otor X log® s
Ao (s) = ofl, — ot logs, as

According to [211], the choice of a maximal behaviour
of the total cross-section is not necessarily implying that
the imaginary part of F_(s,0) is also maximal, i.e. that
F_(s,0) ~ logs, but, the authors argue, it is the natu-
ral choice that strong interactions be as strong as possi-
ble. With this assumption, a parametrization for the two,
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Fig. 5.19. Predictions for the elastic differential cross-section
by Avila et al. [211] at LHC for pp and pp. Reprinted with
permission from [2T1], ©(2006) Springer.

even and odd crossing, amplitudes is prepared and then
determined by comparison with the data.

These authors start with a general form for the hadronic
amplitudes compatible with Eq. . Their strategy
is to consider both the existence and the non existence
of the odderon, parametrizing all the existing data (832
points when the paper was written) for both processes pp
and pp for the quantities o4x:(s), p(s) and dog(s,t)/dt.
After choosing the best description for the existing data,
the model is applied to predict future data and to rec-
ommend experiments which might measure the difference
between the two amplitudes F,(s,¢) and F_(s,t). The
expressions for these even and odd amplituds are written
as sum of Pomeron and Reggeon contributions, following
general theorems given in [327.[328][291], namely

Fi(s,t) = F{(s,t)+ F{(s,t) +

FIP(s,t) + FE(s,t) + FEP(s,t)
F_(s,t) = FMO(s,t) + FO(s,t) +

FOP(s,t)+ FR(s,t) + FIP (s, 1]5.4.13)

where the upperscript H correspond to a polynomial in

log s, with

S 1,
2\, 5T
(L)

S =

(5.4.14)

maximally increasing as log?(s) with exponential t— de-
pendence, P is the contribution from the Pomeron Regge
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pole, PP the Pomeron -Pomeron Regge cut, R corre-
sponds to the secondary Regge trajectories, RP the reggeon-
Pomeron cut. For the odd under crossing amplitude, MO
represents the maximal Odderon contribution, also in-
creasing as log?s, O is a minimal Odderon Regge pole
contribution with «(0) = 1, OP is a minimal Odderon-
Pomeron cut, R a secondary Regge trajectory associated
with the particles p(770) and w(782), RP a reggeon-Pomeron
Regge cut.

In [211] the no odderon case is obtained by choosing
parameters such that all the three amplitudes with con-
tributions from the odderon are zero, i.e. FMO(s,t) =
FO(s,t) = FOP(s,t) = 0. Because of the contribution
from the Regge and the Reggeon-Pomeron cut, with

%Fi*(m) =~ (0 i + tan(Gal (1)) O~
R (5, ) = ()2 Cppe®™ sin(5 0P (1) +
S 0
) T RP(; (i)ag’)(t)fl
Fieos(G o= X (ol soean(—i%)
(5.4.15)

the amplitude F_ is not zero, but it fails to give a good
description of the ISR data at /s = 52.8 GeV. The results
can be summarized with the fact that, starting with the
ISR data, the case without odderon does not reproduce
the data at /s = 52.8 GeV as well as it can do with
the Odderon. According to the authors this is due to the
fact that the t-dependence of these two remaining terms is
constrained by the parameters of the Regge and Pomeron
trajectories, which are non-leading and fail to interfere
with the even amplitude F in the correct way.

Turning to the other case, namely the odderon being
present, the model can count on twelve more parameters,
which add to the 23 parameters determining the F am-
plitude.

Numerically, it is now possible to do a good fit to ISR
data which show the clear difference between pp and pp,
with and without the dip. At LHC 14 TeV, the dip is
fully in place, but, unlike intermediate energies, it would
be present in both processes, and the difference between
the two cross-sections is small. The predicted dip is at
|t| ~ 0.4 GeV? and the cross-section after the dip rises to

~ 10~ mb/GeV>.

A pattern of oscillations is observed to develop in the
difference A(%‘Z(s,t)) for pp and pp. with two minima,
one around [t| = 0.1 GeV? and the other around |t| =
1.1 GeV?. In Fig. we show the fit to the differential
cross-section at ISR and the predicted difference.

In a subsequent paper [329] the model is extended
to higher values of 0 < |t| < 16 GeV?. They define as
the standard data set the data set proposed by Cudell,
Lengyel and Martynov [330]. To generalize the results be-
yond the range |t| = 2.6 GeV? new terms are added to the
parametrization originally proposed, namely
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Fig. 5.20. The fit for the differential cross-sections for pp and pp at left, and, at right, the predicted oscillation in the difference
of the cross-sections. Both figures are from Avila, Gauron and Nicolescu [211]. Reprinted with permission from [211] ©(2006)

Springer.

1. N4 which behave like t~% and growing like log s. The
motivation for N_ was advanced to include the Odd-
eron 3-gluon exchange, with elementary gluons.

2. a term Z_ which has a role as “cross-over term” for
very small t ~ 0.16 GeV?

3. two linear functions of the type 1+ Ajo/0t multiply-
ing the maximal odderon and the Odderon pole term,
and which are necessary to describe the smallness of
the Odderon forward coupling at present energies.

With these many parameters the fit is now very good
and the model predicts a dip at 14 TeV around [¢| ~
0.5 GeV? and a shoulder around [t| ~ 0.8 GeV?. They
note that at LHC energies the exponential behaviour of
do /dt is no longer valid.

5.4.2 Jenkovszky's Pomeron/Odderon Dipole model

We now discuss the contribution by Jenkovszky with dif-
ferent collaborators from [331L[332] and references therein.
The model described in [332] extends the Donnachie and
Landshoff model, to include the dip-bump structure of the
differential elastic cross-section, non-linear Regge trajec-
tories, a possible Odderon, i.e. C-odd asymptotic Regge
exchange. The extension should also be such as to be com-
patible with s and t-channel unitarity. The authors recall
that the first attempt to reproduce the dip-bump structure
was done through the Chou and Yang model [319], whose
major drawback is that it does not contain any explicit en-
ergy dependence. As mentioned, at the beginning of this

section, the Chou and Yang model describes an impact
parameter distribution obtained from the proton electro-
magnetic form factor. In the Chou and Yang model, just
as in the eikonal models in general, the dip-bump struc-
ture is obtained because of the zeros of the imaginary part
of the amplitude, induced by the Fourier transform from
b— space. In [332], the pattern of the parametrization pro-
posed by Barger and Phillips in 1973 [320], already dis-
cussed, is followed. The amplitude is normalized so that

4
cCch; = :—Q\A(s,t)\z and  Ototal = g%mA(s,t =0)
(5.4.16)
with constants to be determined from the fits, and the am-
plitudes written such as embodying the Regge-Pomeron
description, itself reflecting the collective processes par-

ticipating to high energy scattering.

The model in [332] is based on four contributions to the
scattering amplitudes for pp and pp, and the amplitudes
are written as a sum of Regge pole amplitudes, namely

APP = Ap(s,t) + Ap(s,t) £ [Ao(s, ) + Au(s,t)] (5.4.17)

where P, O stand for the Pomeron and Odderon contribu-
tion respectively C-even and C-odd with intercept «(0) >
1, f and w, again C-even and C-odd and a(0) < 1. The
Pomeron and the Odderon are treated on the same foot-
ing, their parameters to be determined by the fit to the
data. For Pomeron and Odderon, a dipole expression is
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Fig. 5.21. Prediction from the model by Jenkovszky et al.
[332] for the elastic differential cross-section at LHC, with lin-
ear Pomeron and Odderon trajectories. The band indicates un-
certainties in the fit procedure. Reprinted with permission from
[332], ©(2011) World Scientific.

chosen, with a non-linear trajectory, i.e.

Ap(s,t) = izisi[rf(s)er%[apfll — epr2(s)erdlar—1]
P 20
(5.4.18)
Ao(s,t) = 52 Zrd (s)erbleo
bo s¢
(5.4.19)

with 7} = bp+log(s/so)—im/2, r3 = log(s/so)—in/2, 1} =
bo + log(s/sg) — im/2. For the Pomeron trajectory, both
non linear and linear cases are considered, while the Odd-
eron is taken to lie on a linear trajectory, similar to the
reggeon trajectories for f and w. The adjustable parame-
ters are the trajectory slopes and intercepts, the constants
ap/o and bp/o and €, which quantify the presence of ab-
sorption.

The fits to the usual set of observables, differential elas-
tic cross-section, total cross-section and p parameter, lead
the authors to conclude that the Odderon contribution
is necessary in order to correctly describe the dip-bump
structure from ISR to the TeVatron. It should be noticed
that in this model there are no wiggles beyond the first
dip, since this model does not use the eikonal form for the
amplitude, but directly parametrises it in the (s,t) plane.
For LHC, we reproduce their predictions in Fig. More
particularly, the conclusions from this model in [332] are
the following:

1. A single shallow dip is expected at LHC followed by a
smooth behaviour

2. The Odderon, described as a dipole, with a positive in-
tercept and almost flat behaviour in ¢ is indispensable
to describe the dip-bump region
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3. the diffractive minimum in pp at LHCT7 is expected at
|t| = 0.65 GeV?, receding to 0.6 GeV? at LHC14

4. the contribution from the non-leading Regge trajecto-
ries can be neglected in the LHC region.

Recently, the possibility to extract the odderon and the
pomeron contribution from pp and ppdata has been re-
visited in [333]. After early results from LHCS8 have been
published, the model has been applied [334] to include a
threshold singularity in the Pomeron trajectory, requested
by t—channel unitarity and related to the pion pole to ac-
count for the non linear slope at very small —¢-values, as
reported by the TOTEM collaboration [283]. The possi-
bility that the amplitude reflects a square root singularity
was suggested long time ago [323[335], and is also present
in the work by Khoze, Martin and Ryskin, discussed in
.63

5.5 Eikonal models driven by Pomeron exchanges,
parton dynamics and QCD inspired inputs

Eikonal models allow to satisfy unitarity and comply with
the asymptotic requirements of the Froissart bound. Mod-
els using this formulation differ depending on the partic-
ular dynamical input determining the eikonal function.
We shall briefly illustrate some results from models which
include partonic descriptions of the proton, such as the Is-
lam model, the so-called Aspen model, and resummation
of many Pomeron-like exchanges. We also include in this
subsection the eikonal based model by Bourrely, Soffer and
TT Wu. In a separate subsection we shall illustrate QCD
models which specifically include diffractive processes and
derive their input from QCD evolution equations, notably
the BFKL approach.

5.5.1 Quarks and gluons in the Islam model

A model based on the eikonal representation but re-
flecting the internal structure of hadrons is given by the
Islam model [3361[337/338].

In Islam’s original model for elastic scattering, the
scattering is described as a two component process: the
first giving rise to diffractive scattering where the two pion
clouds surrounding the scattering nucleons interact with
each other, whereas the second hard scattering process,
dominating at large scattering angle, takes place via vec-
tor meson exchange, while the pion clouds independently
interact.

In a more recent paper [337] the model evolves into
three components, a soft cloud, a hard exchange at low
c.m. energy and a hard component at high energy, identi-
fied with the BFKL Pomeron. Let us see how this picture
is realized, also based on Luddy’s presentation at Blois
2009 [339]. This model is lately referred to as Conden-
sate enclosed Chiral-bag Model, and can be seen pictorially
from a drawing of this presentation, Fig. In this ver-
sion of the model [337], a gq hard scattering term brings
in four new parameters, namely the relative strengths be-
tween the w exchange term and the hard gq term, the hard
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valence quarks

(confined in a core) (~02F)
shell of baryonic charge (~044F)
quark-antiquark condensed ground state (~0.86F)

(qq condensate)

Fig. 5.22. Pictorial representation of the Condensate en-
closed Chiral-bag model from Luddy’s presentation at Blois
2009. Reprinted with permission from [339], in CERN-
PROCEEDINGS-2010-002, ©(2010) CERN.

pomeron intercept aprixr = 1 + w, the black disk radius
ro and the mass mg which determines the size of the quark
bag. In total this model has 17 parameters which can be
fixed giving a quite satisfactory description of the total
and differential cross-section, at various c.m. energies and
of the p parameters.

In [339,340], as in the previous papers, the proton
is described through three basic elements: an external
cloud of ¢g pairs (sea quarks), an inner shell of bary-
onic charge and a central quark-bag containing the valence
quarks. The external cloud and the inner shell have an
obvious connection to QCD phenomenology, a pion cloud
or some gluon condensate and the valence quarks, while
one nucleon probes the baryonic charge of the other via
w-exchange. Thus the picture is:

1. At very small values of the momentum transfer, the

scattering is diffractive and we see the interaction of

one cloud of one nucleon interacting with the cloud of

the other nucleon

then the w-exchange starts dominating

3. at even higher values, it is quark-quark scattering which
takes over, i.e. pQCD.

o

The diffractive contribution

To(s,1) = ipW’ / bdb Jo(bg) (s, ) (5.5.1)

is built phenomenologically with a diffraction profile func-
tion given as

I'p(s,b) =1 —eX(P)

= 9(8)[1 + e(—R(s))/a(s) + 1 4+ e~ (b=R(s))/a(s)

,]_]

The above profile function renders the asymptotic be-
haviour of the total cross-section through the function
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Fig. 5.23. The differential elastic cross-section from Islam
model [340] at /s = 14 TeV. Reprinted with permission from
Fig. (2) of [340], in DESY-PROC-2007-02, ©(2007) DESY.

R(s) = Ro+ Ri(log s — ), a(s) = ap+ a1 (log s — F )with
g(s) an even crossing energy dependent coupling constant.
Through the assumed energy dependence of the radius
R(s), the function I'p(s,b) gives rise to an asymptotic en-
ergy dependence which saturates the Froissart bound. It
is thus possible to obtain the following results, with cor-

responding asymptotic theorems in italics :DE

(ap + ay log s)? Froissart — Martin bound
Tay

Utot(s) ~

p(s) ~ derivative dispersion relations

ap + a1 logs
Tp(s,t) ~ islog? sf(|t|log?s) AKM scaling

TEP(s,t) = TEPP(s,t) crossing even property (5.5.2)
where AKM stands for Auberson, Kinoshita and Martin
scaling [291]. The contribution from w-exchange is written
as

F2(t)

— A ih(sﬁb)
T, (s,t) = iye™X Smi —

(5.5.3)
where the first factor represents the absorptive effect from
soft hadronic interactions in w exchange , and the + refers
to pp and pp scattering. The squared form factor in the
amplitude indicates that one is probing two baryonic charge
distributions. Finally the last term, which dominates at
larger |t| values, is due to valence quark scattering, with
the quarks interacting via reggeized gluon ladders, de-
scribed through the BFKL Pomeron. This initially single
valence quark scattering is then unitarized. We show these
predictions in Fig. [5.23] where the different contributions
are indicated separately. A very recent fit to data, and
predictions for LHC14 is shown in Fig. from [338].
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Fig. 5.24. A recent study of the differential elastic cross-

section in Islam and Luddy model from [338]. Reprinted with
permission.

5.5.2 The eikonal model by Bourrely, Soffer and Wu

Another model of interest is due to Bourrely, Soffer and
Wu (BSW). In [I65], the total as well as the differential
cross-sections are discussed. Recent results and a compar-
ison with LHC data can be found in [341)[342). We show
in Fig. [5.25] their pre-LHC predictions at various energies
for the elastic differential cross-section.

This model follows in the steps of the very early work
by Cheng and Wu. A particularly clear description of how
the impact picture developed after the work by Cheng and
Wu (CW) can be found in a short review paper by Jacques
Soffer [I61] and also in [162]. It is recalled that QED was
the only known relativistic quantum field theory in the
late ’60s and that CW introduced a small photon mass
A in order to avoid what Soffer calls unnecessary compli-
cations. It is recalled that the summation of all diagrams
for Compton scattering leads [I58] to the asymptotic ex-
pression of Eq. (??). After this brief introduction to the
CW results, Soffer [161] describes the model developed
together with Bourrely and Wu, starting with the elastic
amplitude for proton scattering namely

a(s,t) = a¥ (s, t) £ sa’(t) (5.5.4)

where the + signs refer to pp and pp respectively. The
hadronic amplitude is given by a” (s,t) and the factor s
has been factorized out of the Coulomb amplitude a®(t).
For the latter, one has

2
% G| (|t) Fiad(t)
t

where « is the fine structure constant, ¢(t) is the phase
introduced by West and Yennie [I19] as

to
t

ac(t) = (5.5.5)

¢(t) = log[—] — v (5.5.6)
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Fig. 5.25. The elastic differential cross-section at various cms
energies from BSW model [165]. Reprinted with permission

from [165], ©(2002) Springer.

7 being the Euler’s constant and ¢ty = 0.08 GeV?. G(t)
is the proton electromagnetic form factor, and the model
chosen by Soffer in [161] is

Gt)= [t —m3)(t—m3)! (5.5.7)

The usual quantities are defined accordingly as

4
Otot = —W%ma(s,t =0)

s
do(s,t) m 9
dt - 82|a(87t)|
d do

B(s,t) = alog(a) (5.5.8)

and the hadronic amplitude is obtained from the impact

picture [I63] as
aV(s,t) = zs/ bdbJy(bv/—t)(1 — e~ 20y (5.5.9)
0

The eikonal function (2(s,b) is split into two terms, re-
flecting different dynamical inputs, namely

2(s,b) = Ro(s,b) + S(s,b) (5.5.10)
where Ry(s,b) includes the Regge contribution important
in the low energy region and is different for pp and pp,
whereas the second term S(s,b) is the same for both pro-

cesses and gives the rising contribution to the total cross-
section. This term is factorized into energy dependence
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and impact parameter dependence as

S(s,b) = So(s)F(b?) (5.5.11)
with the energy dependence given as in the CW model.
Thus the model exhibits a Pomeron energy dependence
given by a complex crossing symmetric expression

s¢ u’
7 + !
(log s/so)¢ (log u/ug)¢

where u is the third Mandelstam variable. At high en-
ergy and small momentum transfer, the real and imagi-
nary parts of the amplitude can be obtained through the
substitution logu = logs — iw. As for the essential im-
pact parameter dependence, and hence the t-dependence,
this is parametrized through an expression similar to the
proton electromagnetic form factor, namely the Fourier-
transform F(t) of F(b?) is

So(s) = (5.5.12)

a4+t
a? —t

F(t) =

fGOPIS] (5.5.13)

This model had six parameters, of which two, ¢ and ¢/,
related to the energy dependence, and the other four,
a,my, mo, and f describing the impact parameter depen-
dence.

Including the LHC7 data, the values obtained for the

six parameters are given in Table[I1] from Soffer’s contri-
bution to Diffraction 2012 [341]. The recent discussion of

Table 11. Parameter values for the BSW model from Diffrac-
tion 2012 [341]

c=0.167 c’=0.748
mi1 = 0.577 GeV  mo = 1.719 GeV
a=1858GeV  f=6.971GeV~?

the model in [341] gives the description shown in Figs.|5.26
5.27] respectively for the scattering amplitude and the
differential cross-section. Fig. shows that the tail of
the distribution after the dip reflects the usual oscillations
characteristic of eikonal models.

We note that the b-dependence, hence the t-dependence,
is obtained through the form factor F(b?), which is not
the nucleon factor nor a convolution of two nucleon form
factors, as it would be in the eikonal mini-jet models or
the Glauber models. This form factor is independent of
the overall energy.

5.5.3 Many Pomeron structures in eikonal models

We discuss here four papers by Desgrolard, Giffon, Mar-
tynov, Petrov, Predazzi and Prokudin, who have worked
together in different combinations. These authors have
been involved in a precision analysis of resonances and
the forward region, as in Desgrolard, Giffon, Martynov
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Fig. 5.26. Absolute values of real and imaginary parts of
the elastic differential cross-section at 7 TeV from [3411[342].
Reprinted with permission from [341], Fig.(2), ©(2013) by AIP
Publishing LLC.

and Predazzi [344], but they also deal with the elastic dif-
ferential cross-section [345]. In Petrov and Prokudin [346]
the three Pomeron model is introduced. Then the model
is again discussed in [347] and the Coulomb interference
problem is picked up by the same authors, this time with
Predazzi in [348] and before in [347] .

The main point of this approach is the need to go be-
yond one or two Pomeron pole description of the elastic
differential cross-section, and allow for many Pomerons.
Let us begin with Desgrolard, Giffon, Martynov and Predazzi
[345], which contains in its introduction a good descrip-
tion of the state-of-the-art in the year 2000, at the time
LEP was closed and construction for LHC started.

This model is based on eikonalization of the input Born
amplitude. Namely, the scattering amplitude will be given
through the eikonal function x(s, b), and one has the usual
set of equations

ot = - SmA(5,t = 0) (5.5.14)
do m 9

T S—2|A(s,t)|| (5.5.15)
A(s,t =

p= M (5.5.16)

SmA(s,t =0)
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Fig. 5.27. Comparison between TOTEM data [343] and BSW
model description of the elastic differential cross-section at 7
TeV from [3411[342], calculated with 68% CL. Reprinted with
permission from [341], ©(2013) by AIP Publishing LLC.

The eikonalized amplitude in (s,t) space can be written
through the Fourier-Bessel transform

APP = —/pr (5,0)Jo (bv/—1)bdb (5.5.17)

of the function H. f’g which is to be defined in terms of an
amplitude h%, which is the Fourier transform of the Born
amplitude in (s,t) space,

h%(&b) = 25/@%(5, —q¢*)Jo(bq)qdq  (5.5.18)

The next problem is the nature of the resummation pro-
cedure which takes one from the Born amplitude to the
full amplitude. The Born input for the crossing-even and
crossing-odd amplitudes

abb(s,t) = ay(s,t) £a_(s,t) (5.5.19)
will be determined by the available data on the total cross-
section, the differential elastic cross-section and the ratio
p(s,t = 0). The even part is parametrized through the
contribution of a Pomeron and an f-reggeon, while the
odd part is an Odderon and an w-Reggeon, i.e.

ap(s,t) +ag(s,t)
a_(s,t) = ap(s,t) + au(s,t)

(5.5.20)
(5.5.21)
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For the Reggeon, the standard form is used, namely
ar(s,t) = ags®r®)ebrt (5.5.22)
ar(t) = ar(0) + ozt (5.5.23)

where R stands for the f- or w-trajectories. For the Pomeron,
the authors investigate two possibilities, a monopole (M)
or a dipole (D), respectively

M(s,t) = apgor®ebrlar® (5.5.24)

aB(s,t) = apser®[ebrlar®O=1)p, 1 log 3)

+dp log 3] (5.5.25)
As for the Odderon, the chosen form is
ao(s,t) = (1 —e)a"P) (s, 1) (5.5.26)

with M or D standing for a monopole or a dipole. It should
be noticed that in this paper, the authors state that for
the ratio p(s,t = 0) to be fitted by the data, it is neces-
sary that the Odderon contribution vanishes at ¢ = 0.The
trajectories are all taken to be linear in ¢, i.e.
a;(t) = a;(0) + ajt =1+ 6; + ajt (5.5.27)
There is a relationship between eikonalization and uni-
tarization [349,350,351], which gives the following con-
straints
dp > do,

Most fits give dp < 0.

Once the Born amplitude is stated, the authors discuss
different eikonalization procedures, one called Ordinary
Eikonalization (OE) in which one puts

ap > o (5.5.28)

> [2ih2(s, b)]"

1 )
HyY op(s:b) = 5: (0 —20——) (5.5.29)
1
and the other is the Quasi Eikonal (QE) with
1 N, [2ihB8 (s, b)]"
H (p(s.b) = o =0 IWT) (5.5.30)
1
The explicit analytical form is
1
HIZJ)II?)QE(S’b) 5 )\(eacp[z)\x Pl —1) (5.5.31)

When A = 1, one obtains the OE. Still another form of
eikonalization corresponds to the case when the weight A
is different for different terms. In the QE case, the various
terms in the sum have the same weight, but one can con-
sider the possibility that the terms have different weights,
and this case is called the Generalized Eikonal (GE). The
case with three \’s is discussed in detail, and fits are given.
One observation here is the development of structures in
the amplitude as a function of ¢. Apart from the dip, there
are oscillations, which are a consequence of the properties
of the Bessel function from the Fourier transform. It is pos-
sible that some special feature of the eikonal may eliminate
these oscillations, but in this model they are still present.
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Fig. 5.28. The elastic differential cross-section for pp from
Desgrolard, Giffon, Martynov and Predazzi [345]. Reprinted
with permission from [345], (©(2000) Springer.

The authors discuss fits within the OE and the QE.
They have more freedom to do a best fit with the GE
with 2 or 3 parameters, and different cases for fixed or
variable parameters for secondary reggeons are examined.
The predictions of this model are shown in Fig. from
[345]. They emphasize three points:

— 1) the presence of the Odderon contribution is neces-
sary in order to describe the differential cross-section
in the dip region and at large ¢, the Odderon intercept
consistently turns out to be negative from the fits,

— ii) the real part of the even amplitude has a zero at
small |t|-values, which moves toward 0 as the energy
increases, being at [t| = 0.23 GeV? at /s = 14 TeV.
There are also other secondary zeros.

— iii) the eikonalized Odderon contributes to reproduce
“perfectly” the large |t|- region.

We now proceed to Petrov and Prokudin [346], enti-
tled “The first three Pomerons”. This paper contains a
short but useful introduction to various models, and well
summarizes the state-of-the-art at the time. They observe
that the large number of different models describing the
scattering both at ¢ = 0 and for small ¢-values hints to the
fact that the most general way to deal with the problem
is to introduce an arbitrary number of Pomerons. In [346]
a first step is attempted to formulate an eikonal structure
with many Pomerons. They begin with a three Pomeron
structure, since, according to the authors, one and two
Pomeron structures are inadequate.

