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Abstract 
 
We examine critically the various definitions of the Dirac's δ, we note that we are constantly 
in the presence of a discontinuity at infinity which makes it impossible to give a correct 
definition of the Dirac's δ per se. Then we give its definition per se according to the standards 
dictated by Dirac himself: it is a 'function' that is zero everywhere except at the zero point 
where it has an infinite value and is such that the integral from minus infinity to plus infinity 
is 1 and that also multiplied by a 'well-behaved function' it gives the value of the function at 
the point 0. Note also that if we accept the Cesàro summability we arrive quickly, also in this 
case, at a correct per se definition of the δ itself. We are then reasoning on the relationship 
between mathematics and physics. 
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1. A brief history of theory of distribution or generalised function.

The �rst (from [8]) 1 2 to use generalized functions in the explicit and presently accepted form was S.
L. Sobolev in 1936 in studying the uniqueness of solutions of the Cauchy problem for linear hyperbolic
equations.

From another point the view Bochner's theory of the Fourier transforms of functions increasing as
some power of their argument can also bring one to the theory of generalized functions. These Fourier
transforms, in Bochner's work the format derivatives of continuous functions, are in essence generalized
functions. In 1950-1951 there appeared Laurent Schwartz's monograph Théorie des Distributions. In
this book Schwartz systematizes the theory of generalized functions, basing it on the theory of linear
topological spaces, relates all the earlier approaches, and obtains many important and far reaching
results. Unusually soon after the appearance of Théorie des Distributions, in fact literally within two
or three years, generalized functions attained an extremely wide popularity. It is su�cient just to point
out the great increase in the number of mathematical works containing the delta function. Physicists
have long been using so-called singular functions, although these cannot be properly de�ned within
the framework of classical function theory. The simplest of the singular functions is the delta function
δ(x − x0). As the physicists de�ne it, this function is �equal to zero everywhere except at x0 where
it is in�nite, and its integral is one.� It is unnecessary to point out that according to the classical
de�nition of a function and an integral these conditions are inconsistent. One may, however, attempt
to analyse the concept of a singular function in order to exhibit its actual content. First of all, we
remark that in solving any speci�c problems of mathematical physics, the delta function (and other
singular functions) occur as a rule only in the intermediate stages. If the singular function occurs
at all in the �nal result, it is only in an integrand where it is multiplied by some other su�ciently
well-behaved function. There is therefore no actual necessity for answering the question of just what
a singular function is per se; it is su�cient to know what is meant by the integral of a product of a
singular function and a "good" function. For instance, rather than answer the question of what a delta
function is, it is su�cient for our purposes to point out that for any su�ciently well-behaved function
ϕ(x)we have ∫ +∞

−∞
δ(x− x0)ϕ(x)dx = ϕ(x0)

2. Definition of regular generalized function and singular generalised function

Test Functions

First of all we must de�ne the set of those functions which we have conditionally called " su�ciently
good," and on which our functionals will act. As this set we shall choose the set K of all real functions
3 ϕ(x) with continuous derivatives of all orders and with bounded support, 4 which means that the
function vanishes outside of some bounded region (which may be di�erent for each of the ϕ(x)). We
shall call these functions the test functions,and we shall call K the space of test functions. The test
functions can be added and multiplied by real numbers to yield new test functions, so that K is a linear
space. Further, we shall say that a sequence ϕ1(x), ϕ2(x), ..., ϕn(x), ... of test functions converges to
zero in K if all these functions vanish outside a certain �xed bounded region, the same for al of them,
and converge uniformly to zero (in the usual sense) together with their derivatives of any order
As an example of such a function which vanishes for

1 The reference is the space Rn with the traditional metrics. We will use the integration of Riemann.
2 see also [7] pag. 225 J. Sebastiao e Silva.
3 As a rule we shall let x = (x1, x2, ..., xn) denote a point in the n-dimensional space Rn.

On �rst reading the reader may visualize x as a point on the line.
4 The support of a continuous function ϕ(x) is the closure of the set on which ϕ(x) 6= 0.
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r ≡ |x| =
√

Σx2i ≥ a,
consider

ϕ(x, a) =

{
exp
( −a2
a2−r2

)
for r < a,

0 for r ≥ a.

