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The trajectory and the orbital velocity are determined for an object moving in a gravitational
system, in terms of fundamental and independent variables. In particular, considering a path on
equipotential line, the elliptical orbit is naturally traced, verifying evidently the keplerian laws. The
case of the planets of the solar system is presented.

I. INTRODUCTION

Although there are a myriad of treatises dealing
the velocity of an object passing trough a gravita-
tional field, we can hardly find procedures or expres-
sions in terms of independent and fundamental vari-
ables. The formulas are extracted from the keplerian
and classical gravitation laws, and generally they
contain a series of orbital parameters most of them
achieved from experimental observations. So, it is
not so easy to distinguish the exact role of each phys-
ical variable, even in the most rigorous procedures.
In the present article, a series of calculations will
be performed to express the orbital speed in terms
of fundamental and physically observable variables.
Principally, the results of a previous report will be
used [1]. In that note, the intensity field evolution
was predicted at a given point moving at relative
constant speed respect to an electromagnetic source.
Taking into account the source emission mechanism,
fundamentally a decreasing potential with the dis-
tance growth, and pointing out the geometrical pa-
rameters of the physical environment, the dynamics
of the system was analytically described. As shown,
the results agree with the solutions obtained by the
classical physical treatises, for instance the retarded
potential evaluation, despite the greater simplicity.
Synthetically, in the cited note, the space-time scalar
parameter which determines the potential energy,
the quantity R does not correspond simply to the
real distance between the source and the observa-
tion point, but it is the sum of the real distance
plus the distance between the same objects evalu-
ated at the instant when the intensity field was null.
In the present note, taking into account the analogy
of the electromagnetic and gravitational field, the
same criterion will be employed. In summary, in the
next sections, the basic statements of the previous
procedure will be highlighted, then the analytical
formula will be used to calculate the orbital speed,
adopting as orbital parameters the potential energy
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of the system and the initial momentum of the mov-
ing object. The specific case of a constant energy
potential will reveal a natural and strong connec-
tion with the elliptical trajectory. In light of these
statements, the trajectories and the orbital velocity
of the solar system planets will be examined.

II. REFERENCE SYSTEM AND AND
FUNDAMENTAL PARAMETERS

Let’s consider a body with mass m at the posi-
tion (xt, yt) at the instant t, in a spatial reference
system with origin into O, as shown in fig1. (Note:
from now on, only a two-dimensional space will be
considered). Initially, in absence of field, it moves at
velocity v0. Presuming the point O as the center of
the mass generating the gravitational field, the aim
is to characterize the system at instant t, from the
physical point of view. As previously demonstrated
[1], at that space-time coordinates, the intensity of a
field propagating at light-speed c, depends on 1/R2,
where R is the real path covered during the time
interval (t− t0) [1], being t0 such that

R = c(t− t0) (1)

and

βR =
√

(xt − x0)2 + (yt − y0)2 (2)

where β ≡ v0/c. Considering the time parameter
as an independent and linear variable, t and t0 must
belong to the same time reference line (fig.2). It
is fundamental and useful to define an intermediate
instant t′, on the same time line, in such a way

t = t′+

√
x2t + y2t
c

and t0 = t′−
√
x20 + y20
c

(3)
At same time, in terms of space coordinates, we find

x′, y′ and the relative length D′ ≡
√
x′2 + y′2.

Being Dt ≡
√
x2t + y2t and D0 ≡

√
x20 + y20 the

distances of the object from the center point O re-
spectively at time t and t0, it results

R = Dt +D0. (4)
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FIG. 1: Space coordinates and other geometrical pa-
rameters relative a body (red bullet) bumping into a
gravitational field at time t.

FIG. 2: The figure shows the time variables of the eqs.1
and 3, and the time arrow. That one is pointed towards
the right side with the red tip corresponding to the in-
stant t.

FIG. 3: Rotating the reference system of fig1 of an
angle α. Thus, the ordinate value at instant t assumes
the same value at time t0, but the metric of the system
is unchanged. The vector v0 becomes [v0, 0].

