-

INFN ISTITUTO NAZIONALE DI FISICA NUCLEARE

C

Sezione di Milano

INFN-16-11/CCR
10" October 2016

CONFIGURATION OF USER/NODE AFFINITY IN A

SENDMAIL+DOVECOT+SQUIRRELMAIL E-MAIL CLUSTER

. .1 .2 . 2 2
Michele Bensi , Stefano Barberis®, Massimo Mezzadri”, Francesco Prelz

DUniversita degli Studi di Milano, Via G. Celoria, 16, I-20133 Milano, Italy
YINFN-Sezione di Milano Via G. Celoria, 16, I-20133 Milano, Italy

Abstract

The storage of user e-mail boxes on a shared filesystem and their read/write access on
multiple cluster nodes requires special care to benefit from file persistence in the filesystem
cache on each node and to prevent system response to be significantly degraded by frequent
file synchronisations onto physical storage. The simplest measure towards this goal is to
divide access to nodes on a per-user basis, while keeping the cluster failsafe. In this paper we
share a few non-obvious details for the configuration of such user/node affinity in sendmail,
dovecot, squirrelmail.

C lommissione’
Calcolo
Reti

CCR-52/2016/P
Published by SIS—Pubblicazioni
Laboratori Nazionali di Frascati

1 PROBLEM STATEMENT

Serving the contents of e-mailboxes for read and write access via the IMAP ane POP
protocols starts hitting a performance/scale limit when O(500) users are served by a single
server. Various options exist for distributing the service over multiple hosts in a highly
available fashion (see Figure 1 on page 3): they all require that some form of common, shared
or distributed, highly available, multi-Terabyte storage service be deployed to hold the e-mail
messages, their attachments, and any index/cache needed to expedite the servicing of the
remote access protocols.

Dovecot (www.dovecot.org) is a widely' deployed Open Source solution for
providing access to e-mail via the IMAP (RFC3501) and POP (RFC1939) standard protocols.
Arguably the main reason for its pervasive adoption is the efficiency of the data structures
designed to index and cache message data, over which fully transactional (and therefore
distributable) read/write access is operated. Such structures offload much of the protocol
activity from the main e-mail storage, but do introduce the need to acquire a write lock for
them on every mailbox update operation (append, move, copy, expunge) and a premium for
keeping the mailbox index data on fast cache.

While providing various integration utilities (including the ability to operate as an e-
mail Local Delivery Agent (LDA), Dovecot is typically deployed alongside other e-mail
handling services (Mail Transfer Agents -MTAs- such as Sendmail?, Postfix® or Exim*, other
LDAs such as procmail, tools for spam tagging and other filters, and so on). These tools
are usually and generally unaware of each others' configuration. While some form of
universally understood and accepted common mailbox update locking had to be made
available to prevent mailbox corruption on concurrent access (via either 'dot-'lock files or
fentl(2) locks’), no measure is usually employed to assure that write locks and valid

cache copies of index structures aren't contended among multiple hosts and don't move

' According to openmailsurvey.org, Dovecot serves more than two thirds of public IMAP servers
worldwide (68.49 % as of March 2016).

? www.sendmail.org
www.postfix.org
wWww.exim.org

> In this work we will not cover the intricacies of assuring that file locking works (efficiently) in a shared
filesystem and/or on a distributed object storage system, though locking is usually the feature where such
systems require the most intensive performance tuning.

3

4

http://www.sendmail.org/
http://www.exim.org/
http://www.exim.org/
http://www.postfix.org/
http://www.postfix.org/
http://www.sendmail.org/

unnecessarily. On the contrary, many e-mail handling tools tend to aggressively sync data to
physical storage in an effort to reduce the chance for data corruption (see Section 2 below).

In the rest of this paper we explore the options for achieving user/host affinity in the
software chain that we deployed to cater to the e-mail needs of the O(1000) user community
we serve, namely Sendmail, Dovecot, Squirrelmail®, with GFS2 as the underlying common

POSIX storage.