The sequence ϕν(x) = ν−1ϕ(x, a)(ν = 1, 2, ...) converges in K. The sequence ϕν(x) = ν−1ϕ(x, a)(ν =
1, 2, ...) converges to zero uniformly together with all its derivatives, but does not converge to zero in
K, since there exists no common bounded region outside which all these functions vanish.
There exist many di�erent kinds of functions in K. For instance, far a given continuous function f(x)
with bounded support there always exists a function ϕ(x) in K arbitrarily close to it, i.e., such that
far all x and for any ε > 0,

|f(x)− ϕ(x)| < ε.

3. Generalized Functions

We shall say that f is a continuous linear functional on K if there exists some rule according to
which we can associate with every ϕ(x) in K a real number (f, ϕ) satisfying the following conditions.
(a) For any two real numbers α1 and α2 and any two functions ϕ1 and ϕ2 in K we have
(f, α1ϕ1 + α2ϕ2) = α1(f, ϕ1) + α2(f, ϕ2) (linearity of f).
(b) If the sequence ϕ1, ϕ2, ..., ϕn... converges to zero inK, then the sequence (f, ϕ1), (f, ϕ2), ...(f, ϕn), ...
converges to zero (continuity of f).
For instance, let f(x) be absolutely integrable in every bounded region of Rn (we shall call such
functions locally summable. By means of such a function we can associate every ϕ(x) in K with

(f, ϕ) =

∫
Rn

f(x)ϕ(x)dx, (1)

where the integral is actually taken only over the bounded region in which ϕ(x) fails to vanish. It is
easily veri�ed that conditions (a) and (b) are satis�ed for the functional f . Condition [(b) follows, in
particular, from the possibility of passing to the limit under the integral sign when the functions in
the integrand converge uniformly) in a bounded region.
Equation (1) represents a very special kind of continuous linear functional on K. Other kinds of
functionals are easily shown to exist. For instance, the functional which associates with every ϕ(x) its
value at x0 = 0 is obviously linear and continuous. It is easily shown, however, that this functional
cannot be written in the form of (1) with any locally summable function f(x).
Indeed, let us assume that there exists some locally summable function f(x) such that for every ϕ(x)
in K we have ∫

Rn
f(x)ϕ(x)dx = ϕ(0)

In particular, for the function ϕ(x, a) discussed in the previous section, we have∫
Rn

f(x)ϕ(x, a)dx = ϕ(0, a) = e−1 (2)

But as a→ 0 the integral on the left converges to zero, which contradicts Eq. (2).
We shall call the functional we are now discussing the δ function in accordance with the established

terminology (although this terminology is inaccurate, since the delta function is not a function in the
classical sense of the word), and we shall denote it by δ(x). We thus write

(δ(x), ϕ(x)) = ϕ(x).
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One often has to deal with the �translated� delta function, or the functional δ(x− x0) de�ned by We
now de�ne a generalized function as any linear continuous functional de�ned on K. Those functionals
which can be given by an equation such as (1) shall be called regular, and all others (including them
delta function) will be called singular. We shall call the regular generalized function f de�ned by 3

(f, ϕ) = C

∫
ϕ(x)dx =

∫
Cϕ(x)dx

the constant C. For instance, the unit generalized function is de�ned by

(1, ϕ) =

∫
ϕ(x)dx.

It can be shown (see Volume II, Chapter I, Section 1.5) that if one knows the value of a regular
functional on all functions of K, the function f(x) corresponding to it can be established everywhere
except on a set of measure zero (almost everywhere). This means that to di�erent functions f1(x) and
f2(x) correspond di�erent generalized functions (i.e., for some functions in K these functionals have
di�erent values). Thus the set of ordinary locally summable functions can be considered a subset of the
set of all generalized functions. For this reason, it is sometimes convenient to use the notation f(x) for
generalized functions, as in the case of the delta function, although we may no longer speak of the value
of a generalized function at a given point (so that, rigorously speaking, the notation f(x) is meaningless
for a generalized function). In addition, we shall sometimes denote f(x) by

∫
f(x)ϕ(x)dx, although

according to ordinary analysis such notation is meaningless. For instance, we will sometimes write∫
δ(x)ϕ(x)dx instead of (δ(x), ϕ(x)). Thus

∫
ϕ(x)dx = 0. We shall denote the set of all generalized

functions by K
′
.

