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Abstract 
 
The theory of beam deflection by the terrace crystal field forming the miscut 
surface was developed. The phenomenology of proton channeling and 
quasichanneling has been applied to describe new features of the beam 
deflection. The computer experiment results on proton beam deflection by the 
crystal miscut surface are presented. The analysis predicts efficient beam 
deflection by the acute crystal end due to repelling miscut potential. 
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1. INTRODUCTON 
 
1.1. Channeling-related effects in accelerator physics 
 

One of the most important problems in accelerator physics is known as a beam collimation 
problem, which includes the beam shaping, the halo removing, etc. Usually to improve the beam 
quality the complex system of magnets as well as solid collimators and beam scrapers are used. 
The methods based on bent crystal technology open new ways to efficient control the proton or 
heavy ion beams especially at ultra-high energies [1,2]. The applicability of bent crystal 
collimators is based on the effective particle deflection in the crystal volume due to the planar 
channeling [3,4] or volume reflection [5,6] phenomena. In general, both effects take place when 
fast charged particles penetrate into the crystal at small glancing angle 0θ  to crystallographic 
planes. In this case the motion of a fast projectile is characterized as a quasi free longitudinal 
motion inside the crystal being transversally trapped by so-called averaged planar potential [7,8]. 

For positively charged particles the averaged potential of a single plane has the maximum at 
the plane position, decreases rapidly at the increase of the distance from it, and, finally, the 
electric field becomes negligible at the inter planar distance. Thus, two neighboring planes form 
the potential well with the minimum between them. 

The particle channeling takes place if tr ch,0 ch,0( , )E x Uθ < , where tr 0 ch,0( , )E xθ  is the particle 
transverse energy (see [8] and Sec.2.1.1 below). It depends on the initial particle position in the 
channel ch,0x  and glancing angle 0θ . The planar channeled particle is trapped by the potential 
well between two adjacent planes and moves along these planes oscillating between them. The 
channeling is impossible if θ0 >θL , where at the particle ultra-relativistic energies E  the critical 

angle ( )1/2ch,02 /L U Eθ = , known as Lindhard angle. Nevertheless,    if θ0  <θL and 

simultaneously tr 0 0 ch,0( , )E x Uθ >  the particle trajectory is not bound within a single planar 
channel although, the motion is still governed by the averaged potential. This regime of motion 
is called quasichanneling. The quasichanneling conception is valid also at 0 Lθ θ>  if the incident 
angle 0θ  is of the order of a few critical angles Lθ . The volume reflection appears for a 
quasichanneled particle at specific conditions [9,10]. 

The demands of fine-tuned beam management require very accurate manipulations for a 
crystal positioning into the beam. In particular, the crystal has to be inserted into the beam at 
very small distance providing very small impact parameters (i.e. the distances from the crystal 
edge along the crystal entrance face to the point where the particles hit the crystal). For example, 
in experiment [3] the averaged impact parameter was estimated to be of the order of 100 nm. 
Hence, the particles hitting the lateral crystal surface instead of expected front surface can 
essentially influence the crystal merits to deflect the beam. The lateral surface considered here is 
directed along the beam propagation making small grazing angle. Thus, moving the crystal into 
the beam the particles first interact with the lateral surface that makes important studying the 
features of beam interaction with the crystal surface at small glancing angles. 

 
2.2. Crystal miscut surface 

 
In principle, the crystals available for modern experiments have almost perfect flat surfaces 

[11,12] characterized by the ordered atoms location. The angular asymmetry of beam scattering 
by crystal surface as well as the periodicity in the energy loss spectra of scattered beam were 
discovered almost together with the channeling effect and witness to the ordered surface lattice 
[13–15]. The surface channeling was discussed in [15] when the particle can be first captured 
into the channeling motion at a surface layer and successfully leaves the crystal through the same 
lateral surface. Moreover, as shown in [16–19] the averaged field approximation is valid for 



description of particle small angle scattering by a crystal surface, which coincides with one of 
the main crystallographic planes. Recent experiments on surface both scattering and channeling 
were mostly carried out for nonrelativistic light ions. The beam interaction with crystal atomic 
chains (axial effects) [20–25] as well as planes (planar effects) [19,24–26] has been carefully 
analyzed within various collaborations. 

This work is devoted to studying ultra relativistic particles scattering by lateral crystal 
surface. The scheme of scattering has been suggested by the geometry of beam collimation 
experiments. The beam is oriented at small angle (or parallel) to crystallographic planes to 
satisfy the planar channeling conditions but at large enough angles to the main crystallographic 
axes to avoid the axial channeling (see, for example, in [27, 28]). 

Crystals used in crystal collimation experiments are usually characterized by the lateral 
surface not parallel to crystallographic planes responsible for the particle channeling in a crystal 
bulk. The angle between the lateral surface and mentioned planes is known as a miscut angle 
[9,29,30], while the surface has been called a miscut surface (Fig. 1(a)). This surface is 
structured by a set of parallel planes that form stepped terraces; each terrace of the length zΔ  is a 
part of the crystal plane, while a step equals to the inter planar distance a  (Fig. 1(b)). Obviously, 
the miscut angle mθ  defined by such geometry is extremely small. Positively charged beam 
hitting the miscut surface of aligned crystal will undergo multiple terrace reflection. 

Let consider fast particles of non-divergent beam hitting the crystal surface along the 
crystallographic planes, as shown in Fig. 1. If the entry surface has no miscut (the planes are 
perpendicular to the surface), the particles entering the crystal at channeling conditions become 
trapped between the planes that define the potential well. On the contrary, in the case of nonzero 
miscut angle the particles hitting the miscut surface first interact with averaged potential of a 
single plane that defines the terrace. In our case, protons are reflected by the repelling plane field 
(terrace potential) outward of the plane. Obviously, we can define three different regimes of 
proton motion. The first one corresponds to the case when a proton is strongly deflected 
providing its interaction with next plane (surface potential of upper terrace) instead of averaged 
channel potential (bulk potential) of adjacent planes, which form lower (actual) and upper 
terraces (Fig. 1(b), arrow 1). Both second and third regimes take place when the deflection of a 
proton is not enough to be out of corresponding planar channel. If herein the transverse energy 
counted from the center of channel is less than 2 / 2LEθ  (see below in Sec. 2.3.2) the proton will 
move in a crystal volume being planar channeled (Fig. 1(b), arrow 2). Otherwise the proton 
becomes quasichanneled and will suffer a kind of volume reflection (Fig. 1(b), arrow 3). The 
kind of motion depends on the initial particle distance to the nearest lower plane at the moment 
when the particle starts interacting with the crystal field. In general case, all described regimes 
exist when the beam hits the miscut surface. 