Writing the unitarity condition as

ImT(s,b) = |T(s,b)|> +n(s, b) (5.5.32)
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where T'(s,b) is the scattering amplitude in the impact
parameter representation, 7(s,b) the contribution of in-
elastic channels, the scattering amplitude in terms of an
eikonal function §(s, b) as

eQié(s,b)

T(s,b) = %

(5.5.33)
with Smd(s,b) > 0 for s > Sjpe. If the eikonal function
has only simple poles in the complex J-plane, and the
poles are parametrized as linearly rising Regge trajecto-
ries, modulo the signature factor, the contribution to the
eikonal in t is written as

S c , S 2
§(s.t) = a(0) tp?/4
(Sv 50(50) e

p? = 4d/(0) log Si 42 (5.5.34)
0
in b-space one then obtains
-b2/p*
c,s e
8(s,b) = —(—)@~1 5.5.35
(5.) = S (201 (55.35)

Three Pomerons are then introduced describing both
pp and pp, as follows:

Op(5,b) = 07, (5,b) + 61, (5,b) + 65, (sb) F

35 (s,0) 4+ 67 (s,0) F o, (s,b)  (5.5.36)
where P; are the Pomeron contributions, the =+ sign refers
to even/odd trajectories, O referring to odderon, f and
w even and odd trajectories. To restore analyticity and
crossing symmetry, one substitutes s with

S =

§=—e'2 (5.5.37)
S0

and obtains the appropriate signature factors for the var-
ious terms contributing to the eikonal as

5 -b*/p”
sT(s.b) =i S (Byem—18 5.
(s,0) %SO(SO) g2 (5.5.38)
3 —b*/p?
C S e
6 (s,b) = — (=) 5.5.39
(s,0) 30(50 g2 ( )
p® =4a/(0)logs + 12 (5.5.40)

The trajectories are dealt with in the linear approxima-
tion, with a fit to the meson spectrum determining the pa-
rameters of the secondary Regge trajectories, f and w. The
parameters defining the 3 Pomerons and the odderon con-
tribution (a total of 20) are obtained by a fit to the total
cross-sections, the p parameter and the elastic differential
cross-section, the latter in the range 0.01 < [t| < 14 GeV?.
Data for the total elastic cross-section are not included in
the fit, but are a result of the model. This is not sur-
prising given the fact that by fitting the total and the
differential cross-section, one fixes both the normalization
(optical point) and the slope. The fits require that the
three Pomerons and the Odderon as well have intercept
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Fig. 5.29. The elastic differential cross-section for pp from
[346]. Reprinted with permission, (©(2002) by Springer.

at t = 0 larger than 1, which also implies that eventu-
ally there will be a violation of the Froissart bound, the
slope of the odderon being very close to zero.The exercise
is repeated with only two Pomerons, but the result is not
very good: in this case, unlike the three pomeron case, the
odderon trajectory is fitted to have intercept less than 1.

This paper also contains a good discussion of the con-
nection of the model to string theory models, and to the
predictions for BFKL.

Concerning predictions in the small ¢ region, the model
indicates a dip at LHC around 0.5 GeV? and a wiggle
around —t < 3 GeV?. We show in Fig. the predictions
for the elastic differential cross-section at RHIC and at
LHC.

5.5.4 The Aspen model

This model [T48] is a QCD inspired version, applied to
both proton and photon processes, of a description of the
total and elastic differential cross-section based on a large
amount of previous work. In the 1984 review, Block and
Cahn [12] describe in great detail the constraints aris-
ing from unitarity, analyticity and crossing symmetry, in-
troducing their own proposal for low and high energy
parametrization. In the 2006 review, the phenomenologi-
cal description is updated and an extensive presentation
of the subsequent work is given [51]. Thus, in the following
the term Aspen model refers explicitly to the description
in Appendix A of [5I]. A description of this model has
already been presented in here we recall its main
points. The Aspen model uses the eikonal representation
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in order to ensure unitarity. It embeds in addition the con-
straints of analyticity, and crossing symmetry. The model
includes both a crossing odd and a crossing even eikonal,
ie.

\PP/PP = even 4 yodd (5.5.41)

Xeven _ ng(S b) + qu(s, b) + qu(s7 b) (5.5.42)

= ’LZ 0i; ()W (b; p15)] (5.5.43)
with ij = 99,499, 99, tqg = \/qqkgg and
2
5
Wb ) = S (pigh)* Ko(pagh) — (5.5.44)
e
Yoo = —5= 5.5.45
=g (5549)
and
XU = —G04aW (b; fioad) =

Coddzgg \[ (b ,U'Odd)

(5.5.46)
with W (b; poqq) having the same functional form as the
other b-distributions, W (b; u1;;). All the b-distributions are
normalized to 1 and are obtained as the Fourier transform
of a dipole. As for the cross-sections o;;(s), their QCD
inspired parametrization leads to the following large s-

behaviour:
~logs, (5.5.47)

For large s-values, the even contribution is made analytic
through the substitution

2
Ogg ~ l0g”s, 0gg 04q ~ constant

—im/2

s — se (5.5.48)

The two constants C,qq and poqq are fitted to the data.
At high energies, the odd eikonal vanishes like 1/4/s, since
this is the term which accounts for the difference between
pp and pp interactions, and at high energies such a differ-
ence should vanish. We show in Fig. |5.30| predictions for
LHC14TeV and comparison of the model with the TeVa-
tron data [1441[147]. We note that the predicted curve for
LHC has a dip for —t ~ 0.5 GeV? and second (slight) dip
(more like a wiggle) around 1.8 GeV?. Presently, data up
to —t = 2.5 GeV? at LHCT7 show no other structure but
the dip at —t = 0.53 GeV?2.

The Aspen model has been the inspiration for the Dy-
namical Gluon Mass model [352] in which an energy de-
pendent mass mg(s) for the gluon is introduced to reg-
ulate the low-p; divergence in the mini-jet like eikonal
functions. Recently, the group from Campinas has been
concerned with the slope and the total and elastic cross-
sections [288[304]. The ratio Re; = Oelastic/Ctotar is dis-
cussed as it can give information about different mod-
els and their asymptotic behavior. The question whether
B(s) is growing linearly with log s as expected in Regge
-Pomeron descriptions, or whether it would grow as log2 s
[61] is addressed. This would be relevant in cosmic ray
physics, where the ratio otptq1/B for proton-proton scat-
tering defines the nucleon-nucleon impact parameter am-
plitude (profile function), and measurements of the p— air
cross-section are thus related to this ratio.
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Fig. 5.30. The elastic differential cross-section in the Aspen
model from Block’s Report [51]. The full line represents expec-
tations at LHC at /s = 14 TeV, the dashed line are predictions
at the TeVatron collider in comparison with the E710 experi-
ment [1441[T47]. Reprinted from [51], ©(2006) with permission
by Elsevier.

5.6 Models including the diffractive contribution to
the scattering amplitude

Diffractive processes contribute to the total cross-section.
They are inelastic processes with spatial correlations to
the incoming particles, and their experimental definition
depends on the type of experiments as well as on the cuts
imposed on the final state. Theoretically the description
of diffraction is rendered difficult because no exact theo-
rems exist about its energy dependence. We show in Fig.
[.31] a compilation of data for the inelastic cross-section,
from lower to very high energies, including some results
from LHC experiments in different rapidity regions, and,
in some cases, including extrapolations into the diffractive
region. The spread of results at LHC7 reflects different ex-
perimental cuts and different extrapolations into the low
mass region. The blue band gives the results from the soft
kt—resummation model, described in [42]. The blue circle
at 14 TeV gives the Block and Halzen (BH) prediction
[261].

Discussion of diffraction as distinct from both inelastic
and elastic processes has a long history. Models for diffrac-
tion are present in the literature since early observations
of final state particles appearing in configurations clearly
correlated along the incoming projectile. As we shall dis-
cuss in the following, some of these models use a quantum
mechanics formalism, inspired by Good and Walker de-
composition of diffractive scattering [74], while the QCD
approaches, such as those by the Durham [223] and Tel
Aviv [353] group, use, in addition, a triple Regge formal-
ism, to account for high mass as distinct from low mass
diffraction. Recently a contribution by Gustafson to clar-
ify the connection between some of these approaches has
appeared [354].

In what follows we shall summarize some represen-
tative works concerned with the description of diffrac-
tion. We shall describe in some detail the contributions
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Fig. 5.31. Data for inelastic scattering in different kinematic
regions, with model expectations (blue dot) from Block and
Halzen (BH) [261] and from the soft k:-resummation model
[42]. Reprinted with permission from [42] (©(2011) by the
American Physical Society.

by Pumplin and Miettinen, started with some early work
[57] and [355] and then followed by Pumplin with Miet-
tinen [356] and by Miettinen and Thomas [71]. A clear
description of this approach can be found in [72]. We shall
also summarize the application of some of these ideas to
mini-jet models by Lipari and Lusignoli [53]. The Regge-
Pomeron analysis of diffraction performed by two groups,
Durham (KMR) and Tel Aviv (GLM), will follow. A di-
gression to the string theory Pomeron description by the
Brown University group [264] will be included, as it is
central to the Tel Aviv model. Many phenomenological
analyses exist in the literature, for a recent analysis up to
TeVatron data, a good summary can be found in the work
by Dino Goulianos [357].

5.6.1 The Pumplin limit for diffractive processes

We now discuss the generalization of the break-up of the
total cross-section into elastic, diffractive [355L[356] and in-
elastic components and how to obtain the so-called Pumplin
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limit [57), i.e. .

Oertdiff(s), _ 1
R i = <= 5.6.1
el+dif£(8) = [ oot (5) 5 (5.6.1)
to be used instead of the black disk limit
oel(s) 1
Rels) =|—=%] < = 5.6.2
()= (225 < 5 (5:62)

Let the “b-wave” unitary S(s,b) matrix be decomposed
as

STS = (1-2T(1+2T) =1; SmT =T'T. (5.6.3)

If we define twice the imaginary part of the elastic ampli-
tude by M(s,b) = 23mTy;(s,b), BEq.(5.6.3) leads to the
relation

2M(s,0) — M? =43 |Tpil> = Gin(s,b),
n#l

(5.6.4)

valid for large s if we neglect the small real part of the
elastic amplitude.

The inelastic scattering sum in G, due to multi-particle
production may be written as

d2q(™)

Gin(s,b) = b

n

(5.6.5)

If one assumes a statistically independent production of
particles, one is led to the Poisson distribution

Q(Sa b)n )efQ(s,b) )
n!

2o
7

Then Eq.(5.6.4) leads to the well known eikonal form for
the imaginary part of the elastic amplitude

(5.6.6)

M(s,b) =1—e (@2 = 1 = Osb), (5.6.7)
with 202(s,b) = Q(s,b) =< n(s,b) > denoting the mean
number of collisions occurring at a given s and b.

It is well to note that Eq.(5.6.4)) has two solutions for
M:

M(s,b) =14+e (@2 = 147060 (5.6.8)

The solution chosen in Eq.(|5.6.7) is the smaller one which
corresponds to M — 0 as the mean number of collisions
goes to zero. Hence,

0< M(s,b) < 1. (5.6.9)
We note in passing that this choice reduces the Martin-
Froissart bound by a factor of 2. It also leads to one of
our asymptotic sum rules [2961297]

M(s,b=0) = 1as s— oo. (5.6.10)

Using a phenomenological model such as the Phillips and
Barger (PB) model of Ref. [298] for the elastic ampli-
tude, one can see that experimental data at 7 TeV by the
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TOTEM group at the LHC support Eq.. The value
is 0.95 4+ 0.01 [298] at 7 TeV corresponding to G, (s,b =
0) — 1. The other mathematically allowed possibility
Gin(s,b=0) — 0 as s — oo that leads to M (s,0) — 2 is
ruled out by data at present LHC energies.

The result of Eq. however is incomplete. As
discussed at the beginning of this section, if the eikonal
function £2(s,b) is constructed through a randomly dis-
tributed Poisson sum of incoherent scatterings, then the
elastic ratio R¢;(s) turns out to be larger than its experi-
mental value at LHC, which is still ~ 1/4, hence quite far
from the black disk limit of Eq. . The reason behind
this generic fact is that there is a non-negligible fraction of
the inelastic cross-section, called diffractive which is not
truly random but which maintains quite a bit of coherence
with the scattered particles.

One type of contribution to single diffractive events
occurs when one of the two scattering particles ends up in
a state with the same internal quantum numbers with a
close by mass but perhaps with a spin-flip (e.g., p — p*)
[72], while simultaneous break up of both scattering parti-
cles into diffractive states as defined above contributes to
double diffraction. Even at high energies, such as at LHC7
for example, the contribution of the summed diffractive
cross-section to the total is (10 + 15)% and hence it needs
to be properly understood and formulated [356,305]. Ref-
erences to other work on this subject can be found in [72]
53]. The analysis below follows these references in outline.
Other references can be found in the Durham and Tel
Aviv analyses, which include contributions coming from
high mass diffraction.

The underlying essential physics of diffraction can be
incorporated by supposing that the incident particles are
in a superposition of “diffractive eigenstates” defined as

|A>="Cr(A) |y >, (5.6.11)
k

with Py(A) = >, |Ck(A)|? giving the probability of find-
ing the diffractive eigenstate k£ in A and ), Py(A) = 1.
The interaction with the other particle produces a mixture
of diffractive and non diffractive states

TIA >= Z Cr(A)Ti|¥) > +non diffractive states.
k
(5.6.12)
Hence with the breakup of only one particle A of the initial
state, the elastic amplitude becomes

<ATIA>=> " |C(A)PT, =) P(A)Tp = < T >,
k k

(5.6.13)

where the average < . > denotes an average over the

diffractive state probabilities. As before neglecting the real

part of the diffractive amplitudes, we would have the fol-
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lowing expressions:

At Sp(s,b) = ot _ gy < AlT|A >
nev= ey T
=23 Pu(A)M(s,0) = 2 < M(s,0) >
k
(5.6.14)
and
d%o, ,
B: S.(s,b) = d2b =4| < A|IT|A > |
—4|Zpk VTe|?> = | < M(s,b) > |2
(5.6.15)

The sum of the elastic and diffractive differential cross-
section (in b-space) reads

c- d*0eivaifs

=4 U |T|A > |2
s D1 < iTlA > |

=< M(s,b)?
(5.6.16)
The basic result for the diffractive part of the differen-

tial cross-section in impact parameter space is obtained
through Egs. (5.6.15)) and ([5.6.16)

dzadiff

D : Sdiff = d2b

=< M(s,b)*> > — < M(s,b) >>

(5.6.17)
In words, Sg;s¢ is given by the dispersion < (AM)?
in the absorption probabilities and hence it would van-
ish identically were all components of the initial state ab-
sorbed equally. If averages are taken over both incident
particles, dog;rs would include both single and double
diffraction dissociation.

Now let us see how to obtain the Pumplin upper bound
on Sgfs. Since, by virtue of Eq.(5.6.9), the absorption
probabilities 0 < M, < 1, and M? < My, we have also
that

< M(s,b) Z P.My < 1;
k
and < M?(s,b) >< < M(s,b) >
(5.6.18)

This leads to the Pumplin inequality

Saifr(s,b) < [%ST(S, b) — Su(s,b)]. (5.6.19)

and the integrated version of Eq. leads to Eq.
for the ratio of the elastic + diffractive cross-section to
the total cross-section. For pp scattering at ISR, o455 =~
(8.5 £ 1.5) mb which is over a half of the limit ~ 14 mb,
predicted by the above Eq.([5.6.19)). Presently, even at the
highest energies, the limiting value of 1/2, as given by
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Rei+difr(s) in Eq.(5.6.1) is closer to the experlmental re-
sults than the black dlSk limit (1/2) for Rei(s) in Eq.(5.6.2)),
as we have seen from Fig. [5

Pumplin [72] further observed that while s-channel he-
licity conservation is a good approximation for the elastic
amplitude such is not the case for diffraction dissociation.

To proceed further, one needs to formulate a model for
the probability distribution for diffraction dissociation at
high energies, which must respect several requirements:

— (i) for diffraction dissociation into a continuous mass

spectrum, an analytic dependence on mass ;

— (ii) the constraints that all M(s,b) < 1

— (iit) M(s,b) — 1 as b — 0 (asymptotic constraint);

— (iv) M(s,b) = 0 as b — oo (asymptotic constraint).
As discussed next, a simple probability distribution meet-
ing these requirements, which is amenable to an analytic
treatment, is given by [7I[72]

ZA—l

ro°

ar _
dz

—Zz

(5.6.20)

with 0 < z < oo and the dispersion < (Az)? >=< z >=
A

5.6.2 Specific models with a continuos distribution

In 1979 Miettinen and Thomas [71] discussed how to mod-
ify the Glauber eikonal formalism to include diffraction
within a picture in which quarks and gluons are - with dif-
ferent spatial distributions- the constituents of a nucleon
or a hadron. Since earlier analyses, in particular Good
and Walker [74], it had been known that if the different
components of a composite system have different distri-
butions (absorption strengths), then inelastic states are
excited and the elastic formula for the amplitude needs to
be modified. The aim in [71] was to show that, taking into
account fluctuations in the wave function, one can find the
matter distribution. This is analogous to the distinction
between a “charge distribution” extracted from pp elas-
tic scattering and the proton charge distribution obtained
through the proton electromagnetic form factor, extracted
from ep scattering.

Their first step is to substitute the expression for the
elastic amplitude between two hadrons A and B scattering
at a distance b

T35 =1— e <00>as (5.6.21)
with a different amplitude, corresponding to the different
possible configurations ¢ and j in which the two hadrons
find each other at the point of collisions,, i.e.
1) =1— e Pua® (5.6.22)
Calling p; the probability that the hadron is in a given
configuration 7, the complete amplitude is obtained by av-
eraging over all the possible configurations
pr‘pftfiB = 20 > ap

—<e (5.6.23)
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The connection between the simple eikonal of Eq ([5.6.21
and this description can be seen by writing Eq. (5.6.23
as

tAB () =1 — e~ <P®>as g, 5(b) (5.6.24)

with the corrections to the simple eikonal embedded into
the moments uj 2 (b) of the eikonal spectrum, i.e.

= CDF g

Hap Z AL (0) (5.6.25)
k=0 )

P (b) = ((2(b)— < R2(b)ap >)*),,  (5.6.26)

The connection to matter distribution in b-space enters
the eikonal function < £2(b,s) >4p from the overlap of
the average matter densities of the incident particles, i.e.
the s-dependence is factorized into a constant K 4p and

< Qb,s) >= Kap / 2V pb)plb—b)  (5.6.27)

To exemplify this model, Eq. (5.6.23)) is written as

ta” (b) = / d2P4p(2,b)(1 — e~ ?) (5.6.28)
0

with the function Pap(2,b) defined by the probabilities

pf‘, ij . Now, the model becomes easy to solve under the

hypothesis that the b—dependence of Pap(b) is only a
function of the scaling variable z = £2(b,s)/ < £2(b, s) >.
A simple function in the variable z is considered, namely

Pap(z) = Nz%e (5.6.29)
which obeys the constraints
/dzPAB(z) =1; /zdzPAB =1, (5.6.30)

as requested by normalization and the first moment con-
dition. One has

N =X/T'()\); and a = (A —1). (5.6.31)

The integration is then done immediately, and the differ-
ential cross-sections in b-space now become

%ST(s,b) —< N (s,b) >= /dP(z)[l _ s b/

=1—[1+402(s,b) /N
(5.6.32)

Sei(s,b) =1 —2[14 2(s,b) /N + [1 + 2(s,b) /A 72,
(5.6.33)
and

Saig(s:0) = [L+262(s,8)/X] 7 = [1 + 2(s,0) /A",
(5.6.34)
A few observations about this model are in order:

— (i) As A — oo, the earlier eikonal limits are reached
since Sgifr — 0.

121

— (ii) For A = 1, Eq.(5.6.32)) reduces to a “Fermi” distri-

bution

~ 1

1

(5.6.35)

Further extensions of this model can be found in the work
by Lipari and Lusignoli [53], who use the mini-jet for-
malism to study the contributions to the inelastic cross-
section from different hadronic configurations participat-
ing to the scattering. The authors start with a careful
discussion of the relation between oj.:, the cross-section
for producing a mini-jet pair, and o;,¢;, the total inelastic
cross-section. Many authors have had difficulty in under-
standing why oj.; can be larger than o;ye;: this is sim-
ply a reflection of the fact that the inelastic cross-section
measures the probability of inelastic interactions between
hadrons, whereas o;.; measures the probability of parton-
parton collisions, so that, since ¢;,¢; includes at least one
parton-parton collision, the ratio Ujet/amel in fact de-
scribes the average number of mini-jet pairs produced in
one inelastic collision and this can be quite large.

The authors next consider the average number of col-
lisions < njer(b, s, pT") >, taking place at impact param-
eter b,

< njet(b, S,pﬁr_”n) >= /d2b1 /d2b2P1nt(b — b1 + bQ)X

/dpL/dmd!Ez Z th1($1,b1»ﬂ2)FJh2(fE2,bz7l~t2)><
j,k,j/7k/

d6jk— i
dp1 ( )
5.6.36

obtained from the relevant x and b-space distributions for
each colliding parton, j going into a hadron h, th (x,b, 4?),
where p is a hard scale defining the applicability of the
mini-jet perturbative description. Since partons have a
spatial distribution, this number depends on the proba-
bility P;,+(b) that two partons, separated by a distance b,
interact with each other, a standard practice in mini jet
models.

Defining parton configurations in the colliding hadrons
as C; and Cy, the average number of mini-jet collisions is
obtained by summing over all possible configurations, i.e.

/d(Cl /dCQPhl (Cl)Ph2 ((Cg)njet(b,(cl,(CQ) =< njet(b, 8)

(5.6.37)

Upon assumption of the factorization hypothesis
Njet(b, C1,Co) =< njer(b, s) > a(Cq, Co) (5.6.38)
with a(Cy,C3) a constant, real parameter independent of
energy, the final result will be obtained by integrating over

all values of the parameter «, i.e. over all possible configu-
rations, with a distribution given by a probability function
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P(«) which must satisfy the two conditions

/daP(a):l

/daaP(a):l

(5.6.39)
(5.6.40)

where the second condition follows from Eq. (5.6.37)). In
this generalized Good and Walker structure the proposed
final expression for the elastic amplitude is

d?b n(b,s)>a
/ge“"b/da p(a)[1 C e ]

(5.6.41)
with the simple eikonal case corresponding to p(a) —
d(a — 1). One can see that in such case the elastic cross-
section includes both elastic and diffractive processes, so
that in the simple eikonal case the inelastic diffraction con-
tribution vanishes. The cross-sections in momentum space
can now be explicitly written as

Fel(Qv 8) =

dZ;z _ w[/db b Jo(b\/ft)/da pla) x (5.6.42)
(1- exp[fw)f (5.6.43)

The differential cross-section inclusive of elastic and diffrac-
tion processes is calculated to be

% :w/da p(a)[/db b Jo(bv/—t)
(1- eat:p[—%)]2 (5.6.44)

An explicit model is built, with the probability function
p(a) such as to satisfy the two conditions given by Egs.

and (5.6.40)), and chosen to be

L a %Aex 2
wF(%)(a) 7l w]

pla) = (5.6.45)

as in [7I]. The model depends upon the parameter w =<
a? > —1. Upon performing the integrations in a, one now
has

d20di 1w

d%ff = (1+ < n(b,s) > w)" "~ (5.6.46)

b —2/w
(1+ %ﬁ) 20 (5 6.47)

d*ototal <n(b,s) > w\—1/w
~B2b 2 — 2(1 + f) (5.6.48)

dzo—elastic < n(b, S) > W\ —1/w\2
—gy == ———) ") (5649)

The authors apply a parametrization of the mini-jet model
to evaluate and predict the diffraction cross-section as a
function of energy. Using the approximation

dDD

Il
1
Il

5.6.50
p— (5.6.50)
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Fig. 5.32. Inelastic diffraction cross-section evaluated in an
eikonal mini jet model within a generalized Good and Walker
mechanism, and different mini-jet cross-section parametriza-
tions. The experimental results correspond to single diffraction
only. Figure and references are from [53]. Reprinted with per-
mission from [53], Fig.(7), ©(2009) by the American Physical
Society

where T/ B refers to Target or Beam diffraction (D) and
DD stands for double diffraction, one obtains

USD)

5.6.51
4Uel ( )

odiff =0sp +opp ~osp(l+

The last term in Eq. includes an extra factor of 2
at the denominator, which corrects Eq. (85) of Ref. [53] .
F] The results, for two different choices of the model mini-
jet parametrizations, are shown in Fig. [5.32/in comparison
with, then available, experimental data for single diffrac-
tion.

.6.3 The Durham model by Khoze, Martin and Ryskin

The Durham model by Valery Khoze, Alan Martin and
Misha Ryskin (KMR) offers a unified description of both
soft and semi-hard interactions. This model, developed
and continuously refined over many years, also with other
collaborators, presents a QCD based Pomeron and parton
phenomenology .

Recent papers by the Durham group [2241225]227.[358]
describe data on multiparticle production and present dif-
ferential cross-section analyses. The most recent version of
the model uses a two and three-channel eikonal formalism
and multipomeron exchange diagrams, incorporating both
unitarity and Regge behaviour. In [358], the authors com-
pared their original predictions, for the total cross-section
and diffractive quantities, with TOTEM results. Adjust-
ments of their earlier parameters appears in [225].

The essential ingredients in their model can be sum-
marized as follows:

— Input Pomeron trajectory for soft and hard processes
— Eikonalization of the amplitudes
— Inclusion of diffractive processes

8 Private communication by the authors.



Giulia Pancheri, Yogendra N. Srivastava: Introduction to the physics of the total cross-section at LHC

— Pion loop corrections to the Pomeron trajectory and
small |¢| slope of the elastic differential cross-section

We shall briefly describe each of the first three items and
then present their most recent phenomenology for the elas-
tic differential cross-section. The inclusion of pion loop
corrections will be treated separately in [5.6.4]

— KMR1: Pomeron trajectory

This approach uses Reggeon Field Theory with a phe-
nomenological soft Pomeron, while for hard interactions
a QCD partonic approach is employed [226]. In the hard
domain, where perturbative QCD and the standard par-
tonic approach can be used, their Pomeron is associated
with the BFKL singularity. In this perturbative domain,
there is a single hard Pomeron exchanged with

alere(t) = (14 A)+ta e A= 0.3; /%7 < 0.05 GeV 2

(5.6.52)
It is noted that, although the BFKL equation should be
written for gluons away from the infrared region, after re-
summation and stabilization, the intercept of the BFKL
Pomeron depends only weakly on the scale for reason-
ably small scales. We reproduce in Fig. [£.10] their descrip-
tion of the connection between the intercept of the BFKL
Pomeron and the value for ag. The figure shows how the
intercept A goes to a smooth almost constant behaviour
as o increases.