4. Traditional definition of Dirac's δ

Let's try to de�ne the δ(x) by means of a suitable sequence:
A sequence {δ(x)} of functions de�ned in (−∞,+∞) is said δ − sequence if veri�es the following
property:
α) there is a sequence of positive numbers {εn}, decreasing and in�nitesimal, such that
δn(x) = δn(−x) > 0 for xε(−εn, εn) and δn(x) = 0 elsewhere;
β) δn(x) is of class C∞ (waves must nullify together with all the derived, in the points
( −εn, εn ) ;

γ) it is
∫ +εn
−εn (x)dx = 1

For example is immediate to verify that:

(1) δn(x) =


0 (−∞ < x ≤ −εn)

1
cn
e
− 1
ε2n−x

2 (−εn ≤ x < εn)

0 (−εn ≤ x < +∞)

Where cn is:

(1a) cn =

∫ εn

−εn
e
− 1
ε2n−x

2 dx.

is a δ − sequence

3 We shall suppress the symbol Rn on the integral sign whenerver the integral is taken over the entire space
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Figure 4.1. from (1)-(1a)

Looking at the �gure 1.1 we can see that we can consider the sequence as a functional in two ways.
In the �rst way, as the value of the intersection of the various curves with the ordinate axis. In the
second way, as the area (or the integral or measure) of the various curves. The question we have to
ask is: what happens to in�nity?. To answer this question we consider the areas under the curves of
the succession as sets of points. The limit of these sets is the semiaxis of the ordinates whose area is
0. Therefore in both cases there is a discontinuity to in�nity which makes the δ not well de�ned. We
are thus in the presence of sequences approximating a function which is de�ned only in words, which
is not a de�nition. In order to search for a de�nition we must have �rst a functional that for δ = +∞
at x = 0 and zero for a nonvanishing x. Appropriately using the function f(t) = cos(ωt) we will see
that we have �rst of all the sought functional.

5. Per se definition of Dirac's δ

DEFINITION. δ(x) is a limit of a continuous functional, of a parameter, de�ned on [0,+∞), which
it is zero everywhere and (+∞) at point 0. �rst property:∫ +∞

0

δ(x)dx = 1.(5.1)

second property: ∫ +∞

0

f(x)δ(x)dx = f(0)(5.2)

where f(x) is any continuous function of x.
We note that the properties concern a neighbourhood of x = 0.

5.1. A continuous functional which to the limit is 0 everywhere and +∞ at point 0. It is
well known that the Riemann integral 1

f(t) =

∫ ∞
0

cos(ωt) dω t ≥ 0 ω (−∞,+∞)(5.3)

does not exist.
We will see that with Cesàro's summability we can give it a meaning.
The de�nition of Cesàro's summability of order 1 (C,1) is:

1 In this article we use Riemann's integration, not Lebesgue's integration. ( see [3] )
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F (t) = lim
λ→+∞

∫ λ

0

(1− ω

λ
) cos(ωt) dω(5.4)

We put ωt = u then (5.1) becomes

lim
λ→+∞

1

t

∫ tλ

0

(1− u

tλ
) cos(u) du t > 0(5.5)

We get unde�ned integral and apply integration by parts, for t > 0:∫
(1− u

tλ
) cos(u) du =

= (1− u

tλ
) sin(u) −

∫
−1

tλ
sin(u)du =

= (1− u

tλ
) sin(u) − 1

tλ
cos(u)du

But from (5.5): [
(1− u

tλ
) sin(u) − 1

tλ
cos(u)

]∣∣∣tλ
0

=

=
[(

1− tλ

tλ

)
sin(tλ) − 1

tλ
cos(tλ)

]
−
[(

1− 0

tλ

)
sin(0) − 1

tλ
cos(0)