 

 
Fig.1. (a) Scheme of the crystal with a miscut surface. The crystal has the trapezium shape; the 
miscut surface is the top triangle part of the trapezium. (b) Scheme of beam deflection by the 
miscut surface. The crystal field affecting the particle is either the deflecting field at the 
beginning section zΔ  or is the planar channel field (the direction of the field is pointed out by 
thin vertical arrows). The regimes of a particle motion are pointed out by the bold arrows: 1 — 
the particle deflected outward the miscut surface by the repelling potential of the terraces; 2 — 



the channeled particles penetrating into the surface layer and successfully leaving the crystal 
through the back end; 3 — the particles deflected via quasichanneling. (c) Scheme of averaged 
potential cr ( )U x  at the longitudinal coordinate z = 2.5 zΔ  pointed out by dash arrow in the panel 
(b). 

 
In the Part 2 of the preprint the motion of ultra-relativistic proton in the field of single terrace 

will be considered for the case when the terrace potential is approximated by the harmonic 
potential. The conditions of channeling and quasichanneling are analyzed. In the Part 3 the 
results of numerical simulations for the case of Moliere potential is presented. The role of 
multiple terrace deflection is discussed. 

 
2. GENERAL THEORY BASED ON MODEL HARMONIC POTENTIAL 
 

This part is devoted to the theoretical consideration of particle motion in the field of single 
terrace. The crystal potential is approximated by model harmonic potential to obtain the 
analytical solutions of motion equation. The analytical solution gives the possibility to make the 
general conclusions as well as estimations on the particle motion. 
 
2.1. General points 
 

Let consider below the motion of ultra-relativistic protons in the field of acute channel, i.e. in 
the field of single terrace. The terrace length zΔ  is large enough to consider the field as 
orthogonal to the plane as well as to describe the field by the averaged potential. The terrace 
field depends on transverse coordinate x  only. The coordinate frame is designated in Fig. 1(b). 
The proton initially penetrates into the field along planes. 

Concerning the terrace field, it is suggested the field becomes negligible at the distance a  
from the plane. The terrace potential barrier with respect to the vacuum is pl,0U , the channel 
potential deep is ch,0U ; pl,0 ch,0U U UΔ= + , where UΔ  is the crystal potential in the channel 
center. 

 
2.1.1. Energy conservation 

 
The energy of a free particle can be written as  

( )2 2 4 2 2 2 2 2 4 2 2 21z x zmc m c p c p c m c p cγ θ= + + = + + , 

where zp  xp  are momentum projections onto corresponding axes, m  is the rest mass. For the 
case of ultrarelativistic particle considered here x zp p= , x zp p θ= , θ  is the small angle 
between longitudinal and transverse momentum. It can be interpreted as the deflection angle. 
Hence, approximately, 

( )
2 2 2

2 2 4 2 2
2 4 2 2

1
2

z
z

z

p cmc m c p c
m c p c

θ
γ

⎛ ⎞
⎜ ⎟≈ + +
⎜ ⎟+⎝ ⎠

. 

In the ultra-relativistic case 2
zp c mc>>  and, therefore, 

2
2 1

2zmc p c θ
γ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. 

The full energy of particle is conserved: 
2

cr ( )E mc U xγ= + . 



At the initial point of trajectory 0θ =  and 0x x= . For the arbitrary moment of the motion in 
terrace field the energy conservation low gives 

 
2

cr cr 0( ) ( )
2
zp c U x U xθ

+ = . (1) 

Hence, the deflection angle can be defined from the expression: 

 ( )cr 0 cr2 ( ) ( )

z

U x U x
p c

θ
−

= . (2) 

The left hand side of Eq.(1) is namely the transverse energy: 

 
2

tr ch( , ) ( )
2
zp cE x U xθ

θ = +   

 
2.1.2. Transverse motion 
 

The transverse momentum of projectile should be evaluated from the motion equation 
cr ( )xdp dU x

dt dx
= − . 

The longitudinal proton velocity zv c≈ . Hence, the motion equation can be rewritten as  

 cr
z

dUdp c
dz dx
θ
= − , (3) 

where the relation / /zdt dz v dz c= ≈  was used. The longitudinal momentum is considered 
constant. 
 
2.1.3. Trajectory 
 

From the Eq. (2) one can obtain 

( )
cr

cr 0 cr

1
2 ( ) ( )z

dUd dx
dz dx dzp c U x U x
θ
= −

−
. 

The substitution of this relation into Eq. (3) gives the trajectory equation: 

cr 0 cr

2
( ) ( ) z

dx dz
p cU x U x

=
−

. 

Hence, the transverse coordinate x  in the moment when the projectile has the longitudinal 
coordinate is z  should be defined from the equation 

 
0 cr 0 cr

2
( ) ( )

x

xz

dxz
p c U x U x

= ∫
−

. (4) 

 
2.2. Harmonic potential and projectile trajectory 
 

The harmonic terrace potential in the range 0 x a≤ ≤  is described by the function 
2

pl pl,0 2( ) 1 xU x U
a

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
, 

it equals to 0 at x a=  (at x a>  the crystal field becomes zero) and it equals to pl,0U  at 0x =  (at 
0x <  the crystal field is exactly the channel field), see in Fig. 2.  