It is useful to note here that in mini-jet pictures, the
value of A = 0.3 corresponds with the mini-jet cross-
section growing as ~ s%3. Thus, the bare KMR Pomeron
plays a role similar to that of parton-parton scattering
folded in with parton densities and summed over all parton
momenta in the mini-jet model. Also, the bare slope is
interpreted by KMR to be associated with the size of the
Pomeron: o€ ~ 0.05 GeV ™2 oc 1/ < k? >. Tt is related
to a hard scale, of the order of a few GeV, which can find
its counterpart in psm,;, of the mini-jet models. However,
a precise correspondence still needs to be worked out.

On the other hand, the transition from the hard to the
soft domain in KMR requires multi-pomeron exchanges
through re-summation of soft k;-processes, thus lowering
the scale of < k7 > from the earlier hard to a soft scale. As
a result, the BFKL Pomeron (i) bare intercept decreases
and at the same time (ii) the slope increases by a fac-
tor ~ 5 from its bare value. Hence, one has an effective
linear Pomeron trajectory such as the one given by the
Donnachie and Landshoff parametrization, i.e.

o T (1) ~ 1.08+0.25¢. (5.6.53)
KMR found empirical evidence for the above trajectory
also in virtual photo-production of vector mesons at HERA.

Once again, we may find a correspondence of the change
in the effective slope with the mini-jet model parameter
Pimin ~ 1.1 GeV through the observation that (psmin/A)% ~
5 with A ~ 500 MeV.

We add here some further details regarding the “BFKL
multi-Pomeron” approach. In the Durham model, the semi-
hard particle production due to a single BFKL Pomeron
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(b) DGLAP-based MC

v

(a) single BFKL Pom. (c) BFKL (inc. enhanced)

Y

ko

ko K kf

Fig. 5.33. Graphical description of mechanism of semi-hard
interactions in pp collisions from [359)]. Reprinted with permis-
sion from [359], ©(2011) by IOP.

is shown in the left plot of Fig. [5.33) from [359]. In this
figure, Y is the rapidity interval. In (a), the k; of the par-
tons are not ordered. The multiplicity of partons grows as
r~4 with A = ap(0) — 1, and partons drift to lower k;
values because of the running of the strong coupling con-
stant. Notice the imposition of a cut-off kg, below which
the cascade is forbidden to develop. In the central figure,
(b), the structure of standard DGLAP-based MonteCarlo
cascade is strongly ordered in k;: there is a driving pro-
cess, in the central rapidity region, with the highest par-
ton momentum and then, from the initial parton a cascade
ordered from larger to smaller momenta. In this descrip-
tion, because of the singularity of the hard parton-parton
cross-section ~ 1/k{, an energy dependent cut-off kyuin,
called an infrared cut-off, needs to be introduced, as can
be seen in PYTHIA 8.1 [360]. This cut-off is applied to the
hard matrix elements, not to the parton cascade, which is
stopped when k; = k. This cut-off depends on the chosen
PDF set. The multiple interaction possibility is included
through eikonalization, both for the DGLAP and BFKL
description. Finally, the third figure, (c), includes absorp-
tion of low k; partons. An effective “infrared” cut-off’,
ksqt(x) limits the low-k; partons. This parameter which
depends on x, hence on the energy, is dynamically gen-
erated by the enhanced multi-Pomeron diagrams. Notice
that the variable conjugate to impact parameter b is the
momentum transfer exchanged through the Pomeron lad-
der, while the variable k; is the transverse momentum of
the intermediate parton.

We observe that this description follows from the clas-
sic GLR paper [220], where all gluons, those involved in
hard scattering as well as the soft ones from radiation be-
fore the scattering, are considered on the same footing and
described through evolution equations. This differs from
an approach such as the soft-k; resummation model (BN
mini-jet model), where soft gluons are treated as a sepa-
rate factorized term from the hard mini-jet cross-section
and resummed through a semi-classical procedure a’ la
Bloch and Nordsieck (thus the name BN) [172].

— KMR2: Eikonalization of the scattering amplitufde

A simplified description of the model can be found in Ap-
pendix A of [223]. Starting with the usual expressions for
the total and elastic cross-section in impact parameter
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space

Ototal = 2/d2btAel(bt) (5654)

O etastic = / by A (by) 2 (5.6.55)
the scattering amplitude A.; is approximated as to be
completely imaginary,. i.e. there is no real part.

With an effective (for illustration) Pomeron trajectory
written as ap(t) = ap(0) +apt = 14+ A+ a/pt and vertex
with exponential t-dependence Bpexp(Bot), the starting

point is
ap(t)—1
s P
530 ()

SmAe (s, t) = .
0

(5.6.56)

s ap(0)—1 , .
= Bp(t) () P 1% (5.6.57)

S0

Writing the amplitude in b—space as the Fourier trans-
form of Eq. (5.6.57) with t = —¢°

FlA(s, 1)) = ﬁ / P qe™a A(s, 1) (5.6.58)

A
S0

this will be the input for the successive eikonalization pro-
cedure. In the case of a single channel the amplitude is
written in term of the opacity function 2(b), i.e.

SmAg = [1 — e 202 (5.6.60)

and then eikonalizing it, one obtains
Ototal = ATIMA(s,0) = 2/d2b[1 — e~ P:5)/2)] (5.6.61)
with the opacity

2 ap(0)—1
2(b,s) = %e*bg/w" (5.6.62)
P

1
Bp = §Bo + a/p log(s/so) (5.6.63)
A Good and Walker model to include low-mass diffractive
dissociation is then developed as we shall now describe.

— KMR3: Inclusion of diffractive processes

The KMR approach to diffraction has evolved through the
years, as more precise and higher energy data allowed fur-
ther understanding. We summarize here some of the main
ingredients of this model, whose most recent application
to LHC data can be found in [226]. The authors begin
with s—channel unitarity,

23mT.i(s,b) = [T (s,0)|* + Giner(s,b) (5.6.64)
which, for {2 real is satisfied by
Toi(s,b) = i(1 — e 2/2) (5.6.65)
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Fig. 5.34. Graphical description of low-mass proton dissocia-
tion (a) and high mass dissociation (b) through triple Pomeron
and multi-Pomeron corrections, from [361]. Reprinted with
permission from [361], ©(2010) by Springer.

One then writes the total elastic and inelastic cross-sections
in impact parameter space as

d20t tal d20l ti
— ota. _ etLastic — 2%mTel _ |Tel|2

d2b d?b
(5.6.66)
which coincides with 1 — e~ and brings the interpre-
tation of e~ as the probability for inelastic interactions.
One notices that this interpretation is valid also in case of
a non-negligible real part of (2.

d2 Oinel
d?b

Diffraction is defined as elastic scattering and low-mass
proton dissociation, to distinguish it from high mass dis-
sociation, the two types of processes being graphically
described in Fig. [5.34] from [361]. Apparently the multi-
Pomeron vertex controls both the saturation scale and
high-mass dissociation. The elastic differential cross-section
is written as

doe 1 id.- _0
dtl _ E|/d2be'qfl’2|ai|2|ak|2(l —e Qlk(b)/2)|2
ik

(5.6.67)
In [362] a three channel formalism is used to describe the
diffractive final states. Here we shall describe their two-
channel formalism. In [223], the GW formalism is applied
to the states pp, pN*, N*N*, and the relative processes
are introduced through a parameter v which describes the
effective coupling of the proton to the excited state N*,
which will then decay into the observed low mass diffrac-
tive products. This is done by modifying the one channel
description into a two channel one, i.e. by the substitution

8, ( Blp—p) Blp—N*) ) (5.6.68)

B(N*™ = p) B(N* = N*)

~ B(p — p) (}y D (5.6.69)
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The expression for the elastic amplitude thus modified to
take into account the other channels, is now

1 _
SmAa(b) =1- e (1+7)292(be) /2_

1 2 1 2
Ze— (=) 0R(b)/2 _ Z o —(A=7)702(b:)/2
5¢ 1€ | (5.6.70)
SmA(pp — N'p)(br) =
1
Z[ef(lf“Y)%?(bt)/? — e (1M QC)/2] (5.,6.71)
1
SmA(pp — N*N*)(by) = 7 [—e (7020024
90— (1=7)92(bs)/2 _ e*(1+7)29(bt)/2} (5.6.72)

In this model the opacity function is real and the ampli-
tude acquires a real part through

ReA TA
Sd = tan(?) (5.6.73)
where Dlog(ImA)
og(Im
= - . . 4
A Dlog s (5.6.74)

The elastic proton-Pomeron vertex is parametrized as

By
(1—t/a)(1—t/a—2)

with Bg to be obtained from pp total cross-section.

Vp— P = (5.6.75)

— KMR high mass diffractive dissociation

The previously described decomposition of elastic scatter-
ing into GW type states cannot be applied to other types
of inelastic processes where the final state has a continu-
ous mass distribution, and does not have the same quan-
tum numbers as the initial proton. As we shall also see in
the case of the Tel Aviv model, triple-Pomeron exchanges
are invoked for this type of events, with the cross-sections
written as [223]

M?dosp 1 9 S \2a()_2 M2 a(0)-1
dtdM? 167T293P(t)ﬂ(0)/8 (t)(m) (I)
(5.6.76)
M?dopp 1

= g3p ()3 (0)ewp[(1 + ap(0) — 2ap(t)) Ay]x

dtdyldyg B 1673

% (7)04(0)71

where 3(t) is the coupling of the Pomeron to the proton
and gsp(t) is the triple Pomeron vertex, obtained from a fit
to low energy ISR data in [362]. M and y are the diffractive
mass and the rapidity regions for double diffractive disso-
ciation. To avoid these contributions to grow too rapidly
and violate unitarity, saturation and screening must be
imposed and survival probability factors are introduced,
as described for instance in [223].

— KMR5 Recent phenomenology
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After the general overview of the model, let us see how
KMR, apply it to elastic scattering at LHC. The basic
building blocks of this model are now the three-channel
eikonal formalism and multipomeron exchange diagrams,
incorporating both unitarity and Regge behaviour. These
physical requirements are parametrized through the fol-
lowing procedure:

— the s—dependent bare Pomeron intercept A = a.p(0)—
1

— the bare Pomeron slope o/ ~ 0

— a parameter d, which controls the BFKL diffusion in
ky

— the strength of the triple-Pomeron vertex

— the relative weight of the diffractive states ~;, deter-
mined by low mass diffractive dissociation

— the absolute value N of the initial gluon density.

In [358], the authors compare their original predictions, for
the total cross-section and diffractive quantities, with the
TOTEM results, and, as stated earlier, they find the need
to do new adjustments of the parameters, acknowledging 7
lessons, among which i) the fact that Totem result, o =
Ototal —Oel = 73.5 mb, is higher than the others, CMS and
ATLAS extrapolated -KMR believe it is due to low mass
diffraction being higher than expected- and that ii) the
ratio o /0totar = 1/4 according to TOTEM and it cannot
grow further. It is also acknowledged that to describe both
the forward peak and the dip in do¢;/dt the Durham model
would need to introduce more parameters.

Adjustment of the parameters leads to new results,
which we present in Table[12|from [225]. In this table, some
KMR results for total cross-sections both prior to and
including recent LHC data are shown. This adjustment
does ameliorate the situation, bringing their prediction
quite close to most recent TOTEM result (at this writing)
of ototar = 98.58 + 2.23 mb [343].

Finally, recent descriptions of the elastic differential
cross-section in the small |¢| range in this model is shown
in Figs. from [260], where a good description of how
the various choices of formalism and parameters lead to
the final results.

5.6.4 Very small t behaviour

As already seen when discussing early measurements at
ISR, various experiments reported an increase in the ef-
fective slope as —t approached zero. Such an effect is also
seen when comparing LHC7 data with a phenomenolog-
ical application such as the PB model revisited in [298]
3006]. In this application, the two exponential model with
a constant phase describes very well the region 0.2 <
lt| < 2.5 GeV?, but misses the optical point by some
10%, signaling that the slope has a more complicated ¢-
dependence than that given by two exponentials. In gen-
eral, attempts to describe the elastic differential cross-
section near the optical point as well as the region past
the dip encounter difficulty in describing the very small
t behavior. Presently, for LHC, a complete description is
still lacking. From the theoretical point of view, it can
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Table 12. Values for various total cross-section components, in two different models: at left, in the original KMR model, prior
to the LHC data [227] , at right in the KMR 3-channel eikonal from [224], inclusive of LHC TOTEM data at /s = 7 TeV.

KMR pre-LHC7 3-channel KMR post-LHC7
energy Ototal Oel UZS;ZM O'lIZ@EU)M Ototal Oel B Ule]gM Ul?)EM
TeV mb mb mb mb mb mb | GeV™2 mb mb
1.8 72.7 | 16.6 4.8 0.4 79.3 | 179 18.0 5.9 0.7
7 87.9 | 21.8 6.1 0.6 97.4 | 23.8 20.3 7.3 0.9
14 96.5 24.7 7.8 0.8 107.5 | 27.2 21.6 8.1 1.1
100 122.3 | 33.3 9.0 1.3 138.8 | 38.1 25.8 10.4 1.6

do_/dt (mb/GeV?)

ISR pp at 625GeV (x100)

Fig. 5.35. The elastic differential cross-section for pp or pp
using a two channel eikonal model, which includes the pion loop
contribution to the pomeron trajectory, from [260]. Reprinted
with permission from [260], ©(2014) by IOP.

be argued that this region should have contributions from
the nearby thresholds in the unphysical region. The pres-
ence of this behavior at very small ¢ was advocated long
time ago by Anselm and Gribov [323] as well as by Cohen-
Tannoudji, Ilyin and Jenkovszky [335] and has been dis-
cussed by the Durham [223] and the Cosenza group [205].
In the following, we shall describe two attempts to include
such effects, the one in the Durham model, and then a
model proposed by Pumplin.

In the KMR model [223], the Pomeron trajectory of
Eq. is modified so as to include a very small |¢|
effect. It is then called a two component Pomeron, consist-
ing of three terms: the first two correspond to the usual
linear trajectory describing the large scale, small impact
parameter space b;, while the third term corresponds to
pion-loop insertions and contributes a correction to the
small t-behaviour of the local slope. Such improvement
over the linear Pomeron trajectory consists in introduc-
ing the pion loop corrections as prescribed by Anselm and
Gribov[323]. The underlying physical idea is that pions
being the lightest hadrons and the massless pion limit ex-

pected to be neither divergent nor negligible may provide
observable corrections to the high energy slope of the elas-
tic differential cross-section in the low momentum transfer
limit. The expression proposed in [223] for the modified
Pomeron trajectory is

pamz ., 4m3
ap(t) = a(0) + o't — 39,3 h(r); [7= i l, (5.6.78)
where
4 vi+71+1 m?
hit) = —F2(t)[2r — (1 32 og (Yo ) + log —
(T) T w()[T ( +T) Og(\/m_l)+0gm2]

(5.6.79)
with m = 1 GeV a semi-hard scale. The coefficient 32
specifies the Pomeron residue to the w7 total cross-section
and )

1—t/ay’
The above modification should then explain the very small-
t dependence of the effective slope of the differential elastic
cross-section in the KMR model.

Reflecting the same type of singularity in low-¢ elastic
scattering, a model was constructed by Pumplin for the
elastic amplitude in impact parameter space [73] which
has the virtue that its Bessel transform, i.e., the elastic
amplitude as a function of the momentum transfer ¢t =
—¢?, has branch points at the “right thresholds”: t =
w2 (2u)%; (3p)?, ... Or, it can be modeled as the two gluon
exchanges with a threshold at t = 4m2, where my is the
effective gluon mass.

Defining the elastic amplitude as

Fr(t) (5.6.80)

Ototal(s) = 4TSMF (s,t = 0), (5.6.81)
with -
F(s,t) =1 / bdbJ,(qb)F (s, b) (5.6.82)
and ~
F(s,b) =1— e 260 (5.6.83)

in the limit of a purely imaginary amplitude, which is
a good approximation at large s and small ¢, Pumplin
models the b-dependence of the real (2, as follows

2,(s,b) = (s)erlo(8) =V (62400 ()] (5.6.84)
Using the decomposition
eIk ?+i? o0 e~ VR
e / A
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it is possible to invert Eq.(5.6.82) as a convergent power
series given by

)n—l

F,(s,t) = ibo(s)*n(s) Z <_731! [yo(lyj y>]eyo—y’

n=1

(5.6.86)

where y, = nub,(s) and y = +/y2 — th2(s).

The series expansion for the elastic amplitude obtained
in Eq. converges rapidly and hence was proposed
as quite useful for numerical computations. Also, the re-
sulting slopes and curvature as a function of the momen-
tum transfer are quite smooth. Remaining always in the
small ¢ range, the model provides clear insights into the
intricacies involved in obtaining accurate estimates of the
slopes and curvatures as a function of ¢. Let B(0) and
C(0) = B'(0)/2 be the forward slope and the forward cur-

vature respectively. Below we quote their numerical values
at /s =19.4 and 546 GeV obtained in this model.

Vs =19.4GeV : B(0) = 12.44GeV~%,C(0) = 7.72GeV~*
Vs = 546CeV : B(0) = 16.82GeV 2, C(0) = 13.65GeV *
(5.6.87)

However, the sizable forward curvature cautions against
accepting forward slopes obtained through single expo-
nential fits. Another important point is that the curvature
decreases strongly as a function of ¢ and changes sign at
larger values of ¢ [298[73].

5.6.5 Elastic diffraction in AdS/CFT

A strong emphasis on the embodiment of N=4 Super Yang
Mills (SYM) physics [363] is part of the work by the Tel
Aviv group, Gotsman, Levin and Maor (GLM). Because
of this as well as of the intrinsic interest of the results, we
now briefly discuss the approach to this problem in the
context of the string/gauge theory developed in a series of
papers by the Brown University group [264,364,365]. In
these papers string/gauge duality has been employed to
obtain interesting results for the Pomeron and the physics
of elastic amplitudes for small ¢.

A brief summary of results can be found in [366]. We
can not give here a detailed description of the elegant
formalism developed in [26413641[365], but present below
results regarding the Pomeron intercept and a modified
eikonal expression derived from AdSs5. In their string/gauge
theory, a scalar kernel K(s,t,z,2') as a function of the
4-dimensional invariants (s,t) and two bulk coordinates
(z,2") from the fifth dimension, describes the Green’s func-
tion for the Pomeron. At ¢t = 0 its imaginary part reads

Sjo

eln2 (2/2")/Din(s) ,
7Din(s)

ImK(s,t =0,z,2") ~

(5.6.88)
where the Pomeron intercept j, and D are given by

jo=2-2/VX; D=2/V}, (5.6.89)
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with A denoting the (large) 't Hooft coupling constant.

The expression for the imaginary part of the Pomeron
propagator in Eq.(5.6.88]) is similar to its corresponding
form (in the weak limit) with its BFKL expression

gdo

wDin(s)

SmK(s,t =0,p1,p) ~ elnz(PL/pl)/Dln(S),

(5.6.90)
where j, = 1—1—04N(4l7;(2) ), = g%, /4w is the SU(N) cou-
pling constant for N colours and D = (14¢(3)/m)aN. The
above allows one to identify the correspondence between
diffusion in the gluon mass virtuality given by In(p?) in
Eq. with diffusion in the radial coordinate In(z?)
in the dual AdS5 given by Eq@ .

A reduction from AdSj5 to the needed AdS3 propagator
is then made. The latter depends on the AdSs3 chordal
distance

(zL -2/ )* + (2 —2')°
v = J_2zz’ (5.6.91)

and a dimension A, (j) — 1 obtained for the physical spin
j operators occurring in BFKL/DGLAP:

AL(f) =2+ /4 +2VA([ —2) =2 +/2VA( — o),
(5.6.92)
where Eq.(5.6.89) has been used to obtain the last part of

the above equation. Rewriting Eq.(5.6.92)) as

_ o\2
mm”mm,

one sees the symmetry A < (4 — A). Hence, the function
A, interpolates correctly (i) the value j = j, at A = 2
giving the BFKL exponent as well as (ii) j =2 at A =4
corresponding to the energy-momentum tensor, the first
DGLAP operator. A schematic representation of the re-
lationship between j andA is shown in Fig. In the
eikonal limit - for its domain of validity see [364]- the am-
plitude for scattering 1+ 2 — 3 + 4 is written as

J(A) =2+ (5.6.93)

~ 9is / (20)(d=d2") Prg(2) Paa (2 )94 [¢iX — 1],

(5.6.94)
where Py3(z), Pa4(2') are wave functions in the bulk coor-
dinates and for Pomeron exchange, the generalized eikonal
x which is a function of (s, b, z, 2’) is given in terms of the
Pomeron kernel by

9o !

_Jo~ " !
Q(ZZ/)QSIC<S,I),Z,Z ).

X(s,b,2,2") = (5.6.95)

In the limit where Pomeron exchange dominates, for s —
oo and A fixed, the eikonal reads
61'77(17jc,/2) (ZZ/S)J‘O*l

v(2+4 )

X ~ (5.6.96)

We may pause here to note the similarity and differences
between this approach [for j, > 1 and moderate values
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-1 1 2 3 < N
A

Fig. 5.36. Schematic curve from [264] showing spin j versus
dimension A as given in Eq. both for A << 1and A >>
1. All curves pass through the points j = 2;A = 0 and j =
2, A = 4 where the anomalous dimension vanishes. The dashed
lines show A = 0 DGLAP branch(slope 1); BFKL branch (slope
0) and inverted DGLAP branch (slope —1). Reprinted from
[264], ©(2007) by Springer.

of z,2'] and the minjet model for total hadronic cross-
sections. Also in the minijet model, the eikonal is pro-
portional to s¢ with € ~ 0.3, a power of the total energy.
However, in the minijet model, there is an exponential sup-
pression for large b which softens the power law growth in
energy of the eikonal to powers in logarithms of energy of
the elastic amplitude. Eq. by contrast shows that
the eikonal decreases only as a power of v (or b) for large
.

5.6.6 Gotsman, Levin and Maor: the Tel Aviv model

Recent descriptions of the model, which embody both
Reggeon field theory and features from N=4 SYM gauge
theory, can be found in [353] and in [367] where the diffrac-
tive peak at LHC and a summary of experimental and
various model results are presented. High energy predic-
tions for the mass distribution for both low and high mass
diffraction can be found in [368].

For what concerns the elastic differential cross-section,
from the optical point to past the dip, this model, similarly
to KMR, describes the diffraction peak region where non-
perturbative effects are dominant, and is not yet extended
to the dip region.

To describe elastic scattering and include the different
components of diffraction, single (SD), double (DD), and
central (CD), low-mass and high mass diffraction, GLM
introduce both a Good and Walker (GW) formalism with
GW diffractive states, as well as non-GW processes.

In previous papers, whose reference can be found in
[369], GLM had obtained a good description of the total
and the elastic differential cross-section in the small —¢
region, with a given choice of the parameters defining the
model. However, TOTEM data, in particular the rather
high total cross-section value, were seen to require some
changes in the parametrization [353]. Only one parame-
ter seems however to be in need of a change, namely the
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Pomeron intercept Ap. Other parameters need not to be
changed, at least for a good description of high energy
data, namely /s 2 500 GeV, where the present interest
lies for this model. Before giving some more details on this
model, we note the following input elements:

— both GW states and non GW states contribute to
diffraction

— GW states contribute to both low and high mass mass
diffraction, non-GW states only to high mass diffrac-
tion

— the amplitude in the eikonal is purely imaginary (the
model is basically applied to the low ¢-region)

— dipole form factors inspired by the proton form factors
give the factorizable impact parameter dependence in
the eikonal functions

— the s-dependence of the amplitudes comes from a single
Pomeron with ap = 0 and intercept Ap = 0.23

— multi-Pomeron interactions described by enhanced and
semi enhanced diagrams contribute to both GW and
non-GW states

From the above one notices once more that the s-dependence
of this model is the same as in mini-jet models, with a term
s¢, which is not associated with any explicit ¢-dependence.

To take into account the whole spectrum of diffraction,
GLM starts with a simple Good and Walker model with
two eigenwave functions ¥, and 5. Upon diagonalization
of the interaction matrix, the wave functions of the two
observed states, a hadron and a diffractive state, the latter
with mass small compared to the energy of the process,
respectively ¢y, and ip, are written as

Yy = athy + Biba, Yp = —PY1 +arpy  (5.6.97)

with o + 2 = 1. One then constructs the scattering
amplitude 4, x(s,b) in impact parameter space b, with
i = h, D by solving the unitarity condition

28mA; 1(s,b) = |A;i k(5,0)|* + Gy x(s,b) (5.6.98)
ie.

A r(s,b) = i(1 — e Purlsb)/2) (5.6.99)

The eikonal function §2; is the imaginary part of the
scattering amplitude for a single Pomeron exchange, i.e.