]
=

=
1

tλ
− cos(tλ)

tλ

lim
λ→+∞

1

t

[ 1

tλ
− cos(tλ)

tλ

]
= 0 for all t > 0

F (0) = lim
λ→+∞

∫ λ

0

(1− 0

λ
) cos(ω0) dω =

= lim
λ→+∞

∫ λ

0

dω = +∞ (ωt = 0)

Finally we have:

F (t) =

{
0 for t > 0

+∞ for t = 0 or ω = 0
(5.6)
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5.2. Dirac's δ properties. We introduce now a set of function which it veri�es de�nition of δ.

Theorem 1. Given a continuous function f(u) > 0 on a closed interval [0, b], with �rst derivative
continue and 6= 0. Given a 0 ≤ η ≤ b.
Given a continuous functional of η

W (η) =

{
f(u)∫ η

0
f(u) du

for 0 ≤ u ≤ η
0 for η < u ≤ b

(5.7)

then

lim
η→0+

W (η) = +∞(5.8)

and ∫ η

0

W (η)du = 1(5.9)

Proof. For the Weierstrass theorem f(u) have a maximum M 6= 0 and a minimum m 6= 0. Then

m lim
η→0+

1∫ η
0
f(u)du

≤ lim
η→0+

W (η) ≤ M lim
η→0+

1∫ η
0
f(u)du

(5.10)

but

m lim
η→0+

1∫ η
0
f(u)du

= +∞(5.11)

M lim
η→0+

1∫ η
0
f(u)du

= +∞(5.12)

Then (5.7) is valid.
Now we prove (5.8)

lim
η→0+

∫ η
0
f(u) du∫ η

0
f(u) du

=
0

0

We apply de l'Hôpital theorem

lim
η→0+

d
dη

∫ η
0
f(u) du

d
dη

∫ η
0
f(u) du

= lim
η→0+

f(η)− f(0)

f(η)− f(0)
=

0

0

We apply de l'Hôpital theorem again
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lim
η→0+

d
dη [f(η)− f(0)]
d
dη [f(η)− f(0)]

= lim
η→0+

f
′
(η)

f ′(η)
=
f
′
(0)

f ′(0)
= 1.

W (η) is a function which is 0 everywhere on interval (0, b] and (+∞) at point 0, and verify
(5.1 )and (5.2).
So δ(η) = W (η).
Q.E.D.

�

Theorem 2. Given a continuous function f(u) > 0 in a closed interval [0, b], with �rst derivative
continue and 6= 0.
Given a continuous function φ(x) in the closed interval [0, b]. Given a 0 ≤ η ≤ b.
Given a function

Z(u) =
f(u) φ(u)∫ η
0
f(u) du

0 ≤ u ≤ b

then ∫ η

0

Z(u)du = φ(0)

Proof. ∫ η

0

Z(u)du =

∫ η
0
f(u)φ(u)du∫ η
0
f(u)du

Now we apply the 'ONE DIMENSIONAL MEAN VALUE THEOREM' to function f(u).

lim
η→0+

∫ η
0
f(u)φ(u)du∫ η
0
f(u)du

= lim
η→0+

φ(x0)
∫ η
0
f(u)du∫ η

0
f(u)du

= φ(0) 0 ≤ x0 ≤ η ≤ b

Q.E.D. �

5.3. Cesàro again. Let ε ≥ 0 be, now we introduce the function G(t)

G(t) =
cos(ωt)∫ ε

0
cos(ωt) dω

t ≥ 0 , 0 < p ≤ ωt ≤ ε < π/2(5.13)

For t = 0

G(0) = lim
ε→0+

cos(ω0)∫ ε
0

cos(ω0)dω
= +∞

If t > 0 then cos(ωt) > 0, and its derivative [−t sin(ωt)] is 6= 0.
So the conditions of Theorem 1 are veri�ed. Then for Theorem 1 2

lim
ε→0+

G(t) = lim
ε→0+

cos(ωt)∫ ε
0

cos(ωt) dω
= +∞(5.14)