Rotating the reference system of an angle α so
that yt = y0 (fig.3), the relation 2 becomes

βR = |xt − x0| (5)

and the same length R can be expressed also in the
following ways

R = 2
(Dt − βxt)

1− β2
, (6)

R = 2
(D0 + βx0)

1− β2
. (7)

III. TRAJECTORY WITH CONSTANT
POTENTIAL ENERGY

Meaning the trajectory as just the set of the cov-
ered spatial positions, the four eqs.4-7 are enough
for defining it. Also a reference system where yt =
y′ = y0 is necessary, and it is essential to underline
that it is always possible to perform such a choice,
without invalidating the metric properties of the sys-
tem. That is easily understandable looking at the
eqs.4-7, and considering the spatial transformation
invariance of the quantities R, Dt and D0. So, re-
garding that equations, they describe the physical
and spatial properties of the body of mass m, that
runs into a gravitational field, just at instant t. The
relative potential energy is E ∼ 1/R, and the mo-
mentum is q = βmc, so considering invariant that
two quantities, means keeping constant R and β.
In that conditions, for the body m, the locus (xt, yt)
of the allowed positions is an ellipse
- with one focus centered into O
- with 2a = R, and
- with eccentricity ε = β, being a the major semi
axis.
In a natural way, these statements reveal the geo-
metrical properties of such a physical system. On
the other hand, corresponding with the first keple-
rian law, they disclose the intrinsic physical meaning
of an orbital path. In that sense, trying to better
understanding its physical properties, we can say
that the eccentricity indicates the specific momen-
tum of the orbiting body, coinciding to β = v0/c,
where v0 ≡ q/m can be interpreted as the velocity
of the body respect to the gravity center, before it
is trapped into the gravitational field. In fact, it
is natural to perceive an initial high speed object
generating a strongly elliptical track, and obviously
vice-versa. Then, being R expression of the poten-
tial energy, it can be invariant although it is the sum
of the two variables (eq.4), just like the ellipse out-
line is the locus which the sum of the distances to
the two focal points is constant.

Let’s consider a practical example relative to a
body having initial momentum q = 0.6mc that is
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FIG. 4: In the figure, the parameters solving the system
equations 4-7 are indicated for a body with momentum
q = 0.6 mc, that is β = 0.6, and R = 14.57. The real
orbit is described by the continuos line forming an ellipse
mainly developing on the right side, with ε = 0.6 = β,
and semi axis length a = 7.285 = R/2. It represents the
only space locus (xt, yt), for the defined reference system.
On the left, the set of the points (x0, y0) is crosshatched.
Both lines define two identical ellipses surrounding the
focal points F ′, F ′′, and O in common, corresponding
that to the origin of reference system, as well as to the
center of the gravitational system. A generic point on
the trajectory is drawn with real distance Dt, and the
relative length D0.

β = 0.6, and R = 14.57 in arbitrary units (AU). The
relative elliptical trace is outlined in fig.4. It repre-
sents the set of possible solutions of the equation
system 4-7. In the same figure, all the variables sat-
isfying that equations are shown. In particular, the
set of point (x0, y0) corresponds to the crosshatched
ellipse whose dimensions are exactly equal to the
(xt, yt) ellipse, with one focus anyway into O. It is
important noticing that also (−x0,±yt) satisfies the
eq.6, as though (−xt,±y0) satisfies 7, making so ev-
ident the complete overlapping of the two curves for
less than a space-time phase quantity, and reaffirm-
ing so the stationary configuration of the system. In
the fig.5, there are ten closed orbits, each one with
the same R but different value for β. The curves
flatten oneself while the β value grows. One of the
two focal points is anyway steady in the origin of
reference system, for each orbit.