 



 
Fig.2. Averaged potential cr ( )U x  near the lateral crystal surface formed by (110) Si planes: A - 
channel potential; B - terrace potential; C - cr 0U = . The surface potential barrier is pl,0 31.7U =  
eV, the inter planar channel deep is ch,0 21.9U =  eV and the potential at the channel center with 
respect to zero level is 9.8UΔ =  eV. 
 

If the particle penetrate into the crystal field having the transverse coordinate 0x , its 
transverse coordinate 0x x≥  while the particle moves through the terrace field. Hence, 

 
0 0cr 0 cr pl,0

1arcsin
2 1( ) ( )

x

x

dx a y
yU x U x U

π⎛ ⎞−
= −∫ ⎜ ⎟

−− ⎝ ⎠
,  

where /y x a=  and 0 0 /y x a= . Eq.(3) therefore gives 

 pl,0

0

21arcsin
2 1 z

Uy z
y p c a

π −
− =

−
.  

Obviously, one can introduce the characteristic angle  

 pl,0
pl

2

z

U
p c

θ =   

in analogy with the Lindhard angle Lθ . The angle plθ  is the critical glancing angle for the 
particle penetrating into the crystal volume through the lateral surface. I.e. the particle can cross 
the lateral potential barrier if it has the glancing angle plθ θ> . Otherwise it will be reflected 
outward the surface. 

The particle trajectory in the terrace field is the branch of sine wave: 

 ( )0 pl1 1 cos zy y
a

θ⎛ ⎞= − − ⎜ ⎟
⎝ ⎠

. (5) 

This solution is valid for 00 1y≤ ≤ , the transverse coordinate 0 1y y≤ ≤ , the longitudinal 
coordinate 0 z zΔ≤ ≤  where / tan mz aΔ θ=  is the length of plane section responsible for the 
repelling field, above named as a terrace, see in Fig.1. 
 
2.3. Projectiles motion 
 
2.3.1. The deflection by terrace potential 
 



The feature of solution (5) is all trajectories cross at the same point if zΔ  is large enough, see 
in Fig.3. The crossing point is defined as one-fourth from the oscillation period in Eq. (5), i.e. the 
intersection point is at the distance 

 is
pl2
az π
θ

=  (6) 

from the point where particles penetrate into the field. If isz zΔ<  all particles can not reach the 
channel, they are deflected outward the lateral surface. This case was designated as the type 1 in 
the Sec. 1.2. The exception is only the particle penetrating into the field having 0 1y = . This 
particle is not influenced by the field and is not deflected. 
 

 
Fig.3. Scheme of particle trajectories in harmonic terrace potential at 0 x a≤ ≤ : (a) isz zΔ< , 
particles can not reach the channel; (b) isz zΔ> , particles penetrate into the channel field. 
 

The condition (6) allows estimating the critical miscut angle when all particles can not reach 
the channel (in the assumption this angle remains small): 

 pl
,cr

is

2
m

a
z

θ
θ

π
= = . (7) 

In this case the deflection angles can be defined from Eq. (2) 
 ( )pl 01 yθ θ= − ,  
where the final transverse coordinate is the same for all particles: 1y = . Therefore, the deflection 
angles are pl0 θ θ≤ ≤ . 

At the miscut angle ,crm mθ θ>  (or, equivalently, isz zΔ> ) all particles reach the channel. 
Therefore channeling and quasichanneling effects appear. The glancing angle at the channel 
beginning is defined by the Eq. (2): 

 ( ) ( ) ( ) ( )2 2 pl
pl 0 pl 0 pl pl 01 1 1 sin 1 sin

m

zy y y y
a

θΔ
θ θ θ θ θ

θ

⎛ ⎞⎛ ⎞= − − − = − = − ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (8) 

where the trajectory equation (5) was used, z zΔ=  and miscut angle tan /m a zθ Δ=  is small. 
The minimal incident angle is zero and it corresponds to the no-bent trajectory with 0 1y = . The 
maximal angle θ  belongs to the trajectory with 0 0y = , i.e to the particle penetrating into the 
terrace field close to the plane: 

 pl
max pl sin

m

θ
θ θ

θ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
.  

From the other side, from (5) one can evaluate the minimal particle transverse coordinate at 
the channel entrance (see in Fig. 3b) 



 pl
ch,min 1 cos

m
y

θ

θ

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠
. (9) 

 
2.3.2. Channeling and quasichanneling 

 
The type of particle motion in a channel potential – channeling or quasichanneling (type 2 or 

type 3 correspondingly) - is defined by its transverse energy at the channel entrance. The 
transverse energy is defined by the left hand side of (1): 

 
2

ch ch( , ) ( )
2
zp cE x U xθ

θ = + . (10) 

Here ch ( )U x  is the channel potential between planes at the point where the particle enters into 
channel. If the non-equality 

 
2

ch ( , ) 2
z Lp cE x Uθ

θ Δ< +  (11) 

 is valid, the particle will be channeled; otherwise it will be quasichanneled. In the last 
expression UΔ  is the value of channel potential at the channel center with respect to zero level 
of vacuum (see in Fig. 2). 

Let consider the harmonic channel potential, i.e. 

 ( )
2

2
ch ch,0 ch,0

2( ) 1 1 2xU x U U U y U
a

Δ Δ⎛ ⎞= − + = − +⎜ ⎟
⎝ ⎠

. (12) 

The form (12) satisfies the conditions ch ch ch,0(0) ( )U U a U UΔ= = +  and ch ( / 2)U a UΔ= . 
Using Eqs. (8), (5) and (12) one can write the transverse energy (10) in dependence on the 

initial particle position ch,0y  in the channel: 

 ( ) ( )2 22
ch ch,0 pl,0 ch,0 pl ch,0 ch,0( ) 1 tan ( / ) 1 2mE y U y U y Uθ θ Δ= − + − + , (13) 

ch,min ch,0 1y y≤ ≤ , see in Fig. 4. The same expression in terms of initial coordinate 0y  gives: 

 ( ) ( )
2

2 pl pl2
ch 0 pl,0 0 ch,0 0( ) 1 sin 2 1 cos 1

m m
E y U y U y U

θ θ
Δ

θ θ

⎛ ⎞
= − + − − +⎜ ⎟

⎝ ⎠
.  