2 In this case there is no need resort Cesàro
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and:

∫ ε

0

G(t)dω = 1.(5.15)

Is the formula (5.15) valid to the limit +∞?

lim
λ→+∞

∫ λ

0

G(t)dω = 1(5.16)

For t > 0 and applying (5.6), with λ 6= 0:

(5.17)

∫ +∞
0

(1− ω
λ ) cos(ωt) dω∫ +∞

0
(1− ω

λ ) cos(ωt)dω
=

0

0

Now we apply the de l'Hôpital theorem, with λ 6= 0:

lim
λ→+∞

(1− ω
λ ) cos(ωt)

∣∣∣λ
0

(1− ω
λ ) cos(ωt)

∣∣∣λ
0

(5.18)

but

lim
λ→+∞

{ (
1− ω

λ

)
cos(ωt)

∣∣∣∣∣
λ

0

}
= lim

λ→+∞

{ (
1− λ

λ

)
cos(λt) −

(
1− 0

λ

)
cos(0 t)

}
= 0−1 = −1

Then (5.16) is valid.

Given now an ε ≥ 0 we introduce a function h(ω) de�ned in the closed interval
[0,+ε] ≥ 0 and there continue. Now we de�ne the function H(t): 3

H(t) =
1∫ ε

0
cos(ωt)dω

∫ ε

0

cos(ωt) h(t− ω) dω t ≥ 0 , 0 < p ≤ ωt ≤ ε < π/2(5.19)

3sifting property (see [5]) pag.61
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For (5.6) is necessary to study H(t) on the neighbourhood of 0. Therefore now we apply the
'ONE DIMENSIONAL MEAN VALUE THEOREM' to numerator.

lim
ε→0

h(t− ξ)
∫ ε
0

cos(ωt) dω∫ ε
0

cos(ωt) dω
= lim

ε→0
h(t− ξ) = h(t) 0 ≤ ξ ≤ ε(5.20)

CONCLUTIONS

We saw that with the Cesàro's summability we can have a function which is de�ned on [0,+∞], it
is zero everywhere and (+∞) at point 0. This function veri�es Dirac's δ properties.
Theorem 1 and Theorem 2 identify a set of functions that they de�ne the Dirac's δ too.
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6. Open issues and some processing

6.1. Cesàro's summability as Cohen's forcing? In the mathematical discipline of set theory, forc-
ing is a technique invented by Paul Cohen for proving consistency and independence results. It was
�rst used, in 1963, to prove the independence of the axiom of choice and the continuum hypothesis
from Zermelo-Fraenkel set theory. Forcing was considerably reworked and simpli�ed in the 1960s, and
has proven to be an extremely powerful technique both within set theory and in areas of mathematical
logic such as recursion theory.
Descriptive set theory uses both the notion of forcing from recursion theory as well as set theoretic
forcing. Forcing has also been used in model theory but it is common in model theory to de�ne gener-
icity directly without mention of forcing.

The Cesàro summability is part of the analysis. It is such that all the properties and the axioms
which the analysis is based on are still valid, but it allows us for example to give full meaning to integrals
that would be meaningless using the classical analysis. Therefore it is worth trying to assimilate the
extension that determines the summability in the analysis, to the technique of forcing. This is an open
problem.

6.2. Note on the theory of integration. In his text on the theory of integration Lebesgue rewinded
the history of the theory and pointed out that it is subject to the evolution of the theory of functions.
At �rst the integral (considered as an area) concerned the continuous functions. Then with the step-
functions, up to the Dirichelet function, the concept of the integral evolved accordingly. However,
in order to integrate the Dirichelet function, one had to resort to the use of countable covers i.e.
the systematic use of the actual in�nity. This poses a problem of principle. In fact, starting from the
Greeks, until that time, mathematicians had refused it. Moreover, once the the problem for Dirichelet?s
function is solved, Peano and Vitali found two curves, both of them being not Lebesgue integrable.
This process can be generalized. The question that one should ask as a physicist is as follows: why
to usually use the integration of Lebesgue?. This is justi�ed only if one uses functions such as that of
Dirichelet.