)
IMAP/POP ; IMAP/POP
T connections i connections Prie
\"& v }"’

Linux Virtual Server / other load balancer
or
Dovecot Director

- ’ =

Figure 1: We describe measures to address the lock and disk (filesystem) cache contention
issues found when multiple servers for accessing e-mail messages via the POP and IMAP

e IMAPPOP
‘,-"" ,’ connections '~ a
Host #1 Host #2 Host #N
running running running
POP/IMAP POP/IMAP POP/IMAP
server server server
(dovecot) (dovecot) (.) (dovecot)
Filesystem Filesystem Filesystem
Cache Cache Cache

Email data

Email data

Email data

Mailboxes on either shared POSIX filesystem (mbox,
maildir) or Object Storage. Including indices.

protocols are run on a shared storage infrastructure.

6

www.squirrelmail.org

http://www.squirrelmail.org/
http://www.squirrelmail.org/

2 EFFECTS OF FREQUENT SYNCS TO PHYSICAL STORAGE

Host #1 Host #2 Host #3
Tor B 70
a0 — a0 a0 —
50 — 50 50 —

4= 40 E

o 30 30

20- 20

20

10

I s i L P N S N R . gl [l el I RIS I O b W 1 P A i T T T W N
1000 16:20 1040 1100 11:30 1140 1200 1220 1240 1000 1620 1040 1100 11:30 1140 1200 1220 1240 10:00 1020 1040 11:00 11:20 1140 1200 1220 1240

=
'
=

@
=

00 |-

-1
2

700 |-

=3
=

00 -

o
5

s00 -

=
5]

ana |-

a0 [~

[=3
5 2

SFTTITT T I T[T I [T I T[T T[T T T T [TTTT[TTTTI TT

i 0
ii :
. i wa | !

RV PRI IR TR PN P Y o Lot bbbl
a0 1020 10040 11:00 11:30 11:40 12400 1220 1000 1020 1040 11:00 11:20 11.40 1200 1220

B

cI1E|ﬂ|3 1020 1040 1100 11:30 12400 1220

Figure 2: Contention on common data structures (typically mbox-style mailboxes and mailbox
indices protected by mutual exclusion locks, in particular for inbox) quickly spreads the /O
overload that's occurring on the leftmost cluster node to other nodes that aren't seeing a comparable
local I/O load. The top graphs show the time evolution of the 5-minute load average on three nodes
of a test e-mail service cluster. The bottom graphs show overlaps of the rate of disk read operations
per second and disk write operations per second being serviced on the same cluster.

In order to protect the consistency of both the mailbox and index data against the loss of
write-cached data, frequent sync-ing’ of the filesystem cache data to physical storage is
often recommended when deploying e-mail handling software on multiple nodes requiring
(read and) write access to the same shared storage. This occurs by default in Dovecot (unless
the mail fsync = never or optimized option is used), and can be achieved in

Sendmail via the following sendmail.mc options (the second one is default):

7 Via either £sync(2) or fdatasync(2).

O SuperSafe=True
override compile time flag REQUIRES DIR FSYNC

O RequiresDirfsync=true (default)

The most noticeable side effect of this frequent file syncing activity is that the cached
version of common mailbox data (indexes, transaction logs) is most of the times invalid and
in need of being refreshed. Figure 2 shows how the I/O congestion on a single node in a three-
node IMAP test cluster quickly generates high I/O latencies and increased load on all other

nodes, however idle they may otherwise be.

One simple and conceptually clear way to prevent the adverse effects of this contention
is to generate some affinity in the system so that (especially) write access to any given data
object occurs preferentially on a single node of the cluster. This could be done at the level of
individual mailboxes, but is more easily achieved by generating affinity to a single cluster
node for any given user and making sure this association is stable and 'soft' enough so that it

can be quickly redistributed in case of failure of any of the cluster node.

We note that this issue is pretty much independent on the technique used to share the
mailbox data (be it either some form of shared POSIX filesystem or object storage): the
consistency of a few shared mailbox data structures has to be assured via the appropriate mix
of locking and atomicity regardless of the underlying storage technology. Various options and
levers to enforce or favor the described user — node affinity in our reference software stack

are described in the following section.

3 CONFIGURATION DETAILS

Altough the generation of affinity between user and clustered e-mail server nodes is not
considered mandatory or general enough to be either the object of established standards or the
default or recommended e-mail tool deployment configuration, it can be achieved in most
cases via the available configuration directives. In the cases we cover (Dovecot, Sendmail and

Squirrelmail) this is non-obvious enough for us to feel it worthy to document.