Let consider the equality in (11) with the transverse energy chE  described by the last expression:  

 
2 2

pl pl pl2 2
0 022 cos 1 1 sin

m mL
s s

θ θ θ

θ θθ

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
,  

where ( )0 0 ch,0 pl1 1 / cos( / )ms y y θ θ= − = − , 2 2
pl,0 ch,0 pl/ / LU U θ θ= . This last equation has two 

roots shown in Fig. 4. The first 01 0s =  corresponds to the particle penetrating into the field close 
to the plane. The second 02s  is defined from the relation 

 pl
02 2

pl2 2
pl pl2

cos( / )

cos ( / ) sin ( / )
4

m

m m
L

s
θ θ

θ
θ θ θ θ

θ

=

+

. (14) 

One should underline, the coefficient 2 2
pl / Lθ θ  depends only on crystal properties and does not 

depend on the particle energy. 
 



 
Fig.4. The harmonic (110) Si channel potential (12) shown in Fig. 2 and particle transverse 
energy (13) at channel entrance. The proton energy is 400zp c =  GeV. Projectiles can have only 

transverse coordinates ch,min ch,0 1y y≤ ≤ . The horizontal line 2
ch,0/ 2z Lp c Uθ =  corresponds to 

equality in relation (11) and crosses the transverse energy curve at points designated 01s  and 02s . 
Particles having the transverse energy below that line are trapped into channeling motion 
whereas the transverse energy above means the particle will be quasichanneled. The graph is 
done for 10mθ =  µrad. At given conditions following Eq. (9) ch,min 0.69y = . 

 
From Eq.(14) the parameter 02 0s =  at pl / / 2mθ θ π= . At this value ch,min 1y = , i.e. particles 

can not reach the channel. If 02 0s ≠  the channeling exists for particles with 0 020 s s≤ ≤  as 
shown in Fig.4. Hence, while 02 1s ≤  the parameter 02s  represents the channeled fraction of the 
incident beam. 

From the other hand, when 02 1s >  (or, equivalently, 0 0y <  and ch,0 ch,miny y< ) the 
quasichanneling is not possible, all particles will be trapped in the channeling motion. The 
equation 02 1s =  in general case has two roots for pl / mα θ θ= . The first equals to 0. Formally it 
corresponds to the limit mθ →∞ . As the matter of fact, the maximal possible miscut angle is 

,max / 2mθ π= , hence one should take into account the lower limit min pl2 /α θ π=  for α . The 
second root ,qchmα  defines the specific miscut angle ,qchmθ  so the quasichanneling is impossible 
for ,qchm mθ θ>  (i.e. for min ,qchmα α α< < ). Indeed, for large miscut angle the length zΔ  is very 
small and projectiles can not obtain the enough transverse energy to be quasichanneled while 
they move in the terrace potential before the channel entrance. The dependence 02( )s α  is shown 
in Fig. 5 for 400zp c =  GeV protons. The curve falls to zero at / 2α π=  when miscut angle 
equals to ,crmθ , see Eq. (7). 
 



 
Fig.5. The dependence 02 pl( / )ms θ θ , Eq. (14), for 400zp c =  GeV protons and (110) oriented Si 

crystal. In the graph pl / mα θ θ= , at these conditions 6
min 8 10α −= ⋅ . The curve crosses the line 

02 1s =  at 0α =  and ,qch 0.97mα α= =  which corresponds to ,qch 13mθ =  µrad. The 
quasichanneling is not possible for ,qch0 mα α< <  when 02 1s > . 
 

More correctly, at large miscut one should consider pl / tan mα θ θ=  instead of pl / mα θ θ=  so 
the lower limit minα →∞. But in all interesting cases both the miscut angle and minα  are small. 

From the Eq. (14) on can conclude the shape of curve in Fig.5 at 0 / 2α π< <  does not 
depend on projectile energy. It is defined completely by the ratio pl,0 ch,0/U U , i.e by crystal 
properties. The curve has the maximum at 'α  that could be defined from the equation 

 ch,02

pl,0

4
tan ' 2

U
U

α = − .  

If for certain crystal pl,0 ch,02U U= , hence ' 0α = , i.e. the maximum of 02s  curve coincides with 
the initial point at 0α = , 02( ) coss α α= . Hence for this crystal the quasichanneling exists at any 
ultrarelativistic energy (while the theory described in Sec. 2.1.1. is applicable). In general, the 
same conclusion is valid for crystals with pl,0 ch,02U U≥ . 

To conclude the discussion of the Eq. (14) one should mention that in all possible cases 

pl,0 ch,0U U>  and, therefore, 2 2
pl / (4 ) 0.25Lθ θ > . 

 
2.4. Estimations 
 

Estimations below is done for (110) oriented Si crystal. The potential parameters are: the 
surface potential barrier is pl,0 31.7U =  eV, the interplanar channel deep is ch,0 21.9U =  eV, see 
also Fig.2. The distance between neighboring planes is 1.92a =  angstroms. 
 
2.4.1. 400 GeV protons 
 

The critical angles are pl 12.6θ =  µrad, 10.5Lθ =  µrad. The distance of beam focusing by the 
terrace field is is 23.9z =  µm, the corresponding critical miscut is ,cr 8mθ =  µrad, i.e. at 8mθ <  
µrad both channeling and quasichanneling are impossible. The maximal deflection angle at 

8mθ <  µrad equals to 12.6 µrad. 



From the equation 02 1s =  one can evaluate another critical miscut angle, namely, ,qch 13mθ =  
µrad. At 13mθ >  µrad all protons are channeled, whereas at 8 13mθ< <  µrad both channeling 
and quasichanneling exist, see in Fig.5. 

Let consider 10mθ =  µrad. Eq.(9) gives ch,min 0.69y =  for minimal transverse coordinate of 
starting point of protons that reach the channel, see in Fig.4. The channeled fraction can be found 
from Eq.(14): 02 0.73s = , i.e. quasichanneled fraction is 0.27 of whole beam intencity. 
 