6.3. Note on the relationship between mathematics and physics. To address this problem
you �rst need to remember that in the foundations of mathematics, the Russell's antinomy, discovered
by Bertrand Russell in 1901, showed that the naive set theory created by Georg Cantor leads to a
contradiction.
The Russell antinomy is:
According to naive set theory, any de�nable collection is a set. Let R be the set of all sets that are not
members of themselves. If R is not a member of itself, then its de�nition dictates that it must contain
itself, and if it contains itself, then it contradicts its own de�nition as the set of all sets that are not
members of themselves. This contradiction is Russell's antinomy. Symbolically:
Let R = x| x 6∈ x , then R ∈ R⇐⇒ R 6∈ R

The �rst incompleteness theorem states that no consistent system of axioms whose theorems can
be listed by an "e�ective procedure" (e.g., a computer program, but it could be any sort of algorithm)
is capable of proving all truths about the relations of the natural numbers (arithmetic). For any
such system, there will always be statements about the natural numbers that are true, but that are
unprovable within the system.

The second incompleteness theorem, an extension of the �rst, shows that such a system cannot
demonstrate its own consistency.
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7. Tarski

Tarski 4 : Truth and Proof

�The quetion now arises whether the notion of truth can
be precisely de�ned, and thus a consistent and adequate usage
of this notion can be established at least for the semantically
restricted languages of scienti�c discourse. Under certain
conditions the answer to this question proves to be a�rmative.
The main conditions imposed on the language are
that its full vocabulary should be available and its syntactical
rules concerning the formation of sentences and other meaningful
expressions from words listed in the vocabulary should
be precisely formulated. Furthermore, the syntactical rules
should be purely formal, that is, they should refer exclusively
to the form (the shape) of expressions; the function and the
meaning of an expression should depend exclusively on its
form. In particular, looking at an expression, one should be
able in each case to decide whether or not the expression is
a sentence. It should never happen that an expression functions
as a sentence at one place while an expression of the
same form does not function so ar some other place, or that
a sentence can be asserted in one context while a sentence of
the same form can be denied in another. (Hence it follows,
in particular, that demonstrative pronouns and adverbs such
as "this" and "here" should not occur in the vocabulary of
the language.)
Languages that satisfy these conditions are referred
to as formalized languages. When discussing a formalized
language there is no need to distinguish between expressions
of the same form which have been written or uttered
in di�erent places; one often speaks of them as if they were
one and me same expression. The reader may have noticed
we sometimes use this way of speaking even when discussing
a natural language, that is, one which is not formalized; we
do so for the sake of simplicity, and only in those cases in
which there seems to be no danger of confusion.
Formalized languages are fully adequate for the presentation
of logical and mathematical theories; I see no essential
reasons why they cannot be adapted for use in other scienti�c
disciplines and in particular to the development of theoretical
parts of empirical sciences. I should like to emphasize
that, when using the term "formalized languages", I do not
refer exclusively to linguistic systems that are formulated entirely
in symbols, and I do not have in mind anything essentially
opposed to natural languages. On the contrary, the
only formalized languages that seem to be of real interest are
those which are fragments of natural languages (fragments
provided with complete vocabularies and precise syntactical
rules) or those which can ar least be adequately translated
into natural languages.