Qis; = i(b)g(b)P(s) = gi(b)gi(b)s* (5.6.100)
where the Pomeron-proton vertex g;(b) = g¢;5;(b) and
S;(b) is the Fourier transform of the proton-like form fac-
tor, a dipole with a scale m;. The zero value for the Pomeron
slope, i.e. @ = 0 in GLM is understood to be in agreement
with the results from N=4 SY as described previously, and
is crucial as it allows for resummation of all pomeron in-
teractions One sees that the impact space dependence in
each eikonal (2;  depends on 4 parameters, the scales m;
and my, in the form factors and the proportionality fac-
tors g;, gx. The amplitude in Eq.(5.6.99) gives the mul-
tipomeron exchange contribution to the elastic and GW
diffractive states.
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The contribution of GW states is obtained using the
formulae

ae(b) = i(a* A1 1 + 202 5% A1 5 + Az o)

(5.6.101)

[ =i{ap{-a’ AL + (0 = 57) ALz + B2 As 0}
(5.6.102)

aG)V =ia?B*{ A1 — 2410 + Agp}
(5.6.103)

with the corresponding cross-sections

Orot = 2/d2b ae1(s,b) (5.6.104)
= /d2b |lai(s,b)|? i=el,sd,dd  (5.6.105)
(5.6.106)

To these contributions, one needs to add non-GW terms,

which are produced by Pomeron interactions, in this model
only considering triple Pomeron interactions. These con-
tributions involve the triple Pomeron coupling G3p. For
single diffraction into a mass M, with Y = log(M?/s) the
authors obtain

AMF/d?bzA(

X gl(b b',m;)gi(b',my)gr(b
(gumz;b b/ Yin )
Q(
Q(

Gsp 1

e =) (5.6.107)

! mi)5.6.108)
(5.6.109)

Gk, My, b Y — Y, (5.6.110)
)

:

glvmlab Y - Y ) (56111

where G3p is the triple Pomeron vertex proportional to o
and

_ Gp(Y)
Q(g,m,b,Y) = 5 Gor/7)9Ce (V)8 o) (5.6.112)
Go(Y) =1 exp[T(ly)]T(ly)F(O, T(ly)> (5.6.113)
T(Y) =~e?Y  (5.6.114)
v = % 2. (5.6.115)

Similarly, one can obtain the amplitudes Af‘,ic for double
diffraction in terms of the functions Q written above, de-
tails can be found in [353]. The final result is that the
integrated cross-section for single diffraction is the sum
of two terms, the GW and non-GW, likewise for double
diffraction. To obtain the integrated cross-sections how-
ever, a further step is required, i.e. the amplitudes A% Gk
and Ai‘i are multiplied by the survival probability factors
e ik,

The model cannot be solved from first principles, and
needs phenomenological inputs such as the Pomeron inter-
cept, the interaction vertices between the Pomeron with
the two GW states, the low-energy amplitude of dipole-
target interactions and one constant, for the GW states,

B.
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The connection with N = 4 SY M is considered in
[363] where the model is discussed in light of satisfac-
tion of two ingredients: i) the need to deal with a large
coupling constant, and ii) the requirement to match with
high energy QCD. Thus, the Pomeron intercept can be
large, but the slope of the Pomeron trajectory is very
small. These results, already introduced in the previous
papers, match with the fact that, in the strong coupling
limit, N = 4 SY M theory has a soft Pomeron, i.e. the
reggeized graviton with a large intercept, ap = 2 — 2/v/A
with A = 47N.aY M, oYM the QCD coupling constant.
The other important ingredient of the GLM model is the
natural matching with perturbative QCD, where the only
vertex that contributes is the Pomeron vertex: this is also
understood in N = 4 SYM since the Pomerons (gravitons)
interact by means of the triple Pomeron vertex, which in-
fact is small, at least o< 2/v/A. Another matching result
between GLM and N =4 SY M is that at large A, only
processes from diffraction dissociation contribute to the
scattering amplitude. In GLM model, diffraction indeed
plays also a large role, as discussed before.

The main ideas of this model can be summarized as
follows:

— a double face Pomeron, with
1. alarge intercept, ap(0) — 1, a direct consequence of
A =1-2/vX when \ becomes large
2. ashort distance behavior, indicated by a small slope
ap ~ 0, as a QCD matching prescription
— Good Walker mechanism and triple Pomeron vertex

To the above, one needs to add an important crucial com-
ponent of GLM description of diffraction, i.e. the survival
probabilities for large rapidity gaps. From the eikonal for-
mulation, the survival probabilities are obtained from the
quantities

P = exp[—2(s,b)], (5.6.116)

which represent the probability that the initial state |, k >
does not break up after the scattering.

After the publication of the TOTEM actual data for
the differential cross-section and confirmation of earlier
results for total elastic and inelastic, GLM were able to
consolidate their parameters, and present definite expec-
tations for this model [353]. The detailed results for all the
quantities of interest appear in the paper. These include
Ctoty Oel aNd Oiper at /s = 1.8, 7,8,57 TeV in addition to
Osd, Odd, for which the separate values obtained for the
GW and non-GW contributions are also listed.

We reproduce in Fig. [5.37]the fit to data in the small t-
range for different energies up to LHC14. Since the model
is only to be applied at vary small —t values, as one ap-
proaches the dip the model starts not to reproduce well
the data.

Because of the importance of diffraction in this model,
a warning is pronounced about the black disk limit in
[369]. The model results indicate a very slow approach of
the elastic amplitude to saturation of this limit, in good
qualitative agreement with what we have noted elsewhere
in this review, namely that the AUGER results for the
inelastic cross-section indicates oo (57 GeV) # 0.50¢0tal-
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Fig. 5.37. Description of low-t elastic scattering in GLM from
[353]. Reprinted from [353], (©(2012) with permission by Else-

vier.

To summarize, it is observed that present Reggeon models
all introduce at least two different mechanisms for diffrac-
tion. In GLM, these two mechanisms are : i) the GW pro-
duction of diffractive states with unspecified finite mass,
independent of energy, and (ii) diffraction due to Pomeron
interactions, with a dependence on the Pomeron param-
eter Ap. In other models, there are distinctions between
low-mass and high-mass diffraction, and central diffrac-
tion. A discussion of this point can be found at the end of
Ref.[353].

We note that a model along very similar lines to GLM
(and KMR) has also been developed by Ostapchenko [75].
This model is compared with GLM and other similar mod-
els for diffraction in [367]. Ref. [367] presents a good re-
cent comparative discussion of diffraction amplitudes up
to LHCT7 energies.

5.6.7 A comment about soft gluons and diffraction.

Before ending this brief review of selected contributions
present in the literature, we shall comment on the pos-
sible interpretation of diffraction in terms of soft gluon
emission. In the BN model of [94,95], the contribution
to diffraction is not present. What drives the increase of
the cross-section is the result of parton-parton scattering
(mini-jets) dressed with soft gluon emission from the ini-
tial valence quarks. Eikonalization then re-sums multiple
interactions, each one of them coming with its own cloud
of soft gluons. The present version of this model does not
explicitly include soft gluon emission from the spectator
quarks. However, diffraction along the initial state pro-
tons in such a view should include both emission from
the quarks participating to the scattering, but also from
the so-called spectator quarks. When the proton is hit by
the other hadron, quarks also undergo intra-beam scat-
tering. Such emission is along the colliding particles. This
is in agreement with the original view of diffraction a’
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la Good and Walker where the target and/or the projec-
tile dissociates into a state with no change of quantum
numbers: the only gluon emission process which, by def-
inition, does not change the proton quantum numbers is
resummed soft gluon emission. This is the dynamical pic-
ture which should be addressed. If nothing else but diffrac-
tion a’ la Good and Walker is present, then this emission
could be accompanied by a factor inhibiting parton-parton
scattering, namely a survival probability factor.

5.7 One-channel mini-jet model for total, elastic and
inelastic cross-sections

As just discussed in [5.6.7} our BN mini-jet model has
not yet dealt with diffraction, being so far a one-channel
eikonal model. However, this model can provide inter-
esting insight in the distinction between correlated and
uncorrelated inelastic processes, and what in included in
Oelastic N one-channel eikonal models.

Here we shall discuss the mini-jet contribution to to-
tal, elastic and inelastic cross sections, using a one-channel
eikonal formulation as described in greater detail in [93].
To construct the total cross section, mini-jets are embed-
ded into the eikonal formulation. Starting with

Ototal = 2/d2b[1 — Re(eX®9)] (5.7.1)

and neglecting the real part in the eikonal at very high
energy, the above expression further simplifies into

Ttotal = 2 / d?b[1 — e x1(0:9)] (5.7.2)
where x7(b,s) = Smx(b, s). Notice that Rex(b,s) ~ 0 is
a reasonable approximation for the scattering amplitude
in b-space at t = 0, where very large values of the impact
parameter dominate and phenomenologically the ratio of
the real to the imaginary part of the forward scattering
amplitude p(s) << 1. By properly choosing a function
x1(b, s), all total hadronic cross sections, pp, pp, mp, etc.,
can be described up to currently available data [I5I]. In
the vast majority of models, new data have often required
an adjustment of the parameters which give x;(b, s).

In previous publications, we had proposed a band whose
upper border gave a good prediction for LHC results. By
updating the model and anchoring the parameter set to
LHC results, one can now proceed to refine our predictions
for higher energies, LHC13 and beyond to the cosmic rays
region.

The eikonal function of the mini-jet model of [941[95]
is given by

2x1(b,s) = ngf:ft(b, s) + "?ﬁl(ba s)
== AFF(b)Jsgft(s) + A%pN(pv PDF, bv S)Ujet(PDFa Ptmin; 5)
(5.7.3)

The first term includes collision with p; < prmin ~ (1 +
1.5) GeV, the second is obtained from the mini-jet cross
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section. The term n”?” ft(b, s) is not predicted by our model
so far and we parametrize it here with 0¥}, (s), obtained
with a constant and one or more decreasing terms, and
App, the impact parameter distribution in the non pertur-
bative term, obtained through a convolution of two proton
form factors.

As expected, the second term in Eq. 5.7.3: is numer-
ically negligible at energies /s < 10 GeV. The pertur-
bative, mini-jet, part discussed previously is defined with
P AN > Pimin and is determined through a set of pertur-
bative parameters for the jet cross section, namely a choice
of PDFs and the appropriate pgpmqn. Since soft gluon re-
summation includes all order terms in soft gluon emission,
our model uses LO, library distributed, PDF's.

The results of the LHC updated analysis of the one-
channel BN model have been presented in Fig.[1.19] where,
as mentioned, the pp points are shown, but have not been
used for the phenomenological fit, and values for pp ex-
tracted from cosmic ray experiments have not been used
either. In this figure both ”old” densities such as GRV [97]
and "newer” ones such as MSTW [96] have been included
and compared with other models [261] and one-channel
model predictions such as in [260262]. Table [13| contains
the points corresponding to our model results for both
GRV and MSTW densities’] Results for MRSTdensities
can be found in [92], together with details of different pa-
rameter sets used for the different PDFs.

Table 13. Total cross section values in mb, from the mini-jet
model with two different PDFs sets.

Vs GeV [ oSV mb [ oM3TW mb
5 39.9 39.2
10 38.2 38.6
50 41.9 42.2
500 63.2 62.0

1800 79.5 77.5
2760 85.4 83.6
7000 98.9 98.3
8000 100.9 101.3
13000 108.3 111.7
14000 109.3 113.7
57000 131.1 149.2

We notice that our model is able to describe very well
all the total cross section accelerator data, and gives a
good agreement with cosmic ray data. The AUGER point
falls within the two different parametrizations we are us-
ing, full line for MSTW and dashes for GRV. By con-
struction, both parameterizations remain very close up to
LHC7 and LHCS energies, and start diverging as the en-
ergy increases, as a consequence of the uncertainty on the
very low-x behavior of the densities.

To summarize in the model we have proposed, past ISR
energies, mini-jets appear as hard gluon-gluon collisions
accompanied by soft gluon emission k;-resummed down

9 An error in the arXiv posted paper [33] in the table for
MSTW predictions at 13 and 57 TeV has now been corrected.
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into the infrared region. In this language, we have a dressed
hard scattering process, with the mini-jet cross section
giving the same energy behavior as the hard Pomeron, and
soft gluon resummation providing the dressing, in which
the hard interaction is embedded. The eikonal formulation
then transforms this dressed hard gluon interaction into
a unitary ladder. The main difference with other mini-jet
models such for instance in [370], is the taming mechanism
ascribed to soft gluon resummation in the infrared region.

We now turn to discuss the inelastic cross section. The
inelastic total cross section is defined by subtraction from
the total and the elastic cross sections. However, experi-
mentally, it is usually defined only in specific phase space
regions, and eventually extrapolated via MC simulation
programs, which also include parameters and choice of
models in the diffractive region. One exception is TOTEM
which covers a large rapidity range.

Here, we shall focus on one, theoretically well defined,
part of the inelastic cross section, what we define as un-
correlated, which is appropriately described in the mini-jet
context and through the one-channel mode. In the follow-
ing we shall see how.

Since our study [42] on the inelastic cross section at
LHC, soon followed by the first experimental results [371],
data related to measurements in different kinematic re-
gions have appeared. Extensive and detailed measurements
have been obtained for the inelastic proton-proton cross
section by CMS [372], ATLAS [371], TOTEM [281,258],
ALICE [373] and LHCb [374] Collaborations. These mea-
surements cover different regions, central and mid-rapidity,
large rapidity, high and low mass diffractive states. Exten-
sive QCD modeling, including minijets [88,375L08376],
goes in describing the different regions.

Here, we concentrate on the implication of any given
one-channel eikonal model. Thus, we repeat the argument
about the relation between the Poisson distribution of in-
dependent collisions and diffractive processes given in [42],
where we stressed that the inelastic cross section in a one-
channel eikonal model coincides with the sum of indepen-
dently (Poisson) distributed collisions in b-space. Namely,
with

Ototal = Oelastic T Tinel

(5.7.4)

then, in a one-channel (one-ch) mode,

inel elastic

O_onefch = Gror — O_onefch _ /d2b[1 _ €_2X1(b75)] (575)
But since

(5.7.6)

one can identify the integrand at the right hand side of
Eq. with a sum of totally independent collisions,
with 2x;(b, s) = (b, s). We suggest that this means that
in so doing one excludes diffraction and other quasi-elastic
processes from the integration in Eq. ((5.7.5). Hence, the
simple splitting of the total cross section as in Eq. ([5.7.4))
needs to be better qualified when a one-channel eikonal is
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used. In such a case, the “elastic” cross section

(5.7.7)

elastic

O_onefch _ /d2b|1 _ e—XI(b,s)|2

must be including part of the inelastic contribution, i.e.

one—ch
elastic

dif fractive or otherwise correlated processes
(5.7.8)

= Oeclastic +

and Jfg:l_Ch is only the non-diffractive part. Within this

approach, we can compare Eq. with data.

This comparison is shown in the left hand panel of
Fig. from [92], where inelastic cross section data up
to AUGER energies [86] are plotted. The blue band cor-
responds to the expectations from Eq. where the
same eikonal function x;(b, s) which gives the total cross
section as seen in the right hand plot of Fig. is used.
Having anchored the eikonal x;(b,s) to the LHC total
cross section, the band indicates the spread of predictions
due to the different asymptotic low-x behavior of the em-
ployed densities, as the energy increases beyond LHCS.
The top curve corresponds to MSTW, the lower one to
GRV.

The comparison with experimental data is very inter-
esting. While the present LHC inelastic cross section data
span a range of values corresponding to different kine-
matic regions, Eq. identifies the region where un-
correlated events described by mini-jet collisions, parton-
parton collision with p; > pimin, play the main role. From
the comparison with data, we can identify it with the re-
gion £ = M% /s > 5x 1075 where three LHC experiments,
ATLAS [371], CMS [872] and ALICE [373], agree to a
common value within a small error. This measurement is
in the high mass region (for instance, at LHCT7 the lower
bound gives Mx = 15.7 GeV). LHCD results correspond
to a lower cross section, but they do not cover the same
region of phase space.

The above results are summarized in Fig. |5.38| where
the bands correspond to different PDFs used in the calcu-
lation of mini-jets and to their different extrapolation to
very low-x at the cosmic ray energies.

The dashed yellow band is the one-channel inelastic
cross section that only includes Poisson-distributed inde-
pendent scatterings. That is, once the parameters of the
eikonal x1(b, s) are chosen to give an optimal reproduction
of the the total cross section, the computed inelastic cross
section immediately gives the uncorrelated part of the to-
tal inelastic cross section. The importance of this fact for
cosmic ray deduced pp cross sections has been noticed in
[92] and discussed in[2.7.2]

5.7.1 A phenomenological proposal for isolating the
diffractive component.

The total cross section, which our BN model successfully
describes, includes different components, but only one of
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them is well defined experimentally as well as theoreti-
cally, that is the elastic cross section. It is well known that
one-channel eikonal models fail to simultaneously describe
the total and the elastic cross section through the entire
available CM energy range, with the same parameter set.
In the last sub-section, we have delineated this shortcom-
ing through the observation [93] that once mini-jets be-
come operative past the soft edge identified by Block and
collaborators in [378], the computed elastic cross section
includes correlated inelastic collisions and the computed
inelastic lacks the same (i.e., its correlated inelastic part).
We now discuss this matter in detail so as to make these
statements quantitative. We shall do so through the one-
channel mini-jet model with a suitable parametrization of
diffractive data.

In one- channel eikonal models, with the inelastic part
given by Eq. (5.7.5), the elastic part of the total cross sec-

tion is given by Eq. (5.7.7). Notice that whereas Eq. (5.7.5|)

is exact, in Eq. (5.7.7)) the real part of the eikonal function
has been neglected, as in Eq. (5.7.1)).

Eq. reproduces with a good approximation the
elastic cross section data up to the onset of minijets, devi-
ating significantly from the data already at energies around
100 GeV. In particular, at the Tevatron, Eq. gives
an elastic cross section roughly 30 % higher than the data.
This is shown in the left hand plot of Fig. [5.39] where
the one-channel result from Eq. is plotted together
with elastic scattering data and an empirical parametriza-
tion of all elastic differential cross section pp data from ISR
to LHC7 [306].

The analysis of [300] is based on the Phillips and Barger
model for the elastic differential cross section [320], de-
scribed in [5.3.1] implemented by a form factor term to
fully reproduce the optical point, and hence the total cross
section, as well as the forward slope. Through suitable pre-
dictions for the high energy behavior of the parameters,
the parameterization of [306] provides a model indepen-
dent prediction both for elastic and total cross sections at
very high energies, and hence can be used as a good test of
different models in the high energy region beyond present
accelerator data.

The left hand plot of Fig. from [93] shows that
at low energies, before the onset of mini-jets, one- chan-
nel models may be used to describe both elastic and total
cross sections. However, past ISR energies the threshold of
perturbative QCD, reflected in the appearance of the soft
edge, is crossed, and one-channel models fail. One-channel
models are also unable to reproduce the behaviour of the
differential elastic cross section, and multichannel models
with added parameters are then needed to describe diffrac-
tion. The difficulty with proper descriptions of diffraction
is that at different energies, different parts of the phase
space are accessed by different experimental set-ups, as
we show in the right hand plot of Fig.

For the argument to follow, we consider an estimate
of opisy given by Eq. (36) of [76], which provides a good
interpolation of Single Diffractive (SD) data, from ISR to
the LHC results from ALICE, CMS and TOTEM, as we
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Fig. 5.38. In these plots from [92], the bands correspond to uncertainties related to the very low-x behavior of the PDFs
used in the calculation of the total and inelastic cross-sections. At left, data for the inelastic cross section are compared with
GRV and MSTW densities in the eikonalized QCD mini-jet with soft gluon resummation model, called BN model in the text
and discussed therein. The inelastic uncorrelated cross section is compared with inelastic processes for M% /s > 5 x 107% as
measured by ATLAS [371], CMS [372] and ALICE [373]. We also show comparison with Bloch and Halzen (BH) results [377].
In the right panel, results for our BN-model are shown for pp total cross section together with the inelastic uncorrelated part of
the inelastic cross section, obtained from the one-channel mini-jet model. Accelerator data at LHC include TOTEM [104][258]
and ATLAS measurements [259]. Reprinted from [92], Fig.(4), ©(2015) by the American Physical Society.
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Fig. 5.39. At left, we show the elastic pp cross section from the one-channel model given by the top curve, with choice of MSTW
PDF as in the upper cure of the right hand plot of Fig. [5.38] The green curve corresponds to the empirical parametrization of all
differential elastic pp data [306] up toy/s = 7 TeV. Comparison is done with both pp and pp data. The right hand panel shows
diffraction data from E710 [379], UA5 [380L[381], UA4 [382], ISR [383], CDF [384], CMS [385], TOTEM [258] and ALICE [373]
compared with the parametrization given by Eq. mentioned in the text. Reprinted with permission from [306], ©(2013)
by the American Physical Society.

shown in Fig. [5.39] i.e. pseudo rapidity and more data are needed to conclude
3 that DD does not play a significant role at LHC energies.
opirr(s) = | (0.5mb) s ] log( 10°s ), (5.7.9) At lower energy the definitions vary, as we show in this

s+ (10 GeV)? GeV? figure.

We have adopted this parameterization for the full diffrac-

tive component at high energy. This is an approximation,

justified at very high energy by the TOTEM result for We shall now show how the one-channel mini-jet model
Double Diffraction(DD) [386], namely opp =~ 0.1 mb, presented here can be used to predict the full inelastic
although this result was obtained in a narrow range of cross section at higher energies.
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We start with the elastic cross section, and consider
now the difference
one—ch

= Otot = Ojnel

one—ch
elastic

(5.7.10)

which includes diffractive (otherwise said, correlated in-
elastic) contribution, as also discussed in general terms in
[68], among others. If

Tinel = 00"~ " 4 0pisy (5.7.11)
then, we should be able to obtain the measured elastic

cross section from

one—ch

= Oastic — ODiff (5.7.12)

Oeclastic

We compare the procedure outlined through Eqs.
and with experimental data and with the empir-
ical parametrization for the elastic cross-section data of
[306]. This is shown in Fig.[5.40]from [93]. We see that such
a procedure gives a good description of the elastic cross
section at high energy, basically past the CERN SppS.
Likewise, from Eq. , we can see that by adding
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Fig. 5.40. The total elastic cross section obtained by sub-
tracting Single Diffractive contributions, indicated as oqify,
from the one- channel model result. The resulting curve is com-
pared with pp and pp data and the empirical parametrization
of [306], which is seen to fall within the two model predictions.
Reprinted wiith permission from [306], (©(2013) by the Amer-
ican Physical Society.

the diffractive part, parametrized as in Eq. , to the
prediction from the one-channel model, it is possible to
obtain a good description of the high energy behavior of
the inelastic cross section. This is shown in Fig. Tt
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Fig. 5.41. The inelastic cross section: at high energies, adding
diffraction brings the one-channel result in agreement to data.
Reprinted Fig.(7) with permission from [306], ©(2013) by the
American Physical Society.

must be noticed that this procedure shows agreement with
data only past ISR energies (in fact from SppS onwards)
energies and that a model describing both the low and the
high energy will have to go beyond the one-channel exer-
cise described here. In Table we show the predictions
from this model for the inelastic cross section at LHC13,
Vs =13 TeV[|

Table 14. Minijet model predictions for the inelastic cross
section at /s = 13 TeV. Predictions of gine; in the full phase-
space were obtained by adding ogirs(13 TeV) = 12.9 mb to

one—ch
inel

uncorr —

inel =

PDF Oime”™" (mb) | oiner (mb)
GRV 64.3 7.2
MSTW 66.9 79.8

The result of this subsection confirms the interpreta-
tion that at high energies, past the beginning of the rise
and the onset of mini-jets, the one-channel inelastic cross
section is devoid of most of the diffractive contribution. We
have shown that the onset and rise of the mini-jet cross
section provide the dynamical mechanism behind the ap-
pearance of a soft-edge [378], i.e., a threshold in the total

19 Tn the published PRD version of [93], this table had an
error in the MSTW predictions at /s = 13 TeV.It has now
been corrected in the arXiv version.
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cross section around /s ~ (10+20) GeV. Thus, our model
for the total pp cross section that utilizes mini-jets with
soft-gluon re-summation has a built in soft-edge. It has
been updated with recent PDFs for LHC at /s = 7,8 TeV
and predictions made for higher energy LHC data and cos-
mic rays.

We have also discussed in detail the reasons behind
failures to obtain correct values for the elastic cross sec-
tions from a one-channel eikonal that obtains the total
cross section correctly. It has been shown, through the use
of phenomenological descriptions of diffractive (otherwise
said, correlated inelastic) cross sections, that one-channel
elastic cross section is indeed a sum of the true elastic
plus correlated inelastic cross sections. An application of
this fact to cosmic ray data analysis for the extraction of
pp uncorrelated-inelastic cross sections shall be presented
elsewhere.

5.8 Conclusions

As we have seen, the description of the fundamental dy-
namics of hadronic scattering is still proceeding along dif-
ferent lines, a Regge-Pomeron interpretation, a microscopic
description of the scattering, or analytical constraints and
asymptotic theorems. These different ways are not incom-
patible, and may ultimately come together. We conclude
this section with two comments, one on the differential
elastic cross-section, and one on the integrated total cross-
sections.

5.8.1 The differential elastic cross-section before and soon
after the LHC started

A comparison of the state-of-the-art of theoretical predic-
tions can be glimpsed by Fig. where we compare (
left panel) a compilation of different model predictions at
Vs = 14 TeV from [340], done in 2007, and (right plot)
predictions at /s = 7 TeV with LHC data, as shown from
K. Eggert’s talk in Paris, June 2011. As new results from
LHC appeared at /s = 7 TeV the parameters of some
models had to be updated, and agreement with the new
data was easily obtained. This however is not a satisfac-
tory situation, since the parameters should remain stable
or at least have a predictable energy dependence leading
to further understanding of the dynamics. It is to be hoped
that with the new results from LHC which will appear at
Vs = 13 and 14 TeV such understanding may become
closer.

5.8.2 A fit to the future imposing Froissart limit and the
Black Disk picture

As a commentary to this and previous sections, we present
in Fig. [5.43] a recent analysis by Block, Durand, Ha and
Halzen [387], in which the high energy behavior of all three
cross-sections, Oiotal, Tinels Oclastic has been constrained
by the Froissart limit, o4o¢q; ~ [Ins]?, and the black disk
behavior, oeastic/Ototat — 1/2, 8T B/0totar — 1.