IV. ORBITAL VELOCITY

The orbital speed expresses the dynamics of
a body passing through a gravitational field, so

l (
AU

) 

l (AU) 

a$

FIG. 5: In a reference system in arbitrary unit (AU),
some trajectories are shown, that are the couple sets
(xt, yt) solving the eqs.4-7, each one with the same length
R = 14.57, and with different β values included into
the interval [0.33, 0.83]. The reference system is chosen
in order to v0 gets null contribute on the y axis, i.e.
v0[vx, 0, ]. The elliptical figures are easily recognizable,
all of that with 2a = R, but different eccentricities ε,
each one corresponding to the fixed β value. The curves
flatten themselves while the β value grows.

it is characterized by the physical and spatial
parameters, each time. Trying to define vorb, the
following hypotheses are considered: the gravity is
the only force, the total mass M of the system is
concentrated into O, so if MO is the mass at center,
M = m+MO ≈MO. Then, taking into account the
fundamental properties of the system, consecutive
reasoning leads to following form

vorb(t) =
D′

Dt

√
2GMO

R(1− β2)
=
D′

Dt

√
2γ2GMO

R
(8)

where G is the gravitational constant, and γ ≡
1/
√

1− β2.
The formula 8 can be rewritten for the specific

case of a stationary orbit, that is R = const = 2a,
and choosing a special reference system like in fig.3
where x′ = xt − βDt. So, taking into the account

the relation D′ =
√

(x′2 + y2t ), the eq.8 becomes

vorb(t) =

√
γ2GMO

a

[
1 + β2 − 2βxt

Dt

]
. (9)

In fig.6, the orbital velocity is reported in terms of
the geometrical parameters. It has been calculated
by eq.9, using the the same numerical values of fig.4.
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FIG. 6: The orbital velocity is reported as a function of
different parameters, all of them in terms of AU. The
calculation is related to the same example of fig.4.

Although that quantity is obviously depending on
time, the last two expressions do not contain an ex-
plicit temporal term. Effectively, tracing the trajec-
tory, until now, the relative points have been consid-
ered as positions temporally independent each from
the others, connecting each point to the real time t.
In spite of the presence of several time quantities,
only t defines a real position of the object, while the
values t′ and t0 contribute to describe the physical
state anyway concerning t. Thus, let’s divide a body
trajectory in n points (xn, yn). Each of them corre-
sponds to the time t = t1, t2, ..., tn, entailing so a
different system configuration with own t′1, t

′
2, ..., t

′
n,

and t01, t02, ..., t0n and the set related variables that
satisfies all the previous equations. Such a way, the
vorb(tn) value is univocally assigned to each point,
by eq.8.

With the aim to calculate the orbital time period,
let’s consider an elliptical trajectory. Coming af-
ter some logical steps, the following relation can be
adopted

Torb =
Πel√

8GMOR

(
γ1/2

∑
n

|xi − xi−1| − γ2/3Pel

)
(10)

where Πel is the length of the orbit, xi−1 and xi are
consecutive abscissa coordinates related to the in-
stants ti−1 and ti, and Pel is the perihelion length.
The relation is probably to improve with further
study, since in the present report the approximation
level is not well defined.

FIG. 7: The trajectories of the four planets nearest
the Sun are drawn. They have been calculated taking
into account the eqs.4-7 and consequently the statements
contained in the section II and III. The experimental pa-
rameters 2a and ε are extracted from the data tables in
[2],[3].

V. THE SOLAR SYSTEM

For performing the experimental test on the pre-
vious formulas, the solar system is considered, since
it is well conformed to the physical cases debated in
the previous sections. Summarizing, that cases ex-
pect the trajectory that lies in a plane, a fixed center
of mass O, and M0 � m, with M0 equal to the so-
lar mass, and m corresponding to the single planet
mass.

A. Planet orbits

Referring to the planets (including Pluto) of the
solar system, let’s trace the nine relative orbits try-
ing to find as much as couple possible set (x, y) of
the object positions. Essentially, two parameters are
essential for each orbit, the major axis length 2a and
the eccentricity ε, two geometrical quantities to re-
veal from the data tables [2, 3]. Assigning the physi-
cal meaning as seen, that is 2a = R and ε = β, these
variables can be introduced into the eqs.4-7. The
result is shown in fig.7 and 8. As predicted in the
previous section, the resulting trajectories are ellip-
tical and coinciding with the true planet orbits, with
the Sun naturally centered in one focus, according
to the keplerian law.
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FIG. 8: The trajectories of the four planets more dis-
tant from Sun are shown, plus that of Pluto, the largest
one. As in the previous figure, they derive from the state-
ments contained in the sections II and III, and from data
tables in [2],[3] regarding the ellipse dimensions.