3.1 Dovecot Director

The Dovecot developers are sufficiently aware of the merits of generating user —
clusternode affinity to include an ad-hoc component to redirect network requests to a specific
cluster node based on the name of the authenticated user. This component was dubbed the
"Dovecot Director' and is documented in the Dovecot manuals®. The actual recipe used to
associate a given user name to one of the cluster node is neither documented nor standardised
nor modifiable via a plug-in. In order to have the ability to include Dovecot in the user
affinity configuration of other e-mail tools we felt it was important to isolate and describe the
Dovecot user redirection method.

The Dovecot Director associates a given username to one of the configured cluster
'vnodes' in two different ways, based on the value of the

director consistent hashing configuration variable, as follows”:

director consistent |1) Compute a 16 byte MD5 digest of the username.
hashing == false |2) Fill a (32-bit) int hash with the first 4 digest bytes (the

o first digest byte is the most significant byte).

3) The chosen 'vnode' number equals to the hash modulo the
number of vnodes.

director consistent |1) Compute a 16 byte MD5 digest of each of the strings “-07,
hashin_g == true “-17, ... “-number-of-vnodes” and assign to each vnode a

- (32-bit) unsigned int hash filled with the first 4 digest
bytes (the first digest byte is the most significant hash
byte).

2) Order the list of vnodes by ascending hash value.

3) Compute a 16 byte MDS5 digest of the username.

4) Fill a (32-bit) unsigned int hash with the first 4 digest
bytes (the first digest byte is the most significant hash
byte).

5) The chosen vnode is the one that immediately follows (in
the ordered list) the username hash.

(reduces the host assignment
changes when one of the
hosts disappears)

As these strategies are the only ones implemented and available, and as they are hard-
coded in Dovecot, we reproduced them for defining the user affinities for the other tools, as

follows.

% At the time of writing: http://wiki.dovecot.org/Director
® A reference C-language implementation of these two user-to-host association strategies can be
downloaded here: http://www.mi.infn.it/dovecot-utils/hash user group.c

http://www.mi.infn.it/dovecot-utils/hash_user_group.c
http://wiki.dovecot.org/Director

3.2 Sendmail Queuegroups

Unlike Dovecot, Sendmail has no explicit provision for load-balancing SMTP requests. Other
load balancing tools'® have to be layered on top of it: these have no insight into either the e-mail
recipient — username mapping or any user authentication detail. However, Sendmail allows to map
recipient accounts to different Queue Groups via the access . db configuration, e,g:

QGRP:userl@ nodelgroup

QGRP:user2@ node2group

OGRP:user3@ node3group
As we are interested in limiting the contention to common mailbox structures residing on the
shared storage, we can arrange messages to be queued in separate shared areas for each queue
groups and have them delivered into the user mailbox via the appropriate LDA (the latter can
cause any common mailbox structure to be updated) on one of the cluster nodes only. All

nodes in the cluster can be configured with sendmail .mc directives as follows, but only
one node will be iterating on each queue and delivering the messages (Runners # 0, as done
for 'node2' in the following three-node example configuration):
QUEUE_GROUP (" nodelgroup', Path=/mnt/gfs2/mqueuel/ql, Runners=0')
QUEUE_GROUP("node2group', "Flags=f, Path=/mnt/gfs2/mqueuel/q2,
Runners=4, Interval=7s')
QUEUE_GROUP (" node3group', Path=/mnt/gfs2/mqueuel/q3, Runners=0"')

FEATURE (“queuegroup')

The user — queue group mapping in access.db must of course be frequently updated
* according to the current node availability;
* using if possible the same user mapping as the Dovecot Director;
e taking care to drain non-empty mail queues supposed to be serviced by hosts that
disappeared.
In our production environment this is achieved by running an appropriate cron(8) job,

every 5 minutes''

' The solution we implemented is based on the ip_vs Linux kernel module.