2.4.2. 120 GeV protons 
 

The critical angles are pl 23θ =  µrad, 19.1Lθ =  µrad. The distance of beam focusing by the 
terrace field is is 13.1z =  µm, the corresponding critical miscut angle is ,cr 14.6mθ =  µrad, i.e. at 

14.6mθ <  µrad both channeling and quasichanneling are impossible. The maximal deflection 
angle at 14.6mθ <  µrad equals to 23 µrad. 

The shape of 02 pl( / )ms θ θ  curve does not depend on the proton energy; it depends only on 
crystal properties, see Eq.(14). Hence, the critical miscut angle ,qchmθ  can be found using the 
curve shown in Fig.5: ,qch pl / 0.97 23.7mθ θ= =  µrad. At 23.7mθ >  µrad all protons are 
channeled, whereas at 14.6 23.7mθ< <  µrad both channeling and quasichanneling exist. 

Let consider 20mθ =  µrad. Eq.(9) gives ch,min 0.62y =  for minimal transverse coordinate of 
starting point of protons that reach the channel. The channeled fraction can be found from 
Eq.(14): 02 0.83s = , i.e. quasichanneled fraction is 0.17 of whole beam intencity. 
 
2.5. Remarks on more realistic potential 
 

The advantage of harmonic potential is that it permits the analytical solution of motion 
equation. For more realistic potentials, as, for example, Moliere potential shown in Fig.2, only 
numerical solution can be carried out. In general, these potentials distinguish from the harmonic 
potential in two items.  

The first item concerns the terrace field at the distance x a=  from the plane. Here the 
electric field (strength) is very small, but nevertheless it exists. On the contrary, the harmonic 
approximation could be chosen to eliminate the electric field at x a= . As the result projectiles 
penetrating into the terrace field at the vicinity of 0x a=  are deflected outward the surface and 
can not reach the channel. On the contrary, the harmonic potential leads to the result that such 
projectiles always reach the channel, see in Fig.2. 

The second item concerns the electric field at plane positions, for example, at 0x =  where 
the terrace field transforms into the channel potential. The realistic transformation both terrace-
channel and channel-channel are smooth. Moreover, the strength of electric field is zero at plane 
positions. The harmonic potential has sharp peaks at these points. Hence, the electric field in the 
vicinity of plane position should be too weak to give the noticeable kick to the projectiles having 
0 0x ≈ . On the contrary, the harmonic potential leads to the fact that such projectiles obtain 

largest deflection by terrace potential. 
Nevertheless, one can conclude from Fig.2 the harmonic potential could be adjusted very 

accurate to match the realistic potential, so both peculiarities, near 0x a=  and 0 0x = , does not 
influence significantly results obtained in harmonic approximation. Of course, for more realistic 
potential the equations obtained for harmonic potential can be used only for estimations. For 
example, obviously projectile trajectories do not cross in the one point. Nevertheless, one can 
consider most trajectories transit through the vicinity of point ( )is,x a z z= = , particles deflected 



outward the surface before they can reach the channel have the maximal deflection angle about 
plθ  and so on. 

Also, one should notice the motion of particles with 0 0x =  is strongly influenced by 
multiply scattering, i.e. by close collisions with separate crystal nuclei, rather no the averaged 
crystal potential. Due to the multiple scattering these projectiles could obtain the significant 
deflection, much larger than is predicted by the averaged potential theory for particles moving in 
the area 0x ≈ . In general, the multiple scattering leads to violation of transverse energy 
conservation low (1). Nevertheless, the multiple scattering does not influence significantly the 
trajectory evaluated from the averaged potential model when the particles moves at the distance 
from the plane approximately exceeding the atom thermal vibration amplitude. 
 
3. SIMULATIONS 
 
3.1. General principles 
 

The particle motion in the miscut surface layer, i.e. in the crystal volume where the plane 
lengths determined by the miscut angle successfully decrease, was investigated by numerical 
simulations. Herein, the crystal thickness l  corresponds to the maximal plane length (see in 
Fig.1). The number of planes N  contained in the miscut layer as well as the number of channels 
( 1)N −  at fixed l  is defined by both miscut angle mθ  and interplanar distance a . In order to 
simplify the analysis we should take into account the motion of only protons hitting the ”miscut 
surface”, thus, the beam width considered is ( 1)N a− . Therefore, particles flying above the top 
shortest plane in Fig.1 are not taken into account. Particles moving at distances x a>  above the 
top plane do not interact with the crystal field (in our approximation) and are not of interest. 
Further we are interested mainly in multiple terrace deflection when particle trajectory crosses 
several terrace fields. It will be shown this effect allows the large angle deflection, at plθ θ> . 
Particles, penetrating into the crystal field having 0x a<  above the top plane, can interact only 
with the single-plane field. Based on the theory above we can speak that their deflection angle 
can not exceed plθ , see in Sec. 2.3.1. So, the detailed consideration of these particles will be 
omitted. Moreover, the contribution of these particles becomes negligible for large N  (or, 
equivalently, for large l ). 

Following the channeling theory the evolution of proton transverse coordinate x  is defined 
by the equation 

 
2

cr
2

dUd xm
dxdt

γ = −    

The averaged planar potential was approximated by Moliere potential, see [8] and Fig.2. The 
projectile moves along the planes with quasiconstant velocity 0v  that defines the longitudinal 
coordinate of its trajectory as a function of time 0( )z t v t= . The deviation of projectile trajectory 
from that defined by Eq.(1) due to the proton multiple scattering is taken into account by the 
technique previously described in [10,31]. The angular distribution of the beam at any fixed 
moment τ  with respect to the crystal plane (as above we consider the (110) Si plane) is 
determined by the expressions 0tan ( ) /i xiv vθ τ=  where ( )( ) /xiv dx dt

τ
τ =  is the transverse 

velocity of i-th proton at that moment. This is also valid for the moment, at which the projectile 
leaves the crystal through either back side or lateral miscut surface. Obviously, as above 
described, the first corresponds mainly to the channeled protons, while the second - to both 
quasichanneled in a bulk and deflected by the terrace potential protons. 