140
120f
100 |

80 [

o, mb

0 L 1 1 I |
10 100 1000 10* 10°

W, GeV

Fig. 5.43. Total pp and pp cross-sections from Fig. 1 of [387],
where the curve is a fit to the data, with high energy constraints
from the Froissart bound and the black disk limit. Reprinted
with permission from [387], Fig.(1), ©(2015) by the American
Physical Society

6 Photon processes

Measurements of the total hadronic cross-section are made
with different projectiles and targets involving altogether
different techniques. The list includes:

— heavy ion collisions, most recently LHC experiments
for pA scattering,

— collisions between primary particles in cosmic rays with
the nuclei of the atmosphere, which have been dis-
cussed in the section on cosmic ray measurements,
Sect. [2]

— photon processes, which include real and virtual pho-
ton scattering on nucleons or nuclei, both in motion,
as in HERA, or with fixed target, or photons against
photons as in electron — positron collisions.

As of 2015, LHC plans to measure yp and ~yy collisions but
no results are yet available for what concerns total cross-
sections. LHC can also study 7p and 7 cross-section, as
we describe in the next section.

This section will draw from the extensive set of mea-
surements at HERA, performed by the two experiments
ZEUS [388] and H1 [389], which have measured the to-
tal cross-section ok at /s, = W = 209 and 200 GeV
respectively. Recently, the %EUS collaboration has pre-
sented measurements of the energy variation of the cross—
section in the range 194 GeV < W < 296 GeV [390].
Total cross-sections at HERA have been measured also
with virtual photons, in a wide range of the virtual pho-
ton squared momentum Q?, including the transition from
v*p to yp with the ZEUS Beam Pipe Calorimeter [391]
3921[393]. The HERA measurements include vector meson
production and are of interest for QCD studies, adding an
important kinematic variable to the cross-section model-
ing.
We shall review some representative models for photon
initiated processes and discuss the transition from virtual
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Fig. 5.42.

Differential cross sections do/dt (pp) (mb/GeVz)
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Left panel: a compilation of various models for the elastic differential cross-section at LHC14 from [340].

Right panel: a compilation of model predictions for the elastic differential cross-section at /s = 7 TeV, from K. Eg-
gert’s first presentation of TOTEM results at LHC7 in the 11th Workshop on Non Perturbative QCD, Paris 2011.
https://indico.in2p3.fr/event /6004 /session/7/contribution/116 /material /slides/0.pdf. Reproduced with permission.

to real photons. We touch upon an extensive theoretical
literature on the subject through Sakurai’s VMD model;
the Gribov picture; Haidt’s phenomenology; applications
of the Balitsky-Kovchegov (BK) equation in its various
formulations; saturation and geometric scaling; the mini

jet

models and factorization schemes. Various items of in-

terest can be found in the next subsections as follows:

kinematics is defined in [6.1}

Vector Meson Dominance Model proposals are pre-
sented in

the BK evolution equations are introduced in [6.3]

the transition from virtual to real photons and analyses
by Haidt and collaborators can be found in
specificic models for vp scattering are in [6.5]

vector meson production from real and virtual photon
scattering is discussed in and

the total v*p cross-section can be found in

data and some models for real and virtual photon-
photon scattering are presented in [6.9) and [6.10]

6.1 Data and kinematics for ep — eX

The standard process to be studied,

e+p—e+X, (6.1.1)

is shown in Fig. 6.1

Fig. 6.1. Electron/positron-proton scattering

p’

For this process one defines the following kinematic vari-

ables:

q=p—p
Q? = —¢?

W? = (q+ P)?
_Pa
~Peop
t=(P—P')?
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where ¢, p,p’, P, P’ are four-momenta. These measurements
probe a vast kinematic region for the scattering of pho-
tons, which can be generally divided as :

— Photoproduction (PHP) with real photons, with ¢? ~

0

— Deep Inelastic Scattering (DIS) with virtual photons

Q* = —¢® ~ (10 = 10°) GeV?/c?

— The transition region of quasi-real photons, Q% ~ m%
Both the PHP and the DIS have been studied extensively
and are reasonably well described by various theoretical
models. The third region has received less attention, but
its kinematic range provides valuable vp measurements in
a continuous range of values for 0% in the HERA energy
region [391]. We shall discuss these measurements in a
separate subsection.

The hadronic cross-section for photons on protons is
obtained from electron or positron scattering on protons.
The protons can be at rest, as in the early measurements,
or in motion as in the measurements taken with HERA at
DESY. The leptons in the incoming beam were electrons
in the early measurements, positrons at HERA. From 1992
until 2007, at HERA, the lepton energy was F, = 27.6 GeV
and the proton energy ranged from E, = 460 GeV to
E, =920 GeV

In Table[15] we reproduce the data on ;% from HERA.

Notice that the earlier experiments [3941[395] spanned through

a yp c.m. energy range, and what is reproduced in the ta-
ble is the average value as given in HEPDATA Reaction
Database: http://www.slac.stanford.edu/cgi-hepdata/.
Also, ZEUS indicates that, because of various improve-
ments, their latest value [388] for o}f, supersedes the first
ones [395396]. All these measurements correspond to a
photon 4-momentum squared Q? < (0.01 + 0.02) GeV2.

Table 15. Results of measurements of o}, at HERA

Experiment Vs Ototal
(GeV) (mb)
ZEUS|388] 209 174 £1 (DSYS=13)
H1[389] 200 165.3 + 2 .3 (DSYS=10.9 )
ZEUS [396] | 167 = 194 | 143 + 4 (DSYS= 17)
H1[394] | <195 > 159 £ 7 (DSYS=20)
ZEUS [395] | <210 > 154 + 16 (DSYS=32)

In Table we also reproduce total cross section mea-
surements by the ZEUS experiment as a function of the
~p invariant mass W and virtual photon polarization, EPS
in the table, obtained using an extrapolation of General
Vector Meson Dominance (GVMD) and the assumption
or, = 0, from [397], where details of the extrapolation can
be found.

6.1.1 Kinematics for photoproduction

Let us now set the kinematics and the relevant defini-
tions for photoproduction processes, i.e. when Q% ~ 0.

137

Table 16. v +p — X

| W(GEV) | EPS | Ttotat (11b) \

104 0.99 | 156.2 + 5.3 (DSYS=16.1)
134 0.98 | 166.1 + 5.2 (DSYS=11.0)
153 0.96 | 174.7 £4.9 (DSYS=12.9)
173 0.92 | 175.5 + 5.0 (DSYS=11.7)
190 0.88 | 181.8 + 4.7 (DSYS=12.8)
212 0.80 | 186.8 + 4.8 (DSYS=13.5)
233 0.69 | 192.5 + 4.7 (DSYS=13.3)
251 0.55 | 204.8 + 5.6 (DSYS=17.0)

The ~yp cross-section is extracted from the process shown
in Fig. [6.1] In the forward direction, the kinematic vari-
ables are related to the measurable quantities, energy and
lepton scattering angle in the laboratory frame, through

Q* =2E.E.(1 — cosb.) ~ E.E.0? (6.1.8)
E' E!
=1- (1 ~l- ¢ 1.
Yy QEe( + cosbe) . (6.1.9)

The relation between ep and ~yp cross-sections can then be
expressed through

do (y)
20— o
g[l_’_(l_y)an 72naw_21_y(1_ ?nzn)]_
T Y 2 y 2 -
mn max
oih x F
(6.1.10)
2 my® ~
where Q7.;, = T=,. The 7p cross-section can be ex-

tracted after integrating the above expression in the vari-
able y with the integration limits

El
e mazx/min

Ee

Eq. (6.1.10) defines the flux F whose determination de-
pends upon the experimental resolution on the incoming
and outgoing positrons AFE, and AE.

(6.1.11)

Ymin/mazx = 1

6.1.2 Parton model variables

The quantities measured in e — p scattering can be related
to the parton model underlying the scattering process. By
proper choice of the scattering frame and in the very large
momentum limit, the variables relating the parton model
description to the process shown in Fig. [6.2] in Deep In-
elastic Scattering can be related to measurable quantities
[398].

Following here ref.[391], with

— x the fraction of proton momentum carried by the
struck quark
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(do,q) in ep c.m.

Fig. 6.2. Kinematic variables for parton scattering through ep
collisions.

— y the relative energy transfer from the electron to the
proton in the proton rest frame
— W the c.m. energy of the photon and proton system

one has

Q2

6.1.12
- (6.1.12)

=2 il oy
If we neglect the proton mass, W2 ~ sy(1 —x). For small
Q? being discussed here, x << 1, and we have W2 ~ sy.

Various kinematic regions of interest can now be dis-
cussed. For total cross-section measurements in photopro-
duction c°? one has

04<y<06 ZEUS
03<y<07 HI

Ezxperiment, (6.1.13)
Experiment (6.1.14)

and Q2,;,, ~ 1078 GeV?.
In terms of the longitudinal and transversely polarized
photon cross-section, and neglecting terms of order mg /s,

the electron-proton cross-section is given by

dzgep « 171’[ 1+(17y)2 2(17:9) 72nin
= — —_ g

dydQ? ~ 21 Q2 y y Q)7

2(1 —
N ( y)gL]

Yy

z, d*oep
= (= 6.1.15
where
y2

2 in A ME—— (6.1.16)

€ 1 _ y
In DIS, where Q2 > 0, in the region of interest in the
variable y, the Q2 . can be neglected and the expression
for the DIS cross-section , in the parton variable z, be-
comes

al—=zx

d? Oep

dedQ? v

‘{(V,Q) in proton rest frame
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The longitudinal and transverse cross-sections are related
to the structure functions F5 as

Q2
F =
27 Ar2a

(1—-xz)(or +0L) (6.1.18)
and F5 is seen to represent the sum over quark and anti-
quark densities in the proton.
Now one can relate the total cross-section for scatter-
ing of a virtual photon on a proton to this sum, i.e.
tot An’a 2
ol (e W) = T Fa(. Q)
and since z is proportional to the cm energy in the photon-
proton system, one can thus obtain the total cross-section
for a range of energies.
On the other hand, in photo-production, o;, << or
and one obtains for the total photo-production cross-section

(6.1.19)

doep

_oal+(1-y?

dy 2m Y
)| o 3(55 (Ww)

12na:c 2(1 — y) (1 o
(6.1.20)

S

min

In(

max

In this review we are basically interested in models for
total cross-section. Before discussing the models currently
used, since most models do use Vector Meson Dominance
in some fashion, it is useful to recall how it was first pro-
posed.

6.2 Photons and Vector Meson Dominance

Gribov, in his description of the interaction of quanta with
nuclei, which will be summarized in[6.2.2] refers to the idea
proposed by Bell [399] that, at high energy, Vector Meson
Dominance could result in the amplitude for m — nucleus
to be proportional to surface terms rather than to volume
terms.

The idea arose when Bell recalls Adler’s study of neu-
trino scattering on nuclei,

v+a—l+a” (6.2.1)

where o is a group of strogly interacting particles. Adler
noticed that, using Partially Conserved Axial Current (PCAC)
and Conserved Vector Current (CVC), incident virtual pi-
ons can actually describe the interactions of neutrinos on
nuclei by obtaining for the cross-section of process ([6.2.1))

0%c

o2 > o(W,—q*)

(6.2.2)

where ¢? is the momentum transfer between the incoming
neutrino and the outgoing lepton [ and W is the mass
of the hadronic system o, and o(W, m2) would be the
total cross-section for the reaction ma — «*. This result
was something of a paradox, because neutrino’s should be
sensitive to the entire nucleus, in his language the nucleus
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should be transparent to the neutrino, and not just to the
surface, which is what happens to pions. Following this
line of reasoning, Stodolsky [400] produced, what at the
time appeared as, a similar paradox for photo-reactions,
by using the p—photon analogy . The discussion as to how
the cross-section for photon-nucleus is not proportional
to the atomic number A, but is more similar to surface
effects, is interesting and we shall reproduce here the main
ingredients of Stodolsky’s argument.

The usual result that the cross-section for v— A should
be proportional to A, follows from the optical theorem.
Taking only the first scattering of the photon, order «,
the scattered waves are summed up for all the nucleons
and then from SmF,yucieus = ASM frucieon, the optical
theorem gives 044 = Aoy—_nucieon- But things are com-
plicated by the fact that quasi-elastic channels may only
apparently contribute to the elastic amplitude, and they
really should be included as multiple scattering processes.
for instance, in wd scattering, such quasi-elastic processes
are 7~ +p — 70+n followed by 7%4n — 7~ p. This process
should be considered at the same level as 7~ +p — 7~ +p
followed by a second scattering 7~ +n — 7~ + n. Thus
Stodolsky is led to consider that the photon and the p-
meson have the same quantum numbers and that one can
consider p -production as a quasi-elastic process, in such
a way that the photon will fluctuate into a p-meson with
amplitude proportional to e, and then reconvert into a
photon, and this process will give a contribution of order
e? to the cross-section. We are repeating this here since it
shows once more that when dealing with complex systems,
a straightforward application of the optical theorem may
not work.

6.2.1 Sakurai's VMD

In 1969 Sakurai [401I] proposed the Vector Meson Dom-
inance (VMD) for high energy electron proton inelastic
scattering. Following the conjecture [400,402] that the to-
tal photo-absorption hadronic cross-section could be cal-
culated from diffractive production of p,w and ¢ mesons,
Sakurai went on to show that, when both longitudinal and
transversely polarized photon contributions are included
in the calculation of the total ep cross-section, then the
VMD model and experimental results are fully compati-
ble.

In this paper, the following kinematics is defined: ¢ =
(g,v) is as usual the momentum transfer between elec-
trons, /s the missing hadronic mass. Also notice that
he uses a metric such that ¢ > 0 corresponds to space-
like photons. The inelastic differential ep-cross-section is
written in terms of the transverse and longitudinal cross-
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section’s o and o, as

d*c  E'4ma? 9 50 5 . o0
WE-F ¢ [Wa(q?,v) cos §+2Wl(q ,v)sin 5]
(6.2.3)
K q? K
= —_—m————_— W =
2 47('20[ q2 +I/2 (UT+US)7 1 47T2O[0T
(6.2.4)
2 s —m?2
K=v-— T _ P
2my, 2my,
(6.2.5)

or and og are obtained from the transverse and longi-
tudinal components of the electromagnetic current. The
VMD hypothesis then relates the electromagnetic matrix
element < Alj,|p > between a given final hadronic state
|A > to the vector meson dominated one as

< Aljlp >= "
P >= 75 5
133 fp q2 + m%
where jf stands for the source density of the neutral p-
meson field and Eq.(6.2.6) defines the coupling between
the photon and the p-meson. The transverse and longitu-

dinal cross-sections are then given by

< Aljflp > (6.2.6)

e

or = (fp)QFQ(QQ)Upr(K) (6.2.7)
o5 = (;)QFQ(qQ)%(I;)Qg(K)a;,(K) (6.2.8)
with
F(¢%) = (ﬁf (6.2.9)
I
§= 2t (6.2.10)

Accordingly Sakurai obtains for the structure function Wy

m2 K 1

Wold?. 1) — s
vWalasv) = dn?a v 14+ m?2/q? (6:2.11)
with
1 2 K., mﬁ
F = K K 2.12
[1_’_m%/q2] f( )(Z/) + q2 O"YIJ( ) (6 )

vWs(q?,v) is then shown to become a universal function
of v/¢? in the Bjorken limit ¢ — oo and fixed ¢2/v [398].
Adding the other vector mesons is easily done by con-
sidering their isospin properties so that the overall contri-
bution can be written by the simple substitution
1 N 1 4+ 1 n 1]
fo Io V2 3
where one can make the approximation m? ~ m2 ~ m?2.
Sakurai derives from VMD, a relationship between the
Bjorken scaling function F>(z) and asymptotic o,

o0 m2
SO 1 — e (00).

(6.2.13)

Fy(z) = | (6.2.14)

420
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6.2.2 Gribov's model

We shall now summarize the model in which Gribov first
described the interactions of photons with matter. In [403],
Gribov advances the idea that the character of the in-
teraction of photons with nuclei and the development of
surface effects [A2/? -dependence] at high energies have
no connections with p-mesons or m-mesons, but are solely
determined by distances which are significant in those in-
teractions. In the above paper, Gribov is referring to the
idea proposed by Bell [399] about Vector Meson Domi-
nance which was discussed in [6.2]

In fact, the expression proposed by Gribov for the
cross-section of photons on nuclei, which includes only
hadronic processes, is

0, =2nR*(1 — Z3) (6.2.15)
where R is the nuclear radius, and Zs is the charge renor-
malization constant due to hadrons, which can be written
in terms of the cross-section for electron-positron annihi-
lation into hadrons,

e? dz?
1-25= ?/P(iﬁ)?

Gribov’s explanation of Eq. is that 27 R? is the ge-
ometrical cross-section for the interaction of hadrons with
nuclei and the other factor is related to the length of time
that the photons spend in the hadron state. To estimate
this time, one first needs to establish the region of valid-
ity of Eq. . This is obtained by first considering
a photon of momentum P in the Laboratory frame, and
write the relevant longitudinal scale as § = P/u?, where
1 is some characteristic mass. Now, let [ be the mean free
path length of a hadron in the nucleus, the condition of
applicability is that 62 >> RI. If one takes the character-
istic mass to be that of the p-meson and the path length
as defined by the interaction, with I ~ 1/m., then Gribov
claims that surface effects will start appearing at energies
exceeding 10 GeV, which, whose cm frame? in the c.m.
frame, would correspond to a few GeV.

His picture of what happens is as follows: first the pho-
ton virtually decays into hadrons (we would now say par-
tons), and then the hadrons start interacting with the nu-
cleons in the nucleus. What matters here is the length of
this fluctuation into hadrons, which he takes to last for
a time . He considers the two possibilities, § < [ and of
course 6 > I. Consider the first case and let 0., be propor-
tional to:

1. the probability of the photon to hit the nucleus ~ 7 R?

2. the probability that fluctuations take place inside the
nucleus oc &

3. the probability that the hadrons forming will have time
to complete an interaction with a nucleon in the nu-

cleus , o< d/1

Hence 0, ~ mR? x 2 x §l ~ arR3/l « Ao,. But ac-
tually as the energy of the photon increases, the dura-
tion of the fluctuation will also increase and the proba-
bility of interaction will increase with energy. When the

(6.2.16)
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Figure 2

Fig. 6.3. Cartoon of the forward scattering amplitude from
[A04].

R — R

Figure 3

Fig. 6.4. Charge renormalization, from [404].

time length of the fluctuation into hadrons exceeds the in-
teraction length, the relevant probability is one and, one
gets 0, ~ TR? x ' and will decrease as the energy in-
creases. A further effect is due to Bell’s [399] check this
ref observation about the probability that the interac-
tion takes place outside the nucleus is o< /4 so that one
gets 0, ~ amR31/6%. When § becomes much larger than
the interaction length, as the energy increases further, the
photon will fluctuate into a hadron outside the nucleus
and the hadron which are thus formed will interact with
a cross-section mR?. The argument is not full proof, and
it appears more as an a posteriori justification, but the
gist of the matter seems to be that the cross-section is ac-
tually proportional to the nuclear surface and not to the
volume. According to Gribov, it is also easy to understand
the presence of the factor 1 — Z3. To understand it, he then
looks at the forward scattering amplitude, visualized in a
figure like Fig. 6.3} which we reproduce from [404].

In the figure, F is the amplitude for scattering of a beam of
hadrons on a nucleus of radius R, with momentum transfer
g. But in the forward direction, Fig. (6.4)), it is the diagram

defining charge renormalization.

For the interaction of electrons with nuclei depicted by
Gribov as in Fig. one has a similar picture, except
that instead of 1 — Z3 the cross-section will be determined
by the polarization operator from where in the figure
would the polarization operator be?Fig.[6.5
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Figure 4

Fig. 6.5. Interaction of electrons with nuclei from [404].

6.3 QCD evolution equations for photon processes,
BK Equation

We now turn to the QCD description of photon processes
in terms of evolution equations, addressing the transition
from the linear BFKL rate equation to the non-linear
Balitsky-Kovchegov (BK) equation [405L[406] and what
saturation means. The underlying phase transition is also
exhibited. We shall then return to models, including the
transition from (y*p) to real photon (yp) processes and
models for (“geometrical”) scaling in the small Q2 region.

6.3.1 Introduction

The BFKL “rate” equation for the density of gluons is
linear and is expected to break down as the density be-
comes large [e.g., as in v*p at low z or in hadron-nucleus
scattering]. A more appropriate equation valid for large
densities is provided by the BK equation[405,[406] that is
non-linear and incorporates saturation i.e., a maximum
steady state value for the density. Similar problems occur
in a variety of fields of physics, chemistry, biology, logis-
tics, etc. In the following, we shall illustrate the problem
and its resolution for the important practical case of the
photon number for lasers.

6.3.2 Dynamics behind some simple non-linear rate
equations for photons

Here we shall discuss a simple non-linear rate equation
and dynamical reasons behind leading to it. The linear
rate equation, where the rate is proportional to the num-
ber itself, of course leads to an exponential growth or ex-
ponential decay as

dr) = +vI(t); 1(t) = I(0)e"",

o (6.3.1)

depending upon the sign of v. But in all practical systems,
some non-linearity is bound to be present, giving rise to
non exponential behavior in time.

The best studied (and very practical) example is that
of the laser. If the rate equation for the mean photon num-
ber were linear (as above in Eq.(6.3.1))), the number of
laser photons would increase exponentially. Of course, that
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can not be, otherwise we would need an infinite source of
energy, hence there must be some dynamical mechanism
to saturate the number. The solution to this problem for
lasers was first given by Lamb. The famous Lamb equation
for the light intensity I(t) may be written as [407]

——= =+v[a—1(t)]I(t). (6.3.2)
The second term on the right hand side of Eq. arises
dynamically through the creation & annihilation of two-
photons at a time, just as the first term is related to the
creation and annihilation of single photons. The parame-
ter a is called the pump parameter and its sign is crucial
in determining the steady state value of I. We note here
parenthetically that the analog of Eq.(6.3.2) written in an
entirely different context of population and called the lo-
gistics equation was first written down by Verhulst[408]
409].

If a < 0, the steady state value of I [determined by
the vanishing of the left side of Eq.(6.3.2))], is Iss — 0.
Physically, for negative pump parameter, there is no laser
activity. On the other hand, for a > 0, Iss — a and hence
the laser intensity increases linearly with a.

The innocent looking Eq. has buried in it a (sec-
ond order) phase transition wherein a acts as the order pa-
rameter. This is easily seen by considering Iss as a func-
tion of a. Igg is continuous at a = 0 but its derivative is
not.

A simple model for a plethora of physical processes
such as the mean photon number, intensity, mass growth,
magnetization etc. is provided by analogues of Eq.
where the parameters v and a have different physical sig-
nificance and their signs play a crucial role in determining
the fate of that physical system.

A partial understanding of the genesis of the quadratic
term on the right in Eq. can be obtained through
a consideration of the frequency of a photon mode in a
cavity. The frequency of a mode in a cavity is inversely
proportional to the length of the cavity L. Thus, If the
geometry of the cavity fluctuates via the length scale L,
then the frequency of the photon oscillator will be mod-
ulated. Because of such a modulation, the cell cavity will
emit or absorb two (or more) photons at a time, thus
leading to the above rate equation if one truncates to two
photons.

Similar rate equations must exist for any system [de-
pending upon its size for example] where growth may be
rapid but the growth must cease eventually resulting in a
limiting value [such as the maximum size]. In the following
section, we shall discuss the relevant case of the gluon den-
sity in QCD where the non-linear direct coupling gg — ¢
(absent in QED) automatically provides such a non-linear
term.

But before going on to discuss the case of QCD, let
us consider the special case ¢ = 0 in Eq. for the
number N (t) of photons.

AN (t)
dt

N(0)
(1+ vt)

= —uN%(t); N(t) = (6.3.3)
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The above decay pattern ~ (1/t) for large ¢ is called a
hyperbolic decay law and it has been observed in cer-
tain cases of bio-luminesence. In fact, there are many sim-
ple physical systems which display hyperbolic decay laws.
Typical examples are those which involve the excitation
of pairs in the medium, which then recombine to emit
light. This naturally gives decay laws which one would ex-
pect classically to obey dN/dt = —vN?2. Note that this
is a purely classical result and does not require coherent
effects between the excited states, which would also be
expected to give the same decay law.

The important point to remember is that exponential
or hyperbolic behavior can not be theoretically correct for
the whole phase space even though they may provide good
approximations in restricted regions of phase space. Such
is the case in QCD both in hadronic as well as in deep
inelastic scatterings.

6.3.3 Non-linear BK Equations in QCD

Let us consider the Balitsky approach[405] to the scatter-
ing of a virtual photon 7*(¢) on a hadron of momentum
p as summarized by E. de Oliveira [410]. For the limit of
rp = [Q%/2(q.p)] small where Q? gives a hard scale and
s >> 2, a dipole picture emerges naturally in the limit
of infinite colour N, — co when planar diagrams become
dominant. The photon does not directly interact with the
target hadron but only through an “onium” made up of
a quark of a given colour accompanied by an anti-quark
of opposite colour to preserve the colour singlet nature of
the photon. The onium must then exchange two gluons
with the hadron to preserve the colour singlet nature of
the target hadron.