' A reference implementation can be accessed here:
http://www.mi.infn.it/dovecot-utils/construct ggroups all.pl, using
http://www.mi.infn.it/dovecot-utils/hash user group.c, see above.

http://www.mi.infn.it/dovecot-utils/hash_user_group.c
http://www.mi.infn.it/dovecot-utils/hash_user_group.c
http://www.mi.infn.it/dovecot-utils/construct_qgroups_all.pl

3.3 Squirrelmail user mapping

The measures described so far can achieve a better user-to-cluster node affinity for e-
mail delivery and for access to mailboxes via Dovecot (IMAP or POP protocols). In case
other channels are provided to access e-mail (interactive filesystem access, web-based tools),
their ability to assure user-to-cluster node affinity should also be reviewed. A significant
fraction of our user base makes frequent use of web-based access to e-mail. This is provided
via the Squirrelmail set of PHP scripts, typically configured to redirect the e-mail operations
to an IMAP server.

In Squirrelmail, the choice of IMAP server can be achieved via an appropriate mapping
function on the basis of the current connection data by setting config.php as follows:

$imapServerAddress = 'map:map_user_via_sendmail access';
The map_user_via sendmail access function has to be added in the scope of the
Squirrelmail functions subdirectory, and has to provide the same mapping used for the

other tools'%.

4 MITIGATION EFFECTS OF USER-TO-CLUSTER AFFINITY

The measures detailed in Section 3 were applied to the production e-mail cluster that
showed the long congestion streaks shown in Figure 2. No comparable congestion effects
were seen with the measures in effect. Congestion events are more rare and appear both

limited in time and localised to one cluster node (see Figure 3).

12" A reference implementation of the function can be found at:
http://www.mi.infn.it/dovecot-utils/map user via sendmail access.php

http://www.mi.infn.it/dovecot-utils/map_user_via_sendmail_access.php

Host #1 Host #2 Host #3

30
B

20

a L L TR R B a L L L) a L L TR R i
1030 10040 10050 1030 1040 1050 1030 10040 10050

3
500 500
] o
00 200 -
350 aso
300 - a0
250 20
200 F 200
150 150
100 i 100 -
il
F
sof sof-)
i g i
[b JHE Lo st il S W | TR R r e N |

BT 040 1050 iman 040 050 R

Figure 3: Typical structure of occasional overload events in the same IMAP cluster as in
Figure 2 (same user base, same level of load), after the mitigation measures described in
Section 3 were applied. The duration in time of the congestion event is limited, and the
overload effects is more pronounced in the node generating the request (#2 here) and in the
node whose local storage is servicing it (#3 here).

For the description of the graph data compare Figure 2.

5 CONCLUSION

The need to achieve concurrent write consistency of a number of shared data structures
(indexes, transaction logs, caches) introduces a significant amount of interdependency and I/O
wait time when multiple servers provide mailbox access via the IMAP and POP protocols to
the same, shared stored mailboxes. This occurs independently of the server software and the
underlying storage technology. Many e-mail service tools provide enough configuration
options to either enforce or favor user-to-cluster node affinity in a fault tolerant way. This has
been successfully proven and deployed in production in a multiple node IMAP service based

on Sendmail, procmail, Dovecot and Squirrelmail, with an underlying GFS2 shared

10

filesystem.

ey
2)

3)
“4)

REFERENCES

D. Mullet, K. Mullet - Managing IMAP — O'Reilly 2000 ISBN 978-0-596-00012-7)

B. Costales, G. Jansen, C. ABmann, G.N. Shapiro - Sendmail (2. ed.) - sendmail 8.13
Companion - The sendmail administrator's reference. — O'Reilly 2004 (ISBN 978-0-596-
00845-1)

B. Costales, E. Allmann - Sendmail (2. ed.) - Help for Unix system administrators —
O'Reilly 1997 (ISBN 978-1-56592-222-8)

S. Whitehouse (Red Hat Inc.) - The GFS2 Filesystem — Proceedings of the Linux
Symposium Ottawa June 27-30, 2007. Volume 2.

	1 problem statement
	2 EFFECTS OF FREQUENT SYNCS TO PHYSICAL STORAGE
	3 CONFIGURATION DETAILS
	3.1 Dovecot Director
	3.2 Sendmail Queuegroups
	3.3 Squirrelmail user mapping

	4 Mitigation effects of user-to-cluster affinity
	5 CONCLUSION
	6 referenceS