4[[ Scienti�c American, June 1969,63-70,775-77]]
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There are some further conditions on which the realization
of our program depends. We should make a strict distinction
between the language which is the object of our discussion
and for which in particular we intend to construct
the de�nition of truth, and the language in which the de�nition
is to be formulated and its implications are to be
studied. The latter is referred to as the metalanguage and
the former as the object-language. The metalanguage must
be su�ciently rich; in particular, it must include the object-language
as a part. In fact, according to our stipulations, an
adequate de�nition of truth will imply as consequences all
partial de�nitions of this notion, that is, all equivalences of
form (3):
"p" is true if and only if p,
where "p" is to be replaced (on both sides of the equivalence)
by an arbitrary sentence of the object-language. Since
all these consequences are formulated in the metalanguage,
we conclude that every sentence of the object-language must
also be a sentence of the metalanguage. Furthermore, the
metalanguage must contain names for sentences (and other
expressions) of the object-language, since these names occur
on the left sides of the above equivalences. le must also contain
some further terms that are needed for the discussion
of the object-language, in fact terms denoting certain special
sets of expressions, relations between expressions, and operations
on expressions; for instance, we must be able to speak
of the set of all sentences or of the operation of juxtaposition,
by means of which, putting one of two given expressions
immediately after the other, we form a new expression.
Finally, by de�ning truth, we show that semantic terms (expressing
relations between sentences of the object-language
and objects referred to by these sentences) can be introduced
in the metalanguage by means of de�nitions. Hence we conclude
that the metalanguage which provides su�cient means
for de�ning truth must be essentially richer than the object-language;
it cannot coincide with or be translatable into the
latter, since otherwise both languages would turn out to be
semantically universal, and the antinomy of the liar could
be reconstructed in both of them....
We shall return to this question in the last section of this article.
If all the above conditions are satis�ed, the construction of
the desired de�nition of truth presents no essential di�culties.
Technically, however, it is too involved to be explained
here in detail. For any given sentence of the object-language
one can easily formulate the corresponding partial de�nition
of form (3). Since, however, the set of all sentences in the
object-language is as a rule in�nite, whereas every sentence of
the metalanguage is a �nite string of signs, we cannot arrive
at a general de�nition [[69]] simply by forming the logical
conjunction of all partial de�nitions. Nevertheless, what we
eventually obtain is in some intuitive sense equivalent to the
imaginary in�nite conjunction. Very roughly speaking, we
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proceed as follows. First, we consider the simplest sentences,
which do not include any other sentences as parts; for these
simplest sentences we manage to de�ne truth directly (using
the same idea that leads to partial de�nitions). Then, making
use of syntactical rules which concern the formation of
more complicated sentences from simpler ones, we extend
the de�nition to arbitrary compound sentences; we apply
here the method known in mathematics as de�nition by recursion.
(This is merely a rough approximation of the actual
procedure. For some technical reasons the method of recursion
is actually applied to de�ne, not the notion of truth,
bur the related semantic notion of satisfaction. Truth is then
easily de�ned in terms of satisfaction.)
On the basis of the de�nition thus constructed we can develop
the entire theory of truth. In particular, we can derive
from it, in addition to all equivalences of form (3), some
consequences of a general nature, such as the famous laws of
contradiction and of excluded middle. By the �rst of these
laws, no two sentences one of which is the negation of the
other can both be true; by the second law, no two such sentences
can both be false.�

Remember now the sixth Hilbert's problem: Can physics be axiomatized?
We generally think that mathematics is the language of physics. So when we try to axiomatize physics
we axiomatized mathematics that we use to explain physical phenomena. We then generalize the
problem posed above regarding the use Lebesgue's integration. In the case of Lesbegue's integration
we accept implicitly the actual in�nitive. In the other case, in which we attempt to axiomatize phisics,
we ignore the problems arising from the crisis of the foundations of mathematics.

The introduction by Tarski of the concept of metalanguage, as we have seen, begin by the following
assumption: (1 ) �the snow is white� is true if and only if the snow is white.
(1') �the snow is white� is false if and only if the snow is not white.
In general
"p" is true if and only if p
"p" is false if and only if not p
where "p" is to be replaced (on both sides of the equivalence) by an arbitrary sentence of the object-
language.

These statements indicate that there is an objective reality and about it we can make judgements of
truth or falsehood on the basis of observations. In this way, in the experimental sciences we separate
language, with all its semantic problems, from processing experimental data.

Employing the concept of metalanguage we can create the following scheme:
1) the axioms of physics are the laws derived from processing experimental data.
2) mathematics is the metalanguage of physics.

The metalanguage which provides su�cient means for de�ning truth must be essentially richer
than the object-language; it cannot coincide with or be translatable into the latter, since otherwise
both languages would turn out to be semantically universal, and the antinomy of the liar could be
reconstructed in both of them.

7.1. Conjecture. If the statements of section 5, 6 and 7 are all veri�ed there will exist a mathematics
that satis�es the sixth Hilbert's problem.
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