B. Orbital velocity and period

The orbital speed is evaluated for each of the nine
body belonging to the solar system. The eq.9 is
applied along the whole trajectories, tabulating the
average with the minimum and maximum values in
tab.I. That two values correspond to the object po-
sitions relatively at aphelion and perihelion. The
agreement with the measurements [2, 3] is good es-
pecially for the minimum and maximum values that
regard punctual body positions. The major discrep-
ancy about the average value can be due to the dif-
ferent algorithms used for the average elaboration.
In fig.9, regarding the same system, the specific en-
ergy spectrum is reported. The upper graph de-
scribes the distribution of the objects in terms of
major semi axis ′a′ relative to each own orbit, mean-
ing each average distance from Sun. The lower one
concerns the same data but reporting the average
distance dE from Earth, that is watching the same
mass distribution but from another point of view.
The comparison between the two curves (the lower
graph shows both) is useful also from another per-
spective, considering that the variable a is not sim-
ply a geometrical quantity but it contains an im-
portant physical significance being a = R/2, while
dE is just a spatial distance. So, not giving suffi-
cient consideration to that difference, the interpre-
tation of results might be ambiguous or even erro-
neous. The time period is calculated for each planet
of the solar system and for Pluto, using the eq.10.
Also here, there are some discrepancies with respect
experimental values [2, 3], as reported in the last
column of the tab.I. Anyway, the real errors can be

E/m$(J/Kg)$

E/m$(J/Kg)$

Me
V

EaMaJ     
Sa

UNPa(m)

dE(m)

FIG. 9: Spatial distribution for the orbiting objects in
the solar system. In the upper graph, where the orbital
semi axis length a is reported, the observational point is
the Sun. In the lower one, the average distances dE are
evaluated from Earth. The crosshatched line is just the
line of the upper graph, also there reported to improve
the comparison. Remembering that a is also a physical
variable being a = R/2, while dE represents just a spa-
tial distance, the discrepancy between the two curves is
better interpreted.

TABLE I: Velocity values and orbital period for the plan-
ets of the solar system, including Pluto. The formula 9 is
applied. The orbital period Tcalc is calculated by eq.10,
while Tmea is extracted principally from the NASA data
[2, 3].

vmin v̄ vmax Tcalc Tcalc/Tmea

(Km/s) (Km/s) (Km/s) (days)

Mercury 38.858 48.215 58.976 87.918 0.9994

Venus 34.784 35.020 35.258 224.706 1.00002

Earth 29.291 29.786 30.286 365.257 1.000002

Mars 21.972 24.164 26.497 686.914 0.99993

Jupiter 12.440 13.063 13.705 4334.60 1.0003

Saturn 9.138 9.649 10.179 10756.6 1.00003

Uranus 6.485 6.802 7.128 30702.1 0.9998

Neptune 5.385 5.432 5.478 60227.4 1.00007

Pluto 3.676 4.790 6.112 90548.3 1.0004

hardly calculated since they can due to different kind
of normalization with respect the experimental data.
Further, as said before, the eq.10 probably must be
better adapted, then the formula have been consid-
ered for a simplified system with just two bodies with
M0 � m, without considering other perturbations.



6

VI. CONCLUSIONS

The orbital parameters have been determined
for an object traveling in a gravitational field.
Two scalar quantities are necessary, R and q. The
first one, R defines the gravitational potential,
being that depending on the rate 1/R. It doesn’t
represent simply the distance between the orbiting
object and the gravity center, it is the sum of the
same real distance plus the distance at the time
when R was null. That distance is virtual, in that
sense it locates a precise instant but not an unique
spatial point. The second parameter, q = βmc,
is the momentum value relative to the orbiting
body. The applied formulae have been previously
and more generally determined considering the
intensity variation of an electromagnetic field,
depending on the dynamic distance between the

source and the observation point. In any case they
have been derived from geometrical analysis of
the physical environment, considering the space as
euclidean and the time as linear. In the present
article, the simple case of a fixed center of mass
has been treated. Testing the agreement with the
experimented physical formulae, the orbits of the
solar system have been analyzed. The agreements
with the experimental data is very satisfactory and
encouraging for extending the same criterion to
other physical structures.
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