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Abstract 
 
 

In this communication we analyze three possible decay channels of an eventual 
Pauli-principle-violating electron in a copper wire. The electron can reach the lowest 
1s state either through a direct transition from Cu conduction band (K edge), or by 
a 2p (3p) capture, with a subsequent Kα (Kβ) emission. The energy of the produced 
x-ray depends on the path followed by the electron. 
Here we calculate the three different energy values and try to give a plausible 
estimate for the relative transition rates. 
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I. INTRODUCTION. 

 

In our model we suppose that the non-paulian electron capture in Cu atoms occurs as an usual 

1s decay. However, it is suppressed by the β2 factor measuring the probability of Pauli-

forbidden events, and shifted in energy towards the analogous decay of Ni atoms, due to the 

shielding of the extra 1s electron. Such a decay is in general a radiative process, whose cross-

section can be expressed by the matrix element for matter-radiation interaction. 

In the dipole approximation we have: 

 

                         𝜎! =
!!!!
ℏ
  𝐸!"   Ψ! 𝜖 ∙ 𝑟 Ψ!

!𝛿 ℏ𝜔 − 𝐸!"                                             

(1) 

 

where α is the fine structure constant, Eif > 0 is the energy difference between the two levels, 

and  ℏ𝜔 is the photon energy. The energy conservation is expressed through the delta-

function, and Ψ!   and   Ψ!  are the final and initial states, respectively. Quadrupole and 

higher order radial matrix elements are suppressed, in the x-ray region, by a factor 100 and 

more and are henceforth neglected. In our model Ψ!  represents the final-decay state, which 

is always the 1s state, while Ψ!  can represent either a 2p state (Kα emission), a 3p state (Kβ 

emission), or, finally, the Bloch state of the conduction electron, in which case the decay 

originates directly at K-edge. 

Here we try to evaluate the x-ray energy in all three cases. We suppose that the orbitals have 

no time to relax during the transition process (the so-called “sudden approximation”), which 

is justified, as the energy differences involved in all transitions is around ΔE≃8000 eV. Thus, 

such transitions occur in a time of the order of Δt ≃ ℏ/ΔE≃10-19 s, while the typical electron 

dynamics involves a much bigger time-scale, of the order 10-15 s. 

For what transition rates are concerned, a direct calculation is not possible, in the absence of 

any detailed information about the anomalous-electron wave-function. However, a rough 

estimate can be obtained for Kα- and Kβ-emissions in the “normal” electron decay to a 1s hole 

in copper atoms. In this situation the transition rates are usually a factor 10 in favour of the Kα 

-line. More difficult is the direct comparison between Kα -emission and K-edge transition, as 

this latter is a characteristic of the solid state. One might argue that Kα-emission should be 



anyway favoured, because conduction electrons are at the Fermi energy, where the dipolar 

matrix element of Eq. (1) is strongly suppressed and a direct quadrupolar 3d-1s transition 

occurs, whose rate is usually negligible, compared to a Kα -line. For this reason, even though 

in the following we consider all transitions as possible, we take the Kα-emission as the most 

probable channel for the Pauli-violating-electron decay. 

 
 

II. RESULTS. 
 

       A.     Kα -emission. 
 
 

Referring to Fig. 1, we are interested in the energy difference ΔE = E3 ‒ E4. If we consider the 

usual Kα transition, which is given by ΔE’ = E2 ‒ E1  ≅  8042 eV (1), we can write ΔE = ΔE’ ‒ 

k  , where the term k takes into account of the extra correlations. Such a term is necessarily 

positive because we expect a correction towards Ni Kα -line, due to the extra electron 

shielding of the nucleus potential. In order to evaluate k we express E3 in terms of E1 and E4 

in terms of E2 as follows: 

 

                    E3 = E1 + V1s-Z + V2p