In our simulations we have used non-divergent 400 GeV and 120 GeV proton beams 
interacting with aligned Si (110) crystal that are typical objects of recent CERN crystal 



collimation experiments based on the technique of beam channeling in a bent crystal [5,6,32]. 
The initial beam direction was chosen to be coincided with the Z-axis, see in Fig.1, hence, the 
crystal field, which is mostly perpendicular to the (110) planes, has became the function of 
transverse coordinate x . The motion in Y-direction, which is directed along the (110) planes and 
transverse to the initial beam direction, is out of interest in this study and herein has not been 
considered. Having chosen the initial beam direction along (110) planes of aligned Si crystal, the 
deflection angle after proton passage through the crystal has been defined as the angle of a 
proton velocity with respect to the (110) plane. 
 
3.2. Proton trajectories 
 

Several trajectories evaluated as described in Sec. 3.1 are shown in Fig.6 together with 
corresponding deflection angles θ . The results are presented for 120 GeV protons, crystal has 
the miscut angle 20mθ =  µrad and the thickness is 50l =  µm. The miscut layer consists of 

6N =  planes. The deflecting effect of miscut surface is evident. One can see trajectories B, C, D 
can cross several terrace fields due to quasichanneling effect. Moreover, the maximal deflection 
angles is given by trajectories C and D which essentially influenced by terrace fields rather no 
the channel field and this deflection angle 35θ ≈  µrad is substantially exceeding the value 23 
µrad obtained for the case when beam is deflected by the single terrace (see Sec. 2.4.2).  
 

 
Fig. 6. (a) Samples of proton trajectories: the trajectory of channeled proton (A), the trajectories 
of quasichanneled protons when the proton leaves the crystal through the back side (B) or 
through the lateral surface (C, D). Planes are designated by horizontal black solid lines; the 
maximal length plane coincides with the bottom axis. Areas of different fields are delimited by 
dash-dot lines and are designated by numbers: 1 – field is absent, 2 – the terrace field, 3 – the 
channel field. (b) The deflection angles along trajectories shown in the panel (a). Symbols 
correspond to moments when the projectile crosses a field border: l - proton moves from the 
vacuum to the terrace field, ¡ - proton leaves the terrace field and exits to the vacuum, n - 
proton reaches the channel field from the terrace field, o - proton moving in the channel field 
crosses the plane and falls into the terrace field. The sharp oscillations appear due to strong 
multiple scattering when particle is near to a plane. 

 
One should mention here the difference between trajectories C and D. The initial point of 

trajectory C corresponds to strong terrace field. So, the proton gets the significant transverse 
velocity at the first terrace to be further quasichanneled in correspondence with the theory 
developed in Sec. 2.3.3. The quasichanneled proton crosses the channel border at the initial zΔ  
section of the channel which is formed by next upper terrace of the miscut layer having the 
deflection angle θ . Futher the proton moves in deflecting single-plane field getting additional 
deflection angle δθ . After that proton reaches next terrace (or, probably, next channel) having 



grown incident angle θ δθ θ+ > , and so on, in correspondence with the arrow 3 in Fig.1. Hence, 
proton suffers multi plane deflection at large angle. 

On the contrary, the proton moving along the trajectory D penetrates into the terrace field in 
the area of weak field at large distance from the plane. Nevertheless, this weak field of the first 
terrace is capable to direct the proton to the second terrace field instead of to the channel (similar 
to the motion of the kind 1 in Fig.1). The proton falls to the strong field of the second terrace 
near the plane and finally can be deflected at large angle by the way described in the previous 
paragraph. This kind of deflection is not predicted by harmonic potential theory described in Sec. 
2.3.3 (the particles having large initial distance from the plane should be channeled), but is 
discussed in Sec. 2.5. One can conclude the contribution into large angle deflected fraction of the 
beam is made by protons having both large ( 0x a≈ ) and small ( 0 0x ≈ ) initial distances from the 
plane forming the terrace field. 

Finally, one should notice the terrace length at these conditions is 10zΔ ≈  µm. At the 
distance of 1 µm about 104 Si atoms are placed in the crystal plane. Thus, the terrace potential 
can be described by continuous averaged potential. Also, due to the fact that the terrace length 
z aΔ ? , the field at the distances 0 x a< <  from the terrace plane can be considered to be 

orthogonal to the plane. 
 

3.3. Angular distributions 
 
The results of simulations for a final deflection angle in dependence on the initial transverse 

coordinate 0x  are presented in Fig.7(a,c) for 400 and 120 GeV protons correspondingly. The 
crystal thickness was 100l =  µm for 400 GeV and 50l =  µm for 120 GeV. The miscut angle 
was 10mθ =  µrad for 400 GeV and 20mθ =  µrad for 120 GeV. So, the miscut layer consists of 

6N =  planes for both cases. The transverse coordinate is counted from the plane with a maximal 
length, i.e. from the lowest plane in Figs. 1 and 6(a). The separation of protons penetrating into 
the crystal field near the planes from the main beam is evident in agreement with the multiple 
terrace deflection consideration in Sec.3.2. Moreover, the corresponding angular distributions in 
panels (b, d) of Fig.7 demonstrate noticeable number of these protons. 

In general, angular distributions make the dividing of the incident beam clear visible. The 
right peak corresponds to the deflection at large angles, plθ θ>  (the theory developed in 
Sec.2.3.1 predicts the angle of single terrace deflection can not exceed plθ ). The right peak in 
angular distributions consists of the protons that are strongly deflected outward the miscut 
surface by the terraces’ repelling field, in other words, the protons are reflected by the miscut 
end of the crystal. The fraction of deflected protons can exceed 10% of whole beam intensity. 
One can notice the deflection effectiveness growths when beam energy is increased. This 
conclusion is in agreement with the consideration in Sec. 2.3.2. Indeed, the number of 
quasichanneled protons growths at the beam energy increasing (parameter 02s  falls down at 

,qchmα α>  in Fig.5). Therefore, more protons can be deflected at large angles by few terraces as 
shown in Fig.6.  