Thus, the photon does not interact directly with the
target hadron but through a “gas” of non interacting dipoles.
Single dipole scattering with the target hadron leads to
BFKL evolution equation and multiple dipole scatterings
to the BK equations. To proceed with the dynamics, Bal-
itsky [411] invokes the general notion that a fast particle
in a high energy scattering moves along its classical tra-
jectory and the quantum effect consists in the acquisition
of an eikonal phase along its prescribed (classical) path. In
QCD, for a fast parton (quark or glue), the eikonal phase
is given by the Wilson line that is link-ordered along the
straight line collinear to the 4-velocity n* of the parton.
The Wilson line operator may be written as

Ulzy) = ’Pemp{ig/ du n,A*(un+2z1),} (6.3.4)

where A¥(x) is the gluon field of the target, x is the
transverse position of the target. In high energy scatter-
ing within QCD, Wilson line operators form convenient
effective degrees of freedom as partons with different ra-
pidities () “feel” each other through matrix elements of
these operators. In the colour dipole model of the pho-
ton then, the propagation of a quark-antiquark pair takes
place through the propagation of the colour dipole via the
two Wilson lines ordered collinear to the quark’s velocity.
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Thus the structure function of the hadron becomes pro-
portional to a matrix element of the colour dipole operator
which is given by
- 1 - -
Uleriyr) =1— Tr{U"(z)U"(y1)},  (6:3.5)
(&3
taken between the states of the target hadron. The gluon
density is then given approximately by

wpGaep;p® = Q%) ~ < plUN(x1;0)|p > [42 —1/0>-

(6.3.6)
The energy dependence of the structure function is thus
reduced to the dependence of the colour dipoles on the
slope of the Wilson lines as determined by the rapidity
7. A whole hierarchy found by Balitsky emerges as given
by equations of the type [valid in LLA for a, << 1 &
as(lnzp) ~ 1]:

d

a _ % e :
n < Tpy >= o /(d 2)M(z,y; 2) X

[<Tpe >+ <Tyo > = <Tpy > — < T, T, >;
asNe

as (6.3.7)
Once the mean-field approximation (i.e., the factorization)
< T, Ty, >=<T,, ><T,, >is made, the above becomes
a non-linear, but closed, set of BK evolution equations In
particular, for the Wilson line operators it becomes

d

<05 [

<UL >+<Ul>-<Ul>—<Ul ><UJ >
(6.3.8)

(—y)?*
y

The last (non-linear) term on the right hand side of the
BK equation for color dipoles is due to multiple scatter-
ing. This Balitsky-Kovchegov evolution equation is usu-
ally written for the dipole hadron cross-section in impact
parameter space as

Tdipote(01;Y) = 2/(d2b01)N(501;I01; Y)

o+ 21

5 (639)

To1 = (2o — 1);b01 =
where N (bo1;701;Y) is the quark-antiquark propagator
through the hadron, related to the forward scattering am-
plitude of the dipole with the hadron. The BK equation
in “coordinate” space reads

Qg 9
=—[(d
2 / (d"r2)

x x
N (bo1 + %@02%3/) + N (bo1 + %;Im;y)*

2
Lo1

2 .2
Lp2T12

d
deN(bOl; z01;Y)

x x
N(bor;zo1:Y) — N(bor + %%IOQ;Y)N(bm + %;1712;)/)]

(6.3.10)

The “time” here is the rapidity ¥ ~ 1/zp and the equa-
tion has four other variables [two from z¢; & two from
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bo1]. The BK equation resums all powers of (a;Y). If the
last quadratic term is dropped, then, it reduces to the
linear BFKL equation

d Qg x?
din(b(n;iOl;Y) = — /(d21'2) 3 012 X

2 Tp2T12
T12 To2
WV (bo1 + 7§x025Y) + N (bo1 + 7;$01;Y)
—N(bo1; 013 Y)]
(6.3.11)

Given the complexity of Eq.(6.3.10]), it is useful to consider
special cases to obtain some familiarity with it.

6.3.4 Space-independent BK equation in (0 + 1)-dim

If one assumes that N(bg1;201;Y) is spatially indepen-
dent (i.e., independent both of the impact parameter bg;
& the dipole “size” xg1), then the BK equation reduces
to the previously discussed logistics equation [see Section
(6.3.2)]:

diYN(Y) =wN(Y) = N3(Y)]; w> 0. (6.3.12)
As discussed previously, it has two steady-state solutions
(or fixed points): an unstable solution A" = 0 & the other
the stable solution N' = 1. It should also be clear that the
linearized BFKL blow up for large Y has been softened

to a maximum value of 1, i.e., a saturation for small z g,
independent of the initial condition.

6.3.5 Impact-parameter independent BK equation in (1+ 1)
dim

If we drop only the impact parameter dependence but keep
the dipole size, we have N (b;z;Y) — N (r;Y) and the
BK equation in (1 4 1) dimension reads

d . _ Qs 2 x31
Mo ¥) = 52 [ () 00
N (|zo2|; Y) + N(Jz12];Y) = N(Jzo|;Y)
~N(|zoz2|; YN (|z12[; Y)]

(6.3.13)

Physically, of course, b-independence implies an infinite
homogeneous hadronic surface but where the scattering
kernel does depend upon the size of the dipole. Numerical
computations verify general trends already seen in (04 1)
dimensions[410] :

— Saturation occurs [in contrast to BFKL blowup] for
large Y

— Saturation for large Y is independent of the initial con-
dition [that is, independent of the dipole size];

— For small Y, N'(r;Y) is smaller for smaller dipole size;

— For small r, non-linear corrections are by and large
negligible;
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— For large r, non-linear corrections are important and
N(r;Y)~ 1
— Saturation scale Q(Y):

r< Qs}y); N << 1;
1
r> 0.0 N =~ 1. (6.3.14)

6.3.6 Geometrical scaling in DIS

The approach to saturation is also discussed in a paper by
Stasto, Golec-Biernat and Kwiecinski through a discussion
of a geometric scaling [412] in the low-x region, observed
at HERA for Deep Inelastic Scattering, v*p scattering.
But the result claimed here is not the same as the usual
geometric scaling observed or expected in hadron-hadron
scattering. In the purely hadronic case geometric scaling
refers to the fact that the scattering amplitude in impact
parameter space G(s,b) is only a function of the ratio
B = b?/R?(s), where R(s) is the interaction radius. To
avoid confusion, one should notice that the interaction
radius R(s) in the hadronic case increases with energy,
whereas the one in DIS decreases with energy, or with
xz — 0.

Such a behavior is understood to represent a unitarity
bound, which reflects the fact that the growth with z (as
x — 0) of the structure functions is tamed by saturation
effects. This is also a version of the Black Disk model.

More precisely, the HERA data on the total v*p scat-
tering cross-section, suggest a geometrical scaling of the
following form [412]

Q2
o"P(Q,Y)=0"P(1); T = ———. 6.3.15
@Y)=o""(0) 7= gy (6319)
This translates for the scattering amplitude into
N(r;Y) = N(rQs(Y)); for large Y (6.3.16)

Using the form Q(Y) = Qe the scaling form given
in Eq.(5.1.64) reduces to

N Y) = N(QuelmrTasAY)y, (6.3.17)
Eq. has been interpreted as a traveling wave with
Y as time, (as\) as the speed vs of the wave and (Inr)
as the spatial coordinate. Such a wave picture emerges
rather naturally through a momentum space description
as shown next.

In [413], a detailed analysis of “extended” geometrical
scaling has been made and its (not at all obvious) con-
nection with the BK equation investigated. These authors
conclude through a numerical analysis of the BK equation
in momentum space that the BK results are qualitatively
different from that of the phenomenological dipole models.
In particular, they find that geometrical scaling around
the saturation point is only obtained for asymptotic ra-
pidities.
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6.3.7 Momentum space BK equation

Let us consider the momentum space amplitude defined

through the Fourier transform [4141[4T5]/416]
_ &2r

N(k;Y) = /(77“ )e TN (1Y),

53 (6.3.18)

Then the BK equation in momentum space reads

D) — o, [EK O N — 0, W27,
dY k

(6.3.19)

In [417], it is shown that in the saddle point approxima-

tion, the BK equation can be mapped into the FKPP

equation[418419] of the form
deu(C, 1) = O¢u(C, 1) +u(C,t) — u?(C, 1),

with the dictionary above: t is time, and ( is the coordi-
nate. The crucial point is that FKPP equation does have
traveling wave solutions of the form (¢ — vt), in agreement
with the geometrical scaling solutions given in Eq.
with ¢ =Y, ¢ = In(r) and v = as\. This correspondence
does provide a window of comfort in the phase space for
geometrical scaling.

So far, we have considered a fixed a. For a discussion
of the results of BK evolution as one changes to running
as, we refer the reader to some recent analyses in [420]
[421].

(6.3.20)

6.3.8 Dense hadronic systems

For dense hadronic systems, new phenomena in QCD oc-
cur and some have been investigated in detail for heavy
ions. For large A nuclei scatterings at high energies, colour
glass condensates and colour transparency have been found
through an effective field theory constructed from QCD.
It will take us far outside the realm of this review but
we refer the interested reader to excellent expositions by
McLerran422] [423], Venugopalan[424] and Mueller[425].

6.3.9 Beyond BK, fluctuations, Pomeron loops

That the BK equation does not include fluctuations in the
gluon (dipole) number has been particularly emphasized
by Bartels et al. [426]. Thus, if the Pomeron is considered
as a manifestation of the propagation & exchange of two-
gluon singlets, then what is missing in BK becomes the
lack of a Pomeron hierarchy as shown in Fig.
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Fig. 6.6. Pomeron loop graphs absent in BK, from [410].

where white noise v((,t) is defined as

UG >=0; < (Gt E) = 8(¢ — ¢ )o(t— ).
(6.3.22)
Strong fluctuations are also discussed in [428]. For further
theoretical work on this subject we refer the reader to the
literature.

6.4 Transition from o(y*p) to real o(vp): Models and
phenomenology for low-x physics

After the great successes of Bjorken scaling and the ver-
ification of its perturbative QCD calculable violations in
deep inelastic total cross-section o (v*p) for large Q?, came
the arduous task of understanding the physics for small
Q? photon masses and eventually to bridging the gap to
its continuation to real o(yp) process as Q> — 0. Excel-
lent quality data exist in this kinematic region by the H1
& Zeus groups from HERA demanding a theoretical and
phenomenological explanation.

Explicitly, the object is to formulate the usual proton
EM structure function Fy(W; Q?) defined as in Eq.
so that it interpolates smoothly to the real photon cross-
section o7P(W?2). It should be mentioned that real photon,
oP(W?), cross-sections are obtained through the HERA
data in Q2 = (0.01 + 0.02)GeV? region. While such a re-
gion lies beyond the realm of perturbative QCD, it does
offer the possibility of extension as well as a challenge to
hadronic total cross-section models for its description.

6.4.1 Phenomenological analyses by Haidt et al.
Data from HERA on the structure function Fy(z, Q%) at

small (and medium) values of x have been analyzed in set
of papers by D. Haidt [429],[430],[431] and compared with

Work in the past two decades have shown that a Langevin theoretical expectations. In [429], it was shown that the

equation can be formulated to include three Pomeron ver-
tices and we just quote some results. It is claimed [427]
that a BK equation with white noise of the following form
-called the stochastic FKPP or sF K PP- can mimic the
Pomeron hierarchy.

du(C,t) = Bu(C,t) +u((, 1) —u?(C,t)

G0 GO 1), (6321

observed rise at small z = (Q?/2q - p) is consistent with a
doubly logarithmic increase: a logarithmic increase in 1/x
along with a logarithmic growth also with Q?, i.e.

Q2

Fo(2,Q%) = a+ bwn%mzn(@n, (6.4.1)

where a,b,z,,Q? are constants, and the above expres-
sion is valid in the perturbative phase space region at
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x < 0.001. A stronger increase, which may be incompat-
ible with unitarity when extrapolated to asymptotically
small values of x, could not be inferred from the data
then available.

A few years later, in [430],[431], the HERA data for
small values of the Bjorken variable z = (Q?/2¢-p) < 0.01,
were described phenomenologically through the expression

9 To Q2
F(z;Q%) = m[ln(;)]ln(l + @) (6.4.2)
m~ 0.4; z,~ 0.04; Q>~ 0.5GeV?.  (6.4.3)

The extension from n(Q?/Q?) to In(1 + Q?/Q?) allows
to describe both the perturbative and the nonperturbative
regime as long as x is below 0.001. This implies for F, a
behaviour proportional to Q2 for Q% < Q? and a logarit-
mic behaviour above.The strategy adopted by Haidt for a
smooth continuation of o7 P(W?2; Q?) to very small values
of Q? consisted in defining a variable ¢ = In(1 + Q?/Q?)
and rewriting Eq. as

42
el

][FQ(W7 Q%)

oW = (g

I (6.4.4)

A virtue of ¢ is that it interpolates smoothly from small
Q? to In Q? ( for large Q?): since ¢ — Q%/Q? as Q* — 0,
a transition from o7 P(W?2; Q?) to 07? becomes amenable.
In the region x < 0.01, W2 ~ Q?/x and thus a behavior
of Fy/q ~ [In(1/x)] implies Fy/q ~ [In(W?)]. The ¢ de-
pendence of the HERA data were then analyzed through
a linear form in In(W?):

Fy(W2;q)

q Uo(gq) + ur (g)ln(W?/W7).

(6.4.5)

An almost constant value for the slope u1(¢) = 0.4 was
found for large values of ¢. Inclusion of real vp data at
W = 200 GeV showed that the transition from the v*p
data available until the lowest value of Q2 = 0.05 GeV?,
to real photons in yp seemed to work well.

As Haidt pointed out, for smaller values of q -outside
the measured region- Eq. needs to be revised since
(Fy/q) is a function of = alone whereas ¢ is a func-
tion of W2 alone. The suggested replacement to reach real
Compton scattering -so that the Q% — 0 limit is reached
smoothly- is

Q2
Q* + Q3

(Z2) = [ it (6.4.6)

where for consistency 0 < Q? < Q2. Satisfactory agree-

ment with the HERA data were found for Q2, = 0.05 GeV?.

An attentive reader would note that Haidt’s variable
q = In(1 4+ Q%/Q?) that becomes linear in Q? for small
@?, has a parallel in Richardson’s proposal of replacing
the asymptotic freedom formula for the QCD coupling
constant a7 (Q?) to ar(Q?) so as to obtain a linearly
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confining potential [432]:
1

2y _ )

r(@) = T g
(6.4.7)

2

an(@) = [ for @* >0
(6.4.8)

ar(Q?) — asr(Q?) = m for Q% — oo.
(6.4.9)

Further discussion and details about singular, confining
a(Q?) can be found in Sec. [4| of the present review.

6.4.2 Dipole model and Geometrical scaling

As described in Sec, the phenomenon of satura-
tion and a geometrical scaling for low-x ~*p processes
have been obtained from the QCD dipole model. Here we
present its essential formulation and phenomenology.

In this model, the scattering takes place in two steps.
First, a virtual (transverse T or longitudinal L) photon
of 4-momentum @ splits into a ¢g dipole of transverse
size r that is described through a probability distribution
| (r, z,Q%)|?, where z is the fraction of longitudinal mo-
mentum of a quark of mass my . Then, a subsequent scat-
tering of the produced dipole occurs with the proton that
is modeled through a dipole-proton cross-section &(r,x).
Explicitly,

1
0T7L(x;Q2) :/(er)/ (dz)|WT7L(7’,z;Q2)|2&(x;r).

(6.4.10)
The splitting wave functions for the photon ¥ for a quark
of flavour f and charge ey are given by

el =[5 3 12 + (1~ 2@ K (Qyr)?
f

+(mpKo(Qyr))*}
7L = [23%] D e7[22(1 = 2)Q K, (Qyr)[t6.4.11)
f

where K ; are Macdonald functions and

Q7 = 2(1 - 2)Q* + m7.

It is important to note that the above incorporates the
change in the dynamics as Q? varies from large to very
small values in two ways. Kinematically, as Q2 goes to
zero, the effective quark masses m begin to set the scale
for the process. The important ranges of integration in
Eq. changes with the size of the dipoles in two
essential ways. The K-functions decrease exponentially for
large r dipoles whereas for small size dipoles they provide
(inverse) power law dependence. Also, the dipole cross-
sections are assumed to “saturate” as follows.

(6.4.12)

o(r,x) = 0,9(7); 7= | (6.4.13)

@)
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where o, is taken as a constant (phenomenologically o, ~
23 mb) and the function g saturates to 1 as 7 — oo:
g(F) = [1 — e~ /9, (6.4.14)
The above tames the small x blow up present in the struc-
ture functions in DGLAP & BFKL, as required by unitar-
ity.
Geometrical scaling resides in Eq.([6.4.13]) through the
fact that o(7) depends on the dimensionless variable 7 and
thus the saturation radius R,(z) controls the energy be-
haviour of the cross-section. Hence, in the region of small
but non-vanishing x, after integration Eq.([6.4.10)) depends
only on one dimensionless variable 7:

o P(2,Q%) = 0, h(7); T = Q*R2().

Qualitatively, the results -modulo lagarithmic corrections-
may be summarized as follows.

(6.4.15)

U'Y*p(x, Q* = o,forT =0

VP2, Q%) = [Z2]for T >> 1.  (6.4.16)
T

A phenomenological form for the saturation radius
1 =z
Ro(z) = (=) (—)M%
@) = (g%

Qo =1GeV; 2, =3 x 107% A =0.29, (6.4.17)
seems to work quite well and exhibits scaling for x <
10~2[412,/433] as shown in the Fig. from [412].

For a smooth limit to Q? — 0, the Bjorken variable is
shifted to

_ 4mfc
and a parameter
_ (2@
C= (1) (6.4.19)

is defined that delineates the “soft-x” regime (¢ < 1) from
the “hard-x” regime where ¢ > 1. A useful interpolation
formula that approximately covers both regions has also
been given [433] as

HW@Q%:mxmu+§+%ma+o}

As previously discussed in the definition of the parameter
q in Eq. (6.4.4) proposed by Haidt, a factor 1 has been
added to the argument of the logarithms for a smooth limit

@? — 0. The above expressions reproduce the change in
the slope of the high W? cross-section data as Q2 is varied.

(6.4.20)

6.5 Models for vp cross-section

The approaches to the phenomenological or theoretical
description of photon-proton total cross-sections can be
roughly divided into some general categories:
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Fig. 6.7. o7 P(r) vs 7, the scaling variable from [412].
Reprinted with permission, Fig.(1) from [412], ©(2001) by the
American Physical Society.

— factorization models, including the universal Pomeron
exchange model by Donnachie and Landshoff descrip-
tion, which extends very simply from pp scattering to
photon processes and can then be extended, again very
simply, to photon-photon processes

— the Reggeon-calculus approach which follows Gribov’s
picture of the interaction, including the Dual Parton
model descriptions

— QCD minijet models with photon structure functions

— QCD inspired parametrizations

We shall start with Donnachie and Landshoff model, which
we have already described in the previous sections.

In 1992, Donnachie and Landshoff [60] proposed a uni-
versal form for all total cross-sections, based on Regge
pole behaviour. Their expression, based on a simple and
economical parametrization of the total cross-section be-
haviour, describes the high energy behavior of all total
cross-section with a universal power law. The universality
of the slope is not always observed, as we have discussed
in [149]. However the DL expression, with slightly differ-
ent slopes, offers a good description in the energy range
presently reached by accelerators, and is still an object of
investigation, both theoretically and experimentally.

We show in Fig. [6.8]the results from an analysis by the
ZEUS Collaboration from HERA. The focus of this anay-
sis is the slope of ¢}, [390] as a function of the cm energy
W, in the energy range spanned by HERA. Parametrizing
a)F with W2¢ gives € = 0.111 & 0.009(stat) £ 0.036(sys).
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Figure 5: The W dependence of the total photon-proton cross section, normalized
to the value for the HER. The inner error bars show the statistionl uncertainties of
the total-cross-section data; the outer ervor bars show those uncertainties and all
uncorvelatad systematic uncertainties added in quadrature. The shaded band shows
the effect of the correlated systematic uncertainties. The curve shows the fit to the
form o, o W™,

Fig. 6.8. The energy behavior of the photo production cross-
section by the ZEUS Collaboration as shown in Fig. (5) from
[390]. Reprinted with permission from the ZEUS Collaboration
from [390]. OPEN ACCESS.

It must be stressed that while a power law behavior is
a good parametrization of the energy dependence in the
HERA region, this is clearly not sustainable at higher en-
ergies, as dictated by the Froissart bound. The behavior to
be expected at the high end of cosmic ray energies cannot
be gauged from this analysis.

6.5.1 The Tel Aviv group

The work [4341[435] by the Tel Aviv group of Gostman,
Levin and Maor (GLM) presents a unified description of
DIS total cross-section and photo-production. This work
follows Gribov’s idea that the scattering of photons on
hadrons can be visualized in, the by now standard, two
stages, i.e.

1. the virtual photon fluctuates into a ¢g pair (hadron in
Gribov’s language)
2. the qq interacts with the hadronic matter

In this model one calculates the total cross-section for a
generic (92, and the final expression is written with a con-
tribution from the transverse (T) cross-section as well as
one for the longitudinal (L) part. For large Q?, an expres-
sion for contribution from fluctuations of the photon into
a heavy quark pair is also given.

Following Gribov, the starting expression for the cross-
section, for a photon of mass Q? scattering off a proton,
is written through a dispersion relation in the initial and
final hadronic masses as

yep O F(Mz)sz
tot — 37T M2+Q2

I(M"?)dM”
M12 + QQ
(6.5.1)

o(M? M) s)
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with
o(ete™ — hadrons)
olete” = ptpu)

For large masses I'(M?) x I'(M'?) — R(M?) = 2. To de-
scribe the hadronic cross-section o (M?, M'?), the scatter-
ing is first divided according to an energy scale, My, which
separates the hard scattering regime where pQCD can be
used and the soft region. In the soft region, a second scale
is needed, because of the difference between gluon and
quark sizes. To be more specific, in the soft region, i.e. for
M, M’ < Mj the following expression is used:

I*(M?) = R(M?) =

(6.5.2)

o(M?, M) = o507 (M2, s) M25(M? — M"?) =
[0gn + ogn|M25(M?* — M) (6.5.3)

and for M, M’ < My, Gribov’s formula is simplified to
read
R(M?)M?dM?

2
oy 37r 2 +M2 ————————on(M?*s) (6.5.4)

For the soft regime, a Donnachie-Landshoff type ex-
pression is used so as to arrive to

{A(57) 7 +B(535)

(6.5.5)
with A and B obtained so as to make the result agree with
those from p-proton interactions. In [434], the constants A
and B were obtained from DL type fits to 7*p. Since the
cross-section thus calculated seem to be higher than the
data, some corrections are introduced. The calculation for
the hard part is done using published PDF’s for the gluon
distributions inside the proton, and is given by

woft _ O / M R(M?)M?dM>
T T 3r am2 (Q% + M?)?

 R(M?)dM?
QQ + M2 x

2ma
Uhard _

r =3

Mg

< dM?  M? M? .
| oG eGla ST I @2) (65.6)

with
I(M? M?* Q%) =
M2 — 02 2 _|_M2 — M2
3 Q2 + @ = = (6.5.7)
M2+ Q \/(Q2+M2+M2)2—4M2M2

Notice the lower cutoff for the integration in M?2.

Eq. (6.5.5) and Eq. (6.5.7) need to be implemented by
the contribution of heavy quark pairs. This is obtained

from Eq. (6.5.7)) by the substitutions

AMPII? — 4(M? — 4m2) M2, R(Q?) — ROQ(M?)
(6.5.8)
In both the above equations, x = x(M?) = (Q*+M?)/W?2,

where W is the energy in the photon-nucleon center of
mass system. No soft contribution is of course present for
the heavy quark term.

OLR—l}
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Fig. 6.9. From [435]. Data in the low energy range come from
fixed target experiments, while cross-section values for W2 >
10* GeV? are from [397]. Reprinted with permission from [435)
©(1999) by Springer.

An expression similar to the above is also used to de-
scribe a longitudinal component to add to the transverse
one. For the soft contribution, the authors note that a pri-
ori it should be straightforward to replace the factor M?
with Q?, except they find that, in so doing, the contri-
bution from the soft part overestimates the experimental
data and needs to be reduced. The strategy adopted is
to reduce the value of the parameter My. For the hard
component, the additional degrees of freedom result in an
expression proportional to Q2 (hence going to zero for real
photons) . For details, see [435] . The overall expression is
thus

soft

U(’Y*p) = o hard

K t
+ oh hard sof

+ O'T,QQ + o hard

+ o (6.5.9)

The resulting fit for the yp cross-section is shown in
Fig. [6.9

Concerning the pQCD part of this calculation, there
are a few points to notice:

- at low energy, the soft part does use some type of vector
meson dominance, being parametrized following 7+p,
but it needs some adjustments,

- the overall result depends on the gluon densities used
for the calculation of the hard part, with MRST[436]
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densities for the gluon giving a better description than
GRV, both GRV94[437] or GRV98[97],

- a difficulty in the calculation is related to the low val-
ues of M? integration, where the strategy adopted has
been to use

2
Gz, 12 < p?) = —QxG(x,;LQ) (6.5.10)
1

and, for Q% < p? to keep fixed the strong coupling

constant.

In our own QCD calculation of the mini-jet cross-section,
the gluon densities have also been extended to very low
x values of the gluon fractional momenta, as discussed in
Sect and the lower cutoff is given by a phenomeno-
logically determined value p,,;, ~ 1 GeV.

6.5.2 Eikonal mini-jet models for «p scattering

We shall now describe how the eikonal mini-jet model was
extended to photon processes [438[439[440], and subse-
quently modified by Block et al. [I48] in the QCD inspired
model of [168].

In the GLMN approach [435], the pQCD contribution
to the total cross-section was calculated using gluon-gluon
scattering for the probability of finding a gluon in a pro-
ton. For the probability of finding a gluon in a photon,
the calculation did not use parton densities, but wave
functions and various integrations. A different line of ap-
proach to the partonic content of the photon had instead
been developed by Drees and Godbole [441] who argued
that the hadronic content of the photon consists of quarks
and gluons, in a way analogous to the partonic content
of the proton or the pion. Thus, one could measure and
define photon structure functions, which would submit to
DGLAP evolution just like the hadrons. Such photon den-
sities could be inserted into a QCD calculation as in the
proton-proton case. This idea would then allow the calcu-
lation of jet cross-sections and that for production of mini-
jets, namely jets with p; >~ 1 GeV. To cure the resulting
too large number of mini-jets, a saturation mechanism was
invoked in [442], where the VMD model was suggested to
be used within the eikonal formalism, in complete analogy
with proton-proton scattering, as discussed in the previous
section.

A formulation of the calculation of the total vp cross-
section was proposed by Fletcher et al. [439], following
the eikonal mini-jet model for hadronic cross-sections de-
veloped earlier by Durand et al. [59,[46] and extended to
photon processes [438]. The issues involved, at the time, in
correctly extending the model to photon-hadron scatter-
ing included how to incorporate the photon-hadron cou-
pling into the eikonalization procedure, use of appropriate
photon structure functions, and gluon shadowing at small
x.

In the mini-jet approach, one distinguishes the follow-
ing steps:

— the photon interacts with other hadrons “as a hadron”,

namely as an ensemble of quarks and gluons, with a

probability P}.q which is proportional to agep,
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— once the photon has fluctuated into such a hadronic
state, one can apply hadronic models for calculation of
total or inelastic cross-sections, such as eikonal models
with QCD mini-jets to drive the rise,

— the mini-jet cross-section will be calculated using parton-

parton cross-sections and photon densities, following

standard parametrizations such as GRV[97], GRS [443],

CJKL[444], or using QCD inspired parametrizations,
or gluon mass models, etc.

The proposed expression is

znel Phad / de[l *n(b,s)}

(6.5.11)

where

n(b, s) = ng(b, s) + A(b)m

6.5.12
Ph,ad ( )

In Eq. (6.5.12] m the first term represents the non-perturbative |y >= Z3|yp > + Z

contribution to the average number of collisions, the sec-
ond is the one which should be calculated perturbatlvely
and which gives the high energy rise of the cross-section,
through the low-x gluons present in the hadronic content
of the photon. ngy(b, s) is of order of magnitude of a simi-
lar term present in hadronic interactions, and its estimate
depends on the low energy modeling of the photons in
the hadronic state. The second term has to be calculated
using the standard parton-parton cross-sections folded in
with the photon PDFs. In many models [I49] the soft
term ng(b, s) is obtained using the Additive Parton Model
(ADM) together with VMD, by putting

no(b, s) = AVMD3USOft( s) (6.5.13)

where o7/, (s) would be the same soft cross-section enter-
ing the eikonal mini-jet model for proton-proton and/or
proton-antiproton scattering. We shall return to this point
later.

The eikonal formulation for this model requires an ex-
pression for the impact parameter distribution in the pho-
ton. In [439] VMD and the form factor hypothesis are
used, and the result is that Ayap is obtained as the
Fourier transform of the convolution of two form factors,
the proton form factor and the “photon” form factor. The
latter is taken to be the pion form factor, following again
a model in which the number of quarks controls the b-
distribution during the collision. For protons, the dipole
expression is used, for the pion the monopole expression,
so that

V22
Avan) =5 a

LVQ[KO(W’) -

i . (6.5.14)

b
Ko(ub)] — 7K1(/~Lb)
In most applications of this model, the same expression
for A(b) is used for both the mini-jet term and the soft

part. However in general, there is no reason to assume
that the parton distribution in b-space is the same at very
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high energy and at low energy. In fact, in the model to be
described next, the so called Aspen model [I4§], this not
S0.

Before proceeding further, let us examine the quan-
tity Praq which plays a basic role in all the extensions of
hadronic models to photon total cross-sections.

If the photon, in its interactions with matter, is to be
considered just like a hadron, then any model for hadron-
hadron scattering should be considered extensible to photon-
hadron scattering. The factor Pj,q represents the proba-
bility for a photon to interact like a hadron and was in-
troduced to apply vector meson dominance ideas to the
eikonalization procedure. In principle, P,q may very well
have an energy dependence. A possible definition follows
the general VMD statement that the wave function of the
photon in its interaction with hadrons can be expressed
as [445]

—|V > +f\qq >

- (6.5.15)

V=p,w,p

where the first term corresponds to the bare photon, i.e.
in its purely electromagnetic interactions, while the sec-
ond considers the non-perturbative component, pictured
through VMD, and the last gives the contribution to the
pQCD behaviour at high energy from quarks and gluons.

Given the general theoretical uncertainty in total cross-
section models, a phenomenological strategy is to ignore
this energy dependence and use a VMD model for Pjqq4,
or even to use it as a free parameter determined by the
normalization of the total oL, cross-section at low energy.

The Aspen model for photons [I48] to be described
next, is a generalization of the Block et al. [I68] model for
protons with some differences. The Block model is based
on a QCD inspired parametrization and uses the eikonal
formalism, which guarantees unitarity, namely one starts
with

Ototal — 2/d2b[1

In the proton case, x(b,s) is a complex function, whose
even component x V" receives contributions from parton-
parton interaction through the three separate terms

— X159 cos(xr (D, 5))] (6.5.16)

X" = Xgq(, 8) + Xgg (b, 8) + Xgg(by 8) =
i[aqq ($)W(b; paq) + 0qq(8)W (b5 /Higqliggt) +
Ogg(S)W (b; pgg)] (6.5.17)

The extension to yp is done as in [439] through

HAG) Phad/d b1 "0 cos X I (b, 5)] (6.5.18)

In this model the value Pp,q = 1/240 is used. This value
is obtained by fitting the low energy data and is very close
to the expected VMD value. For the cross-sections, o;;(s),
and the impact parameter distribution functions for pho-
tons, to be used in Eq. , the following substitutions
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Fig. 6.10. The total cross section ¢;% in mb vs. /s in GeV,
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are made in Eq. (6.5.17):
2

pp v _ “ _pp
3
PP = )P = \/;,ufp (6.5.20)

where the two substitutions are done in the spirit of the
Additive Quark Model. We can anticipate that the same
model will be applied also to ¥y processes with

4
)
= g,ufp (6.5.22)

The predicted total cross-section in this model is shown
in Fig. [6.10

Following the QCD inspired model outlined above, Luna
and collaborators [446] have also extended their dynamical
gluon model to photon-proton scattering.

More recently, Block has proposed an analytical ampli-
tude model and has applied it to both photon and neutrino
scattering on protons [447].

6.5.3 The BN model : eikonal mini-jet model with soft
gluon resummation

In this section we describe our extension of the Eikonal
mini-jet model with k;-resummation in the infrared region,
labeled BN model, as it is inspired by the Bloch and Nord-
sieck (BN) description of the Infrared catastrophe [I72].
As described in the previous section, our aim with this
model is to introduce, together with the mini-jet cross-
section, a saturation effect which arises from soft gluon
emission, down into the infrared region, as discussed in
the section about the total cross-section.
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The model is so far relatively simple, with a limited
number of parameters, and thus it can, to a certain ex-
tent, be considered almost a model for testing confine-
ment through a singular quark-gluon coupling below the
perturbative QCD expression.

We start with the simplified expression from [439],
namely

oot = 2Phad / d’b[1 — e~ (02)/2] (6.5.23)
with
n?(b,s) = nzgft(b, s)+n)t .(b,s)
= ”fot(b’ s) + A(b, S)U;-th(s)/Phad (6.5.24)

with nperqg including all outgoing parton processes with
Pt > Demin- We differ from other mini-jet models in ap-
proximating the eikonal with just the imaginary part [148],
in using a different impact parameter distribution for the
soft and the hard part [439], but mostly in our expression
and origin of the impact parameter distribution for pho-
tons. In Eq. the impact parameter dependence
has been factored out, averaging over densities in a man-
ner similar to what was done for the case of the proton in
[150]. Because the jet cross-sections are calculated using
actual photon densities, which themselves give the proba-
bility of finding a given quark or gluon in a photon, Pp.q
needs to be canceled out in nj,,.4. We choose its value,
by normalizing the eikonalized cross-section to the data in
the low energy region, and we use Pprqq = 1/240 ~ Py pp.
For the average number of hard collisions, we use mini-jets
and soft gluon resummation with npq.q given by:

ABR (b, 8)T et

6.5.25
Phraa ( )

nhard(b7 S) =

with the impact distribution function obtained exactly as
in the proton-proton case, namely

PPKL) ik,
Agﬁ(b,s):N/deL dQ%L e Kb

e_h(b7Qmaa:)

_ AAB
[ d2be=hbgmes) — ABR (b, Gmaz(5))-

(6.5.26)

except for the fact that ¢4, the upper limit of integra-
tion in the function A(b, gmas) is to be calculated using
proton and photon densities. h(b, gima.) describes the ex-
ponentiated, infrared safe, number of single soft gluons of
all allowed momenta and is given by,

/qu) dky s (K7)
0

kt ™

h(b, Qmaﬂe(s)) = %6

x <log quk:(‘s)> [1— Jo(kb)] (6.5.27)

We show typical values taken by ¢y,,q. for different sets
of quark densities in Fig.[6.11} In our model, the expression
for A(b, s) for the hard term in hadron-hadron or hadron-
photon scattering remains the same, unlike models that
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scattering, from [149]. Reprinted with permission from [149],
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Fig. 6.12. The total cross section o5 in mb vs. /s in GeV,
from [I49]. Reprinted from [149], (©(2008) by Springer.

use form-factors for instance, where the photon needs to
be modeled as a meson and then parametrized.

We show the result of our model in Fig. from
[149). In this figure, the high energy parameter set of this
description, consisting of the LO PDFs and pgmi, value
used for the mini-jet cross-section calculation, together
with the saturation (singularity) parameter p, were limited
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Fig. 6.13. The total cross section ¢}%, in mb vs. y/s in GeV,
from [448]. This is Fig.(2) from [448], ©(2015) by the American
Physical Society.

to GRV densities for the protons, while two sets of photon
PDFs were used. A comparison was made with predictions
from some available models, such as indicated in the figure
and discussed in [T49].

An updated description of 7p, is shown in Fig. [6.13]
In this figure, we compare the BN model results obtained
with MRST and GRV densities for the proton, GRS for
the photon, with the recent analysis by Block and collab-
orators [447]. The band in Fig. correspond to GRV
or MRST densities for the proton. The difference with the
previous analysis is not large, it depends , as mentioned
by now many times, on the small-x behavior of the den-
sities used. From a comparison with accelerator data, we
can say only that both curves can be used for cosmic ray
extrapolations.

6.6 0¢0tai(7p), and exclusive vector meson production
o(yp — Vp)

In addition to the total vp and y*p cross-section (which
will be discussed in some detail in the next subsection)
HERA has provided interesting data on vector meson ex-
clusive production.

A compendium of total and exclusive vector meson
photo-production data are shown as a function of W in
Fig. [6.14] from Levy’s review of HERA experimental re-
sults [449]. Recently, this figure appears in updated ver-
sions, as in [450] and is of interest for proposals for future
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Fig. 6.14. Total and exclusive vector meson photoproduction
data, from [449]. Reprinted with permission from [449]. OPEN
ACCESS.

electron-positron colliders [451]. There is only one vari-
able here, the c.m. energy W, and the fits are made as a
power law o(W) ~ W?°. The parameter § rises from 0.16
for the oiorq1(yp), with the mass of the produced vector
meson to about 1.2 for o(yp — 7(15)p). In the Regge
language, hadron-hadron total cross-section at a CM en-
ergy W = /s should grow as W?2¢, where ¢ = (ap(0) — 1)
and ap(0) is the intercept of the Pomeron at momentum
transfer ¢ = 0. For photo-production, the value for e fol-
lows the original Donnachie-Landshoff power law analysis,
discussed at length earlier, [60], i.e.c = 0.0808. In [452], the
value € &~ 0.096 was shown to reproduce well pp scattering,
while the ZEUS data for yp can be fitted with e = 0.111
in the HERA energy range, as seen in Fig. Thus,
6 = 2¢ ~ 0.192, not too far from either the HERA value
of & ~ 0.16 for ototai(yp) or the ZEUS analysis. At the
same time, these differences point to the fact that power
law fits, albeit very useful for phenomenological analyses,
are often dependent on the energy range and the type of
scattering process.

While 6 = 2¢e for o¢otai(yp), data show that also the
photo-production of light-mass vector mesons (p°,w, @)
are consistent with a soft process. In Levy’s review of the
data, it is stated that here too there is a large configu-
ration for the photon to fluctuate into a gg pair. On the
other hand, as the mass of the vector meson increases the
system is led from the soft to the hard regime: the heavy
quarks squeeze the photon into a smaller configuration
leading to color screening and the partonic structure of
the proton is resolved. In the hard exclusive regime, the
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The Wdependence of the cross section for exclusive g° electroproduction, for different G2 values, as indicated in
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Fig. 6.15. The cross-section for electroproduction of p-meson,
as measured by the ZEUS Collaboration in Fig. (13) from [453],
as a function of the c.m. energy W, and for different Q? values.
Reprinted from [453] with permission from the ZEUS collabo-
ration.

cross-section should be proportional to the square of the
gluon density and hence there should be a strong depen-
dence on W. This is clearly manifested by the HERA data,
as discussed and summarized in [449].

6.7 Electro-production of vector mesons, v*p — Vp

Virtuality of photons adds another variable Q% to W that
is lacking in purely hadronic cross-sections. HERA data
show interesting results that can be found in [453\454]
[455]. Here we shall attempt a summary.

6.7.1 Electro-production of p® meson

In Fig.(13) of [453], reproduced here as Fig. o(v*p —
p°p) is shown as a function of W for different values of
Q2. The data are fitted to a power law &, which rises from
(0.1 + 0.2) for low Q?, as expected for soft processes, to
about 0.6 for large Q2, consistent with twice the logarith-
mic derivative of the gluon density, again as expected of
a hard process.



Giulia Pancheri, Yogendra N. Srivastava: Introduction to the physics of the total cross-section at LHC

© 2 TRk T R e T T
1.8 [ A pZEUS9 ¢ DVCS H1 96-00 .
[ ¥ pZEUS9 A DVCS H1 HERATT
1.6 r m &ZEUS a
[ * JwyZEUS ]
1.4 [ O DVCS ZEUS 96-00 4
UL » DVCSZEUS (28 pb?) h
12F E
1k .
0.8 |- ]
0.6 - l ]
04 g
02 }# :
0 N T T T T T W T Y MO WO
0 5 10 15 20 25 30 35 40
Q*+M?*(GeV?)

Figure 3: A compilation of the value of 6 from
a fit of the form W for exclusive vector-meson
electroproduction, as a function of Q2 + M?2.
It includes also the DVCS results.

Fig. 6.16. The Q? dependence of the energy slope for v*p —
V'p cross-section, including heavy vector mesons electroproduc-
tion and Deeply Virtual Compton Scattering results, from [449]
and references therein. Reprinted with permission from [449],
©(2009) by Science Wise Publ.

6.7.2 Electro-production of heavier vector mesons and
Y'P =P

While the general trend of an increase in the cross-section
with Q? is similar for ¢, J/1 and for deeply-virtual Comp-
ton scattering v*p — p, there is obviously an uncertainty
in how to insert the mass M of the produced vector meson.
Quite often, the variable Q2 + M? in place of Q2 has been
used. In Fig.(8) of Levy, reproduced here in Fig. a
plot of § versus Q2 + M? is shown. There is an approx-
imate universality showing an increase in § as the scale
increases. ¢ is found to be small at low scale, consistent
with the intercept of a soft Pomeron whereas at larger
scales it becomes close to that expected from the square
of the gluon density.

Further studies to determine the best scale to use for
vector meson electro-production, led to study the ratio
ry = o(y*p — VP)/owi(7*p) as a function of W. This
ratio can be parametrized following Regge arguments, in
terms of a Pomeron exchange and of the slope of the dif-
ferential cross-section doy /dt as

ry ~ WA/b (6.7.1)
More details about the scale dependence of the parameter
A and its connections to the & parameter can be found
in [454]. Notice that this analysis depends on the energy
behavior of o4 (7 * p) to which we turn in the next sub-
section.
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Fig. 6.17. The virtual photon-proton total scattering cross-
section for different Q2 values of the virtual photon as a func-
tion of the squared c.m. energy W2, from [456]. Reprinted with
permission.

6.8 Total v*p cross-section

At HERA, extensive measurements in the available phase
space have brought a detailed description of the c.m. en-
ergy dependence of the total v*p cross-section, in a range
of values of Q2. These measurements highlight the tran-
sition from real photon scattering to Deep Inelastic Scat-
tering (DIS) region, i.e. 0 < Q% < 10000 GeV?. A com-
prehensive description, up to Q2 = 2000 GeV?, can be
seen in Fig. [6.17 from [456]. The high energy data have
been obtained at HERA, lower energies from a number of
different experiments, and for which we refer the reader
to the cited papers. One can draw a few conclusions from
this figure:

— for real and quasi real photons, the low energy behavior
of o(y*p) exhibits the well known initial decrease with
energy, followed by an apparent minimum and then a
very mild rise. Thus, the cross-section would follow a
standard Donnachie-Landshoff parametrization,

— as Q2 increases beyond 20 GeV?, the minimum dis-
appears and the cross-section is everywhere increasing
with energy albeit with different slopes, and the in-
crease with W?2 is steeper for larger Q? values,
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— the change in curvature before the high energy rise,
moves to higher W2 values as Q2 increases.

In the figure, two different parametrizations are shown,
one described by a continuous line, and labeled as ALLM97,

which we summarize here, while for the second one, MRSRI1,

we refer the reader to refs. [456L457]. The ALLM [458]
parametrization (of which ALLM97 represents an update)
describes the proton structure function following the usual
split into a Regge and a Pomeron type term, i.e.

G (P (0.@) + @, Q)

(6.8.1)

with FQP ’R(m, Q?) a function of a slowly varying variable
defined as

Fy(z,Q%) =

In LQHQS

t=1In( Q
0

) (6.8.2)

1n

The F, data were then conveyed t0 Trot (Y p) using

4% Q%+ 4M%a?
Q*(1 — ) Q?

where M here is the proton mass. The ALLM F5 is based
on 23 parameters, which were updated from pre-Hera data
to the nice description shown in Fig.

The v*p HERA data have also been studied in terms
of Vector Meson Dominance or Color Dipole Picture, as
shown and discussed in [459].

A more recent analysis of HERA data from [460] is
shown in Fig. with the virtual photon cross-section

F,(W?2,Q% (6.8.3)

oot (YD) =

- 4
S Q*(1—2)

valid for 4m?2a® << Q?, fitted with F(x, Q%) from HERA
parametrized according to a power law, i.e.

Fy(z, Q%) (6.8.4)

logyo Fa(z, Q%) = c1 + ¢ - logyo(z)+
+es - logyo () - log,,(Q%/QF)+
+ey - logyo(x) - (log1,(Q%/QF))?

Before moving to briefly discuss two photon processes,
we point out that the energy range for photo and electro-
production at HERA is limited to values still far from the
asymptotic regime, where purely hadronic cross-sections
are expected to exhibit a logarithmic behavior. Thus, the
question of a power-law vs. a logarithmic behaviour is still
open, where photon processes are involved.

(6.8.5)

6.9 ~~ scattering
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Photon-photon scattering was measured in electron-positron from [462], starting from /57, = 1.4 GeV at SPEAR up

collisions from the very beginning of storage ring collid-
ers [461]. As the available beam energy increased, data for
vy — hadrons became available. A compilation of data
for the cross-section into hadrons is shown in Fig.

to LEP measurements, reaching /s = 189 GeV. The fig-
ure indicates that the trend of the data as a function of

the two photon c.m. energy is consistent with a hadronic

process, namely it starts with the usual initial decrease
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Fig. 6.20. Description, and comparison with data, of the vy
total cross-section in the model by Bourrely, Soffer and T.T.
Wu, fig. 1 of [463]. Predictions are also shown, and compared
with then existing data, for pp/pp and yp. Reprinted with per-
mission from [463] ©(1999) by World Scientific.

followed by a rise. Such behavior is easily obtained in fac-
torization models.

Indeed there are various models which describe photon-
hadron scattering through various forms of factorization,
which would then allow to obtain o}, through the simple

statement

YP\2
o) = ("f;;;) (6.9.1)
Otot

where o2} indicates some combination of pp and pp total
cross-sections. This is the case of the model by Soffer and
collaborators [463], which follows from their description of
~p total cross-section effects in [464].

The Bourelly, Soffer and T.T. Wu ansatz [464] is that
~vp total cross-section can be obtained from 7p as

oot (YP) = 104 (Utot(7r+p) + atot(w_p)) . (6.9.2)

3
For o4t(7*p) the authors use, an early impact picture
prediction where a simple power-law dependence s°%8 was
first given. From this simple model, one could obtain o)}
and compare it with data for v+ extracted from LEP.
Through Eq. (6.9.1) and their earlier fit to proton-proton,
the authors [463] obtain the results shown in Fig. [6.20].
While straightforward factorization models can give a
general good description of data up to LEP most recent
measurements, the limited energy range and the large er-
rors affecting the extrapolation to full phase-space both at
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Fig. 6.21. Data and models for vy — hadrons from [465].
Reprinted from [465] (©(2003) by Springer.

lower and at the highest energies, do not provide enough
information to distinguish between standard power law
energy dependence, such as Regge-Pomeron exchanges,
mini-jets, or QCD driven exchanges. Such distinction, as
is also the case for ~p, is left to future colliders or per-
haps to LHC. A 2003 compilation of a selection of models
is shown in Fig. from [465], where the bibliographic
references can be found. Details of models can be found
in [466]. A general fit to the LEP data alone, i.e.

04y = AsS + Bsl)! (6.9.3)

was done in [465] and is shown in Fig. [6.22

6.10 v*~* — hadrons

At LEP, through the measurements of e"et — e7e® +
hadrons, o(y*y* — hadrons) have been measured by the
L3 [467] and OPAL Collaborations [468]. The kinemat-
ics of such processes is shown in Fig. (fig. (1) from
OPAL). Measurements for the above process for one un-
tagged electron were made by the ALEPH Collaboration
[469], who extracted the so-called photon structure func-
tions F; ;- In this case one photon is almost real, and

the process is studied as function of a single Q? value,
extracted from the tagged electron.

For the determination of y*+* cross-section, both scat-
tered e~ and et have to be tagged at sufficiently large
polar angles 6;, to be observed in the detector. The kine-
matical variables for the process are as follows.

— the e~et CM energy squared is s, .+ = (p1 + p2)?
— the virtualities of the scattered photons are given by

Q? = (pi — p)%;
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hadrons

e (py)

Fig. 6.23. Kinematics of ete™ — 4*y*ete™, as from Fig.

(1) of [468], OPAL Collaboration. Reprinted with permission
©(2001) by SPRINGER.

— the usual variables of deep inelastic scattering are de-

fined as
g2 _ (41 G2y,
yl_(pl'lh)7 (;02'611)7
2 2
L= () e = (A2 (610

2q1 - q2 2q1 - q2
— the hadronic invariant mass squared is W2 = (1 +CI2)2?
— the Bjorken variables z; are related to Q? and W? as

Q7
QT+ Q3 +W?]

€T; =

(6.10.2)
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Fig. 6.24. The above Figs. 8a and 8b from [468§]) of the OPAL
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an average value of the photon’s squared momentum < Q? >=
17.9 GeV?. Reprinted with permission from [468] ©(2001) by
Springer.

For comparison with models, an additional variable which
incorporates the W2 and Q7 dependence, is defined, i.e.

Yy = ID(LQ)

V@QiQ3

Of course, given three helicities for each virtual photon
with different Q?, there are a plethora of physical quanti-
ties (six in number) that can be measured (4 cross-sections
orr;orL;orr; o) and two interference terms (7pr; 7L ),
where T, L stand for transverse or longitudinal. Detailed
expressions for these quantities and discussions can be
found in two Phys. Rep.[470] and [471].

Here, we shall just comment upon salient aspects of
the two determinations at LEP of the total o(y*y* —
hadrons), the “cleanest” quantity that can be measured
and compared to models. Both OPAL and L3 data were
taken at \/scz = (189 + 209) GeV, with similar hadronic

mass W > 5 GeV and mean < Q2 >~ 18 GeV? ranges.
Fig. shows the OPAL extracted 07 7" as a function
of the virtual photon c.m. energy W, compared with pre-
dictions from PHOJET (solid lines) and a Quark Par-
ton Model (QPM) (green dotted lines). The Dual Par-
ton Model (DPM) [67] is beneath the PHOJET [472,[473]
event generator (PHOJET1.10) used to simulate double-
tagged events and obtain the total luminosity L7, through
which the two LEP measurements construct o(y*y* —
hadrons). DPM contains both hard and soft processes.
Hard processes are incorporated via LO QCD, and soft
processes are included through a phenomenological anal-
ysis of yp, pp, pp data assuming Regge factorization.

The comparison with QCD models can be seen from
the analysis by the L3 collaboration, which we show in
Fig. from [467]. This figure shows that lowest order
BFKL predictions for o(y*y* — hadrons) were rather
large by a factor of about 20 or more. Subsequent phe-
nomenological results from Next-to-Leading Order (NLO)
have reduced this discrepancy by an order of magnitude.
It appears that with theoretical improvements suggested
in [A74[A75476,477[478], the BEKL formalism can be rec-
onciled with the two LEP measurements. However, no def-
inite assessment can be given at present, short of higher
energy data becoming available, as also discussed in [479],

(6.10.3)



Giulia Pancheri, Yogendra N. Srivastava: Introduction to the physics of the total cross-section at LHC

80

1v¥s=91 GeV
— ] ® Data
a 607 . rkL L3
— ] -+ one-glucn e
> 40| —FT
:
©

5,.,.(Y) [nb}

Fig. 6. Two-photon cross-sections, o, -, -, after subtraction of the
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183GeV ({@?) = 14GeV?). The data are compared to the predic-
tions of the BFKL model and of the one-gluon exchange diagram.
The continuous line is a fit to the data with Eq. (1) by leaving ap
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Fig. 6.25. The above (Fig. 6 from [467]) shows the cross-
section measured by the L3 Collaboration for v*~* — hadrons
as a function of the variable Y, for two different /sc. values,
with corresponding average photon squared momentum, as in-
dicated in the original figure caption. Reprinted from [467],
©(1999) with permission by Elsevier.

where further contributions from secondary Reggeon ex-
changes in QCD have been considered An interested reader
can find further description in the previous references.

6.11 Conclusions

Models for photon scattering probe yet another aspect of
the total hadronic cross-section, but the absence of data
at very high energy, for instance /s > 200 GeV into the
TeV region, does not allow for precise tests of model pre-
dictions at high energies, such as those probed for instance
in cosmic ray experiments. The transition from real to vir-
tual photons and from photons to hadrons are still rather
model dependent. Planned future measurements, perhaps
at LHC, or at future ep or ete™ colliders, would shed
further light on these transitions in the future.
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7 LHC program for near forward physics

In this section, we describe the total and small angle cross-
section measurements that were programmed to be done
at LHC.