 



 
Fig.7. Scattering of initially non-divergent 400 GeV (a,b) and 120 GeV (c,d) proton beam by 
miscut surface. (a,c) Dependence of the deflection angle on the initial transverse particle 
position, i.e. on the point of penetration into the crystal: A — the deflected at plθ θ>  protons, B 
— the channeled protons. Positions of crystallographic planes composing the miscut surface are 
pointed out by vertical dashed lines. (b,d) Angular distribution of protons scattered by miscut 
surface: the right peak corresponds to the miscut deflected protons, while the left side of 
distribution - mainly to the channeled protons. 

 
The comparison with estimations given in Sec. 4.2 shows the quasichanneled fraction is 

noticeably larger than the intensity of right peak in Fig.7. The discrepancy could be explained by 
the difference between harmonic and Molier potential. Indeed, the curve corresponded to 
Moliere potential harmonic is more shallow in the area B of Fig.2 that the curve for harmonic 
potential. Hence, the harmonic potential gives, in general, stronger electric field for the terrace 
field than the Moliere approximation because the strength is defined by the incline of potential 
curve. Hence, the particles passed the distance zΔ  through the terrace field obtain, as a rule, the 
less transverse energy (and deflection angle, correspondingly) if the crystal potential is 
considered in Moliere approximation in comparison with case when the harmonic potential is 
used. 

Another cause why the large-angle-deflected fraction does not coincides with the 
quasichanneled fraction estimated in Sec.4.2 is the quasichanneled proton can cross the channel 
border at the distance larger than zΔ  from the channel beginning, in the point where the terrace 
field already does not exist. In this case proton falls into another channel and enters into the 
crystal bulk (as the trajectory B in Fig.6). As the result, the multiple terrace deflection becomes 
impossible and the proton is deflected at fewer angles. 

In Fig.7(a,c) one can see, the deflection angle of group A is maximal for particles penetrating 
into the crystal near the bottom planes of miscut surface (as depicted in Figs.1 and 6(a)). Indeed, 
only protons hitting the crystal at the bottom miscut planes enable several planes crossing. 
Protons penetrating into the crystal at the top miscut planes do not suffer multi plane interaction 
due to the limited miscut layer, and are characterized by rather small-angle deflection. This is the 



explanation why the deflection angle in the group A decreases when their initial transverse 
coordinate increases in Fig.7(a,c) tending to the value plθ  at upper plane. 
 
3.4. Dependence on miscut angle 
 

The crystals used in channeling physics are usually characterized by a miscut angle [29]. 
Nevertheless, the kind of beam deflection described here has not been ever observed in 
channeling-related experiments. The features of beam scattering by the crystal miscut were 
mostly examined to prevent negative influence of the miscut to the efficiency of beam 
collimation based on beam halo deflection by bent crystal planes. Another point is that in 
performed experiments the beams enter into the crystal mainly through its front surface rather 
than the lateral miscut surface. Thus, the contribution of miscut deflected part becomes 
negligible into the total angular distribution. However, its contribution could be essential in the 
case of nanosize, in cross section, beams. 

Fig.8 demonstrates the deflection efficiency as a function of the miscut angle. The 
simulations were carried out for two crystal thicknesses at 400 as well as at 120 GeV. 
Thicknesses 100l =  µm (400 GeV, Fig.8(a)) and 50l =  µm (120 GeV, Fig.8(b)) correspond to 
the simulations pointed out in Fig.7, whereas 1l =  mm (400 GeV) and 500 µm represent typical 
crystal thickness used in bent crystal collimators (see, for example, in [33] and references 
therein). As seen, the efficient deflection could be observed in very narrow interval of the miscut 
angles. The deflection efficiency falls rapidly down at the miscut angle increase, which results in 
decreasing the repelling field length zΔ . Simultaneously, increasing the miscut angle gets 
growing possibility for projectiles to be trapped by the crystal bulk potentials (channel 
potentials); obviously, these particles will be not reflected by the miscut surface. The result is in 
agreement with the discussion in Sec.2.3.2 where it is demonstrated the quasichanneling 
disappears at large miscut angles, see in Fig.5. So, the suitable miscut angles are very small, 

10mθ :  µrad, and much less than the typical miscut angles 100mθ :  µrad [3,29]. Additionally, 
the distributions in Fig. 8 exhibit there is no the deflection at large angles ( plθ θ>  µrad) for very 
small miscut angles. It takes place due to very large terraces’ lengths (see the discussion in 
Sec.2.3.1). Particles are deflected outward the surface by the single terrace (the type 1 of the 
motion) and have not the possibility to reach the planar channel. Finally, particles will be weakly 
reflected by the surface. The effective deflection of the beam at large angles through the particle 
quasichanneling (the type 3) in this case becomes impossible. 

 

 
Fig.8. Fraction of protons deflected at the angles plθ θ>  µrad vs miscut angle: (a) 400zp c =  
GeV, (b) 120zp c =  GeV. 

 
The maximum of curves is about ,crmθ  (see in Sec.2.4). Indeed, at this angle isz zΔ =  (see in 

Sec. 2.3.1), i.e. following the harmonic potential theory the protons deflected by terrace field are 



focused in the point where the next terrace begins (see in Fig.3). In the case of Moliere potential, 
when the focusing in the one point does not take place, protons, nevertheless, either leave the 
terrace field near the point isz zΔ =  or reach the channel having the transverse coordinates x a≈ . 
Both cases provide the best conditions for projectiles to enter into the next terrace field either by 
the way of trajectory D in Fig.6 or directly through the quasichanneling (trajectory C in Fig.6). 

Strongly speaking, the fraction of large-angle-deflected protons does not tend to zero at large 
miscut angle. Due to multiple scattering an insignificant number of particles can always be 
pushed in quasichanneled regime of motion at initial channel section zΔ . 

Concerning the little deep in Fig.8(b) at 12mθ =  µrad and 50l =  µm it is the cutting effect 
related with the shape of distribution near deflection angle 23θ =  µrad. The distributions are 
shown in Fig.9. At 11mθ =  µrad (a,c) the channeling is almost absent. The distribution is formed 
by the single peak at 23θ ≈  µrad. At 11mθ >  µrad the channeling appears as well as the right 
peak is shifted to larger angles due to the increasing of quasichanneling role. The channeling is 
more important for 50l =  µm. In Fig.9(a,b) the border 23θ =  µrad divides the right peak and 
only about half of the peak contributes to the fraction shown in Fig.8.(b) The channeling is 
absent in the panel (a) and appears in the panel (b). As the result, the fraction of projectiles 
deflected at 23θ >  µrad is less in the case (b) in comparison with the case (a). In the panel (c) 
the peak is completely on the right side from the border providing the increasing of deflected at 

23θ >  µrad fraction in comparison with the case (b). For the case of 500l =  µm the channeling 
appearance in the panel (e) does not reduce significantly the right peak intensity in comparison 
with the case (d). At the same time the right shift of the peak increases the part of distribution at 
the right side of the border. Hence, the fraction in Fig.8(b) is larger for 12mθ =  µrad than for  

11mθ =  µrad. On the contrary the shift of right peak in the panel (f) can not increase the fraction 
deflected at 23θ >  µrad in comparison with the case (e) because the whole intensity of this peak 
is reduced by the growth of channeling fraction. As the result, the fraction in Fig.8(b) for 500l =  
µm has the maximum at 12mθ =  µrad. Obviously, the maximum position in Fig.8 depends on 
the value of cutting angle. In particular, the little deep at 12mθ =  µrad for 50l =  µm in Fig.8(b) 
could be eliminated if one will be interested in the fraction deflected at 24θ >  µrad. 

 

 
Fig.9. Angular distributions near the maximum of curves shown in Fig.8. Top panels correspond 
to 50l =  µm, bottom panels – to 500l =  µm. 

 



To conclude the discussion of Fig.8, it should be underlined the range of miscut angles where 
the effective deflection takes place coincides almost exactly with the estimations of miscut 
angles interval where the quasichanneling exists (see in Sec. 2.4). It is the clear argument the 
deflection at large angles is provided by quasichanneling combined with the multiple terrace 
deflection. 
 
3.5. Dependence on terrace number 
 

In the Fig.8 one can see the curve corresponding to larger thickness is placed higher. The 
difference between that curves is the number of planes composing the miscut layer. Indeed, in 
correspondence with discussion above the possibility for projectile to be deflected at the large 
angle is minimal when the miscut layer consists of 2N =  planes. In the hypothetic case of 
infinite layer of terrace all particles following trajectories similar C or D in Fig.6(a) (or arrow 3 
in Fig.1) cross the maximal number of planes and are deflected at maximal possible angle. That 
should result in the maximal shift of right peak in Fig.9 and, therefore, the maximal fraction in 
Fig.8. Nevertheless, that number of crossed planes could not be infinite and, as one can see from 
Fig.6, is about 3-5 at conditions considered here. So, one can assume the fraction deflected at 
large angles is strongly depends on the number of planes N  while N  is not enough to provide 
the maximal deflection and the fraction reaches the saturation at large N . This suggestion is 
approved in Fig.10. The miscut angle is considered to be fixed, the plane number N  is the 
function of crystal length l . The slight increasing of the fraction shown in Fig.10 at large N  
could be explained not only by multiple terrace deflection but also by dechanneling when the 
channeled projectiles transits through the channeling regime of motion in the quasichanneling 
state due to the multiple scattering and when this transition takes place at the initial section zΔ  
of a channel. The comparison with Fig.8 gives the growth is not significant: the same fraction 
equals to 0.22 at 1l =  mm (400 GeV) and 0.168 at 500l =  µm (120 GeV). 

 

 
Fig.10. The fraction deflected at large angle in dependence on the crystal thickness l : (a) 

400zp c =  GeV, 10mθ =  µrad; (b) 120zp c =  GeV, 20mθ =  µrad. The corresponding number of 
planes contained in the miscut layer N  is pointed out near the points. 
 

In is interesting to notice, the large-angle-deflected fraction at large N  is very close to the 
estimations of quasichanneled fraction given in Sec.2.4.2. 
 
4. CONCLUSION 
 

1. The deflection of ultrarelativistic projectiles by miscut surface was approved theoretically 
as well as by simulations. 

2. The investigations of projectiles by terrace field were carried out in details. The harmonic 
crystal potential was considered. The conditions of both channeling and quasichanneling were 



obtained. The possibility of deflection by terrace field before the particle could reach the channel 
was discussed. The predictions for deflection angles were given. 

3. The simulations were carried out for typical CERN energies 120 and 400 GeV. The crystal 
potential was approximated by Moliere potential. The multiple scattering was taken into account. 
The obtained results are presented in the form to be applied for experimental purpose. The 
results are in good agreement with theoretical predictions. 

4. The effective deflection is provided mainly by quasichanneled particles. It was shown the 
multiple terrace reflection leads to significant increasing of the deflection angle in comparison 
with the single terrace deflection. 

5. Usually considered that the miscut brings only negative features to the crystal fabrication. 
Here we have demonstrated that the miscut surface, in principle, could be used to deflect the 
particle beam. It is important to underline that, on the contrary to the bent crystal technology, in 
the case of beam deflection by the miscut surface (we can define a new technique as a ”miscut 
reflector”) we deal with mostly reflection of the beam from the crystal surface; there is no 
necessity of using the crystal bulk to control the beam. Hence, the influence of the solid on the 
beam (scattering, energy loss, beam intensity loss, etc.) could be essentially reduced in 
comparison to both beam deflection by bent crystals and beam collimation by amorphous solids 
[34]. The problem to observe the phenomenon is in fabricating special crystals with controlled 
miscut angles. Nevertheless, the progress of crystal manufacturing technologies could issue the 
possibility to detect described peculiarities in the nearest future. 
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