Our presentation of the measurements at LHC follows
the extensive documentation prepared before the start of
LHC [480,481482,483,484[485]. Since then the LHC has
started functioning and a wealth of results has appeared
and updates of the LHC program are planned. An early
comprehensive update about various planned experiments
can be found in the proceedings of the Blois Workshop,
held at CERN in June 2009 [486], as well as in presenta-
tions at DIFF2010 at Trento Workshop, ECT*. A recent
review of measurements by TOTEM and ATLAS exper-
iment can be found in [487]. For updates as of Septem-
ber 2016, an extensive set of presentations was done at
the ECT* 2016 Workshop entitled Forward physics WG:
diffraction and heavy ions, with slides available at :
https://indico.cern.ch/event /568781 /timetable/#al .

The experiment dedicated from the outset to measure
the total cross-section is the TOTEM experiment [480],
but other measurements relevant to physics in the for-
ward region have been and will continue to be performed
by all the LHC experiments: ALICE [481], ATLAS [482],
CMS [483], LHC-b [484] and LHCf [485]. In addition, these
experiments have been providing data about the inelas-
tic cross-section, a component of oy, crucial for a full
understanding of the dynamics entering both pp and cos-
mic ray data. Recent results concerning the inelastic total
cross-section at the present LHC energy of /s = 13 TeV,
can be found in [488] for CMS and in [489] for ATLAS.

Various experiments study particle flows and diffrac-
tive physics through a number of detectors placed at var-
ious distances along the beam directions, with different
physics goals. We show in Fig. a schematic drawing
of the positions of the main experiments around the LHC
ring at various Interaction Points (IPs).

At LHC the phase space range extends to 11 units
in rapidity, since in the variable y;,q, = In % ~ 9.6. In
the variable pseudo-rapidity, n = —1In tamg7 where 0 is
the scattering angle of the detected particles, the cover-
age goes up to 12 or 13 units. The main CMS and AT-
LAS calorimeters measure energy deposited in the rapidity
range |n| < 5, with particle detection and identification
to be performed by the Electromagnetic and Hadronic
calorimeters for 0 < |n| < 3 , and the hadronic for-
ward (HF for CMS and FCal for ATLAS) calorimeters
for 3 < |n| < 5.2. In this region, data can also be collected
by ALICE and LHC-B. For forward physics at LHC-B, see
D’Enterria [490]. The forward calorimeters, however cover
only part of the forward region. With most of the energy
deposited in the region 8 < || < 9, other calorimeters are
needed and placed near the beam. In this region, there
is the LHCf experiment measuring particle flows, and the
Zero Degree Calorimeters (ZDC) measuring neutral par-
ticles, while the extreme rapidity region, beyond |n| = 9
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CMS

ALICE LHC-B

ATLAS

Fig. 7.1. Schematic description of location of major experi-
mental sites around the LHC ring, ATLAS is at IP1 and CMS
at IP5.

will be covered by Roman Pots (RP), with TOTEM in
CMS and ALFA in ATLAS.

Let us now look in more detail to particle detection in
the forward region and to the system of detectors covering
the rapidity region |n| ~ 3 =+ 7. Up to a distance from
the Interaction point (IP) of (10 = 20) m, as we show
schematically in Fig. the strategy is to surround the
beam pipe with tracking calorimeters, as follows:

ATLAS with MBTS, Minimum Bias Trigger Scintillator,
at 3.6 m from the interaction point, a Hadronic For-
ward (FCal) calorimeter covering the region 3.1 < |n| <
4.9 and LUCID, Luminosity Cerenkov Integrating De-
tector, a luminosity monitor at 17 m;

CMS with the Hadronic Forward (HF) calorimeter placed
at 11.2 m from the interaction point, covering the ra-
pidity region |n| < 5.2 (inner part for the region 4.5 <
In| < 5.0), followed by CASTOR, Centauro And STrange
Objects Research, which detects energy flows and is
a Cerenkov calorimeter surrounding the beam pipe
(15 +16.5) m from the interaction point, covering the
range 5.2 < |n| < 6.6 and dedicated to the observation
of cascade developments;

TOTEM with the two tracking detectors 77 and T, which
cover the region (3.1 < |n| < 6.5).

These detectors are placed in such a way that it is easy
to miss particles scattered in the very forward direction
and they are implemented by dedicated set ups like Zero
Degree Calorimeters and Roman Pots (RP). The Zero De-
gree calorimeters are placed at 140 meters from the inter-
action point and cover the rapidity range || > 8.3. The
ZDC’s are for the detection of neutral particles such as
neutrons, photons and 7° and are especially designed for
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Fig. 7.2. Forward tracking at LHC through calorimeters
placed at a distance of (~ 10 + 20) m from the interaction
Point (IP).

heavy ions and diffractive physics. At a distance of 240
meters from the IP3, there is ALFA, Absolute Luminosity
For ATLAS, with Roman Pots, to be placed at an angle
from the beam pipe of 3 urad. In IP5, in the CMS region,
after T1, T2, CASTOR and ZDC, there is TOTEM with
the Roman Pots. At even longer distances, the High Pre-
cision Spectrometers at 420 m [491] dedicated to forward
Higgs studies [49211493].

7.1 The CMS region and cross-section measurements

In Fig. we show a schematic view of the layout of
various forward physics detectors in and around CMS. A
similar layout is found also in the ATLAS region.

We also show a pictorial view of the full set up of
forward physics detectors in the CMS region in Fig.

In the following we shall describe in more detail the for-
ward physics and experimental layout of interest for total
cross-section and other forward physics measurements. We
shall focus on TOTEM and ZDC, the two experiments and
detectors in the CMS region where very forward scattering
angles can be measured and total cross-sections extracted.

7.1.1 TOTEM

As stated earlier, TOTEM is the experiment dedicated
to the measurement of the total cross-section [480]. It is
based on the luminosity independent method, which uses
both the measurement of the elastic scattering rate at the
optical point, t = 0, or as close as possible to it, as well
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Fig. 7.3. Schematic view of forward physics detectors in CMS, with T1 and T2 from the TOTEM experiment.

147 m

180 m

Fig. 7.4. Interplay between forward detectors between CMS
ZDC and TOTEM Roman Pots. Shown are distances in metres.

as a measurement of the entire elastic and inelastic events
rate through the two equations

167 dNel

Lo? = ——|i= 7.1.1
Ototal 1+P2 d|t| |t70 ( )
Lototal = Net + Niner (712)
which lead to
16w dNg/d|t| |i=
Ototal = U l/ | ‘ |t 0 (713)

1+ p2 Nel + Ninel

The measurement of the elastic and inelastic rate to be
done through two detectors, named T1 and T2, placed
symmetrically with respect to the CMS experiments. T1
and T2 are trackers embedded into the forward region of
the CMS calorimeter, within a distance of 10.5 and 14 m
from IP5 interaction point of the LHC. These detectors
provide the reconstruction of charged tracks and cover a

rapidity interval 3.1 < |n| < 6.5, with T'1 covering the
interval 3.1 < |n| < 4.7 and T2 the interval 5.3 < |n| < 6.5.

While the measurement of the inelastic rate N;,q; does
not require special machine conditions, measurements in
the very forward region do. The measurement of the dif-
ferential elastic cross-section near the optical point done
through the detection of very forward protons, with a tech-
nique known as Roman Pots (RPs) and used for the first
time at the ISR[23]. The RPs are placed on the beam-pipe
of the outgoing beam at distances between 147 m and
220 m from IP5 and host silicon detectors to be moved
very close to the beam, inside the vacuum chamber of the
accelerator.

The measurement at the optical point requires special
LHC optics, in order to reach the lowest possible value
for the momentum transfer ¢. For this one needs the beam
divergence to be small compared with the scattering angle.
We show in Fig. a schematic description of the relation
between beam size and beam divergence, where o, and
g are function of the beam emittance ¢ and the beam
divergence, i.e.

Ox =\ €62 (7.1.4)
o9 = \/g (7.1.5)

Physically, 5* is that distance from the focal point where
the beam is twice as wide as at the focal point. The beam
is “squeezed” or narrower if 8* is low, whereas the beam
is “wide” and straight for large 8*.

Thus, the beam divergence ~ 1/4/B* is measured by
the parameter $*, which needs to be as large as possi-
ble. This requires a special value for the parameter g* =
1540 m. Since such a large value needs a special injection
scheme, in the early stages of LHC operation (circa 2010),
a less demanding option was planned with 5* = 90 m.
At that time , the TOTEM collaboration expected to be
able to provide a measurement of the total cross-section
with a 5% error within the next three years, with values
of the differential elastic cross-section down to values of
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Fig. 7.5. A cartoon depicting the meaning of the quantity 8*
and the relationship between beam size and beam divergence.

[t| > 1072 GeV?2. This measurement was to be based on
the early optics conditions, 5* = 90 m and a luminosity of
10?7 = 10%° ¢m~2sec™!. Under these conditions, TOTEM
Collaboration estimated that about 65% of forward pro-
tons would be detected. Later with 5* = 1540 m, one will
be able to reach |t| > 1073 GeV? and, with about 90% of
the diffractive protons seen in the detector, with an aim
to obtain a measurement at the level of 1%.

As for the value of p = Smf(t = 0)/Ref (¢t = 0), which
we have discussed in earlier sections, it was taken to be
p = 0.14 following various predictions. This was consid-
ered adequate, since only the squared value for p enters in
the equation. From the analysis of the COMPETE Col-
laboration [290], we show a compilation of data and best
fits as indicated in Fig. |7.6

7.1.2 ZDC

Tuning at zero angle on neutrons, and detecting them with
the zero degree calorimeter [495] at CMS, in addition to
a number of diffractive physics measurements, there has
also been the hope to measure 7+p and 777" total cross-
sections in an energy range inaccessible so far, namely
in and around 1 TeV [496]. Information on diverse ini-
tial state particles and their relative rise with energy of
Ototal 18 crucial for understanding the mechanisms behind
the rise of the total cross-section, whether or not there
is a universal rise, and connections to perturbative QCD.
Presently, data for mp total cross-section are only avail-
able in an energy range up to 25 GeV[265]. The situation
for 7 is even less favourable. The mechanism proposed
to measure these cross-sections in the high energy range
is shown in Figs. [7.7]and namely through detection of
neutrons in the very forward direction and production of
pions through the charge exchange reaction.

As proof of the feasibility of such experiments, Petrov
et al. [496] have extracted data for 7*p cross-section up
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Fig. 7.6. Fits by the COMPETE collaboration [290] show
the wide range of expected results at LHC, due to the tension
between data from various experiments at the Tevatron (and
at SppS as well). The figure is from [494], with total cross-
section data compared with various options for the high energy
dependence. Figure is reproduced from [494], courtesy from J.
Kaspar, TOTEM Collaboration.

Fig. 7.7. The charge exchange mechanisms proposed in [496]
to measure the total 7mp cross-sectionat LHC.

Fig. 7.8. The charge exchange mechanisms proposed in [496]
to measure the total 77 cross-sectionat LHC.

to 50 + 70 GeV wusing neutron and photon spectra at
previous experiments. The results are shown in Fig. [7.9]
from [496], where extracted data points are compared with
existing data from the Particle Data Group compilation
(PDG)[265]. Also shown are two parametrizations, with
full line by Donnachie and Landshoff [60] and dashes to
indicate the fit by COMPETE also from [265].
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Fig. 7.9. 71 p total cross-section from [496], with both direct
and extracted data points extracted with two parametrizations
[60] (solid) and [265](dashes). Reprinted with permission from
[496] ©(2009) by Springer.
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Fig. 7.10. 7 "p total cross-section data with both direct and
extracted data points from [496], compared with parametriza-
tions from DL [60], COMPETE [265](full), BH [69] and
from our model, as indicated. Figure is reprinted from [I51],
(©(2010) with permission by Elsevier.

We also show in Fig|7.10| a comparison in this energy
range between our model [I5I] and data and fits from
[496] as seen in Fig. , as well as comparison with fits
by Block and Halzen [69]. The interest of such a measure-
ment can be seen by going to very high energies, where the
models differ substantially, as induced in Fig. In the
compilation shown in Figs. and IE (which differ in
the energy range) we have plotted, together with the ex-
isting data, four predictions for 7 p total cross-sectionas
follows:
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Fig. 7.11. Predictions for 77 p total cross-section in the LHC
energy range from different models, as described in the text,
and comparison with data on 7w p total cross-section. DL
(dots) is from [60], BH (dashes) from [69], PDG COMPETE
(full) [265] and PRS (stars) indicates extracted data from [496].
Figure is reprinted from [I51], (©)(2010) with permission by El-
sevier.

— a Regge-Pomeron fit from Donnachie and Landshoff

Ortp(mb) = 1363509898 4+ 27.5657049%5  (7.1.6)

— the fit from the COMPETE [265] collaboration given

as
Orep = 27+ B () + Y () vy (T
S0 S S
(7.1.7)

— a fit by Halzen and Block [69] of similar functional
expression as the one from PDG, with an additional
In s term, i.e.

0 = co+ ¢ In (v/my) + coIn® (v/my) +

Bw/mz)™ +6(v/mg)" (7.1.8)
with numerical coefficients given by ¢y = 20.11 mb,
c1 = —0.921 mb, co = 0.1767 mb, B = 54.4 mb, § =
—4.51 mb, n1 = —0.5, 73 = —0.34

— the eikonal mini-jet model with initial state soft gluon
k¢-resummation described in previous section, with GRV
density functions for pion and proton and other param-
eters close to the values used for o2, namely pimin =
(1.15 = 1.3) GeV, p = 0.75 and A = 100 MeV in the
soft resummation integral; in this model the low en-
ergy data have been independently parametrized with
the expression

1GeV
E

with parameters Ag = 31.49 mb, A1 = 58.56 mb, Ay =
40.52 mb, a; = 0.498, as = 0.297

1GeV
E

Optp = Ao+ Aq] 1% — Ao ¥ (7.1.9)
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7.2 The ATLAS region and forward physics
7.2.1 LHCf

LHCH{ is the smallest of the LHC experiments and is a de-
tector placed at the ATLAS interaction point, with an in-
dependent acquisition system, very easy to correlate with
ATLAS. The experimental set-up covers a very forward
kinematics, n > 8.4, with angle from beam axis 6 <
450 prad, with detection of very forward ~'s. Because of
radiation problems, LHCf can however take data only at
low machine luminosity and needs to be taken out in high
luminosity running conditions.

The LHCf [497] experiment will measure the proper-
ties of neutral particles produced in the very forward re-
gion and compare them with expectations from the Mon-
teCarlo simulation programs used in Cosmic Ray Physics.
The experiment will use these forward particles from the
collision to simulate cosmic rays of similar energies in
laboratory conditions with particle energies at LHC, at
Vs = 14 TeV, corresponding to laboratory energies of
10'7 eV. The aim of this experiment is to clarify some phe-
nomenological problems encountered in extracting physics
from cosmic rays, among them a precise determination of
the energy, nature and origin of the particles which ini-
tiated the Extensive Air Showers observed in cosmic ray
experiments. By observing the energy deposition of con-
trolled particles, like neutrons, 7%’s and 7’s, and compar-
ing their properties with the two most used MonteCarlo
simulation programs, SYBILL[64,498] and QGSJET[499],
one can hope to resolve some outstanding questions in
high energy cosmic ray physics [500,501]. In cosmic ray
physics, presently of great interest is to study the cos-
mic ray spectra in and around the GZK [502/503] cut-
off, expected to take place at Ejq ~ 1072 eV. Quite
a long time ago, Greisen, Zatsepin and Kuzmin (GZK)
predicted that at such energies the flux of cosmic rays
could become too small to be observed. This effect cor-
responds to a reduction in the flux of primary cosmic
ray protons once they reach an energy high enough to
interact with the photons from the Cosmic Microwave
Background (CMB) and produce the A(1232)-resonance,
through p + v“MB — A — 7p. Were the cut-off not to
be observed, the possibility of exotic sources could not be
ruled out. While earlier measurements in the GZK cut off
region had not seen the cut-off, recently the observation of
the cut-off has been reported by two experiments, Auger
[504] and HiRes[505]. They both observe a decrease of the
flux and a change in slope. Some contradictions still exist,
as one can see from Fig. [7.12|from [506]. This figure shows
that, even though both HIRES and Auger report the ex-
pected GZK flux reduction, there is still a difference in
normalization between their data.

7.2.2 ATLAS forward detectors

The positioning of ATLAS forward detectors is shown in
Fig. where ALFA indicates the detectors for Abso-
lute Luminosity measurement, ZDC is the Zero Degree
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Fig. 7.12. Results from measurement of the Ultra High Energy
Cosmic Ray flux in the region of the GZK cut-off, from [506].
Reprinted from [506], (©(2010) with permission by Elsevier.

Calorimeter for ATLAS , LUCID is the LUminosity Cerenkov
Integrating Detector. Not shown is MBTS, the minimum
Bias Trigger Scintillator, closest to the IP.

One distinguishes the coverage of pseudo-rapidity in
central and forward detectors regions. For ATLAS, in the
central region, |n| coverage is up to 2.5 for the inner tracker,
3.2 for the electromagnetic calorimeters, 4.9 for the hadronic
calorimeters, and 2.7 for the muon spectrometer. The for-
ward detectors cover rapidity intervals up to |n| < 13.5 as
follows :

MBTS 2.1 < |n| < 3.8, is the Minimum bias trigger ded-
icated to diffractive physics measurements

LUCID covering 5.6 < |n| < 5.9, is the luminosity moni-
tor, designed to measure luminosity up to 1033em=2sec™
with a 3 + 5% precision, is sensitive to charged parti-
cles pointing to the primary pp collision, and is needed
to provide the minimum bias trigger at high values of
pseudorapidity,

ZDC a Zero Degree Detector, |n| > 8.3, will measure pro-
duction of neutral particles, n,v,7°, in the forward
direction and study both heavy ions and pp collisions,

ALFA 10.6 < |n| < 13.5 will measure the absolute lumi-
nosity and hadronic physics forward parameters.

The main method designed to measure the luminosity in
ATLAS uses Roman Pots to make a reference measure-
ment at low luminosity. This measurement will then be
used to calibrate a monitor when luminosity is too high
for use of the RPs. LUCID, the Beam Condition Moni-
tor (BCM) and MBTS are the three detector systems for
luminosity monitoring.

The very forward region in ATLAS is covered by Ro-
man Pots (RP) which measure elastic pp scattering at the
very small angles needed to extrapolate the differential
elastic cross-section to t = 0, the optical point for to-
tal cross-section measurements. As mentioned, these mea-
surement requires special beam optics (high $*) and low
luminosity, L = 102"em™=2sec™!.
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Fig. 7.13. The positioning of ATLAS detectors for forward physics.

7.2.3 Roman POTS and the ALFA detector

The technique by which one measures the very forward
scattering events to extract the differential elastic cross-
section in the very small t-region and thus the total cross-
section through the optical method, makes use of the so
called Roman Pots. Roman Pots do not really look like
pots from ancient Rome, where containers were of round
”amphora-like” shape E-L and thus quite different from
the cylindrical shape of the actual RPs. They get their
name having been used by the Rome-Cern group at the
ISR in the early 70 and by their function. The actual de-
tectors are cylindrical containers which are connected to
the vacuum chamber of the accelerator through bellows.
While the beam intensity is building up during injection,
the RPs are retracted and do not enter the vacuum cham-
ber. After the beams have stabilized and the collider has
reached stable conditions, then the bellows are compressed
and the detectors are pushed forward up to a distance of
1 mm from the beam. We show in Fig. a schematic
view of how the detectors will be placed near the beam so
as to detect protons scattered at |t| ~ 6.5 x 107% GeV?2.

For such small values of ¢ one has the following relation
between scattering angle and beam parameters:

p2 2€N
tmin| = —n;—— 2.1
| mzn‘ ’Y dﬁ* (7 )
where ng is the distance from the beam in units of beam
size, ey is the normalized emittance. ALFA will be used
to get an absolute measure of the luminosity by detecting
protons in the Coulomb region with a sought for precision
of 3 %, an important improvement above the precision ob-
tainable using machine parameters, which is not expected
to be better than 20 %. Such high precision is needed for
precise determination of Higgs parameters and Branching
Ratioes.

1 Comment courtesy of G. Matthiae

Ll

A
e
During beam build-up Egrslctj:tr; taking

Fig. 7.14. A schematic view of the operation of RPs before
and during data taking.

The absolute measurement of the luminosity £ is ex-
tracted from the differential event rate. Up to [t| ~ 1 GeV?,
the differential rate for elastic scattering, to first order in
«, can be written as

AN dme? apoine ™ ot (14 p)e
dt 7 |t)? It 167
(7.2.2)

By measuring this rate it in the Coulomb region, i.e. be-
low [t| = 1073, and after radiative corrections (see section
3) the absolute luminosity can be extracted. In Fig. [7.15
we show a cartoon representation of the three regions,
Coulomb, interference and purely hadronic, which can give
information on various hadronic physics quantities of in-
terest.
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Fig. 7.15. A cartoon sketching the differential elastic cross-
section as a function of the momentum transfer |¢|, showing
how different ¢ regions will give information on elastic and to-
tal scattering parameters. After presentation by A. Pilkington
at Trento Workshop on Diffractive Physics, 4-8 january 2010,
ECT*, Italy. Please notice that this figure is purely indicative
and it is not in scale.

7.3 Updates about LHC forward physics programs

In addition to what already mentioned at the beginning
oft his section, the interested reader can find descriptions
of updates for LHC forward physics presented by various
groups, such as a Workshop on High Energy Scattering at
Zero Degree held in March 2013 at Nagoya University in
Japan. The slides of all the talks at Nagoya as well as pre-
sentations at Marseille and Paris in France; at Trento and
Reggio Calabria in Italy; CERN, Switzerland; Barcellona,
Spain; and at Eilat, Israel, and more, can all be found at:
totem.web.cern.ch/Totem/conferences/conf tab2013.html,
et sim. for 2014, 2015, 2016. By comparing these reports
with what we have presented here, and which follow the
plan as of 2008, one can see the great progress of these
years and look with confidence that future measurements
will further reduce errors and clarify many issues.

Indeed considerable progress has been made in the
beam optics and proper functioning of various detectors
so much so that now we have rather precise data on to-
tal, elastic and inelastic cross-sections, elastic differential
cross-sections and various diffractive results in different
regions of phase space. Many of these results have been
used and discussed throughout this review. For exam-
ple, using dedicated beam optics and the Roman Pots,
at /s = 8 TeV, TOTEM at the end of 2012 gives the
following values [104]:

Trot(8 TeV) = (101.7 = 2.9) mb;
(8 TeV) = (27.1 £ 1.4) mb;

0in(8 TeV) = (T4.7 4+ 1.7) mb. (7.3.1)
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Thus, the total cross-section has been measured with less
than 3% error better than the estimated error, after a 3
year run, of 5%. An overview of all the measurements of
total, inelastic, elastic and diffractive cross-sections inclu-
sive of data up to 2016 is presented in Fig. [7.16

8 Conclusions

Huge progress has been made over the past several decades,
both experimentally and theoretically, on the subject of
high energy total and differential cross-sections. In this
review we have attempted to outline these developments
from early accelerator measurements in the 1950’s with
fixed target experiments up to proton-proton scattering
at the CERN Large Hadron Collider, and beyond, where
cosmic ray interactions reach energies as high as 100 TeV
in the proton-proton center of mass.

In proton-proton scattering, two milestones stand out,
the first of them concerning the energy dependence of the
total cross-section. The increase with energy of the to-
tal cross-section is now fully confirmed, and ascribable
to the appearance of parton-parton scattering, although
questions regarding asymptotia and whether the Frois-
sart bound is saturated, are still under debate. The sec-
ond milestone is the LHC confirmation of the dip in the
differential proton-proton elastic cross-section, which had
not been observed since the CERN Intersecting Storage
Ring experiments in the early '70s. Experiments at the
CERN SppS and at the Tevatron in FermiLab have given
hints that the presence of the dip in proton-antiproton
scattering may be revealed as higher and higher energies
are reached, but confirmation of the dip in this channel
needs higher energy experiments which are not presently
planned. During the same decades, a large set of measure-
ments were performed at HERA in DESY, using both real
and virtual photons on nucleons and nuclei to obtain to-
tal and production cross-sections for vp, v*p, and through
ete™ machine at LEP for yy* and v*~* final states. These
results are mostly complementary to those from purely
hadronic machines and have led to remarkable theoretical
developments such as Bjorken scaling, the parton model
and various dynamical evolution equations.

From the theoretical point of view, our review spans
from Heisenberg’s model to the rich descriptions which
have been developed in more than 60 years in terms of
QCD, Reggeon field theory, mini-jets, among others. The
amount of material on the subject is so huge, that some
selection was indispensable. Hence, we are aware that we
could not always acknowledge or survey all the work done
during the past 50-60 years in a quest of understanding
the dynamics underlying the hadronic cross-sections.

We have gathered and presented the material which
we could relate to and understand. Hence, we apologize
to those scientists whose work we may not have recog-
nized adequately. Many excellent reviews on the subject
have been written during the past decades that are com-
plementary to our largely historical perspective.

All together, we hope that our work may shed light
on the fascination that the subject has held for so many
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Fig. 7.16. A compilation of LHC data on the total, inelastic, elastic and diffractive cross-sections, as of September 2016.
Superimposed curves correspond to the BN model described in Sec. for the total and non-diffractive inelastic cross-section,
and in Sec. for the elastic cross-section, as in the updated version from [306]. A band has been drawn to drive the eye for
the Single and Double Diffraction data. This figure is courtesy of D. Fagundes, A. Grau and Olga Shekovtsova.

scientists for so many years and that shall continue to
fascinate in the future through further results from LHC
and cosmic ray experiments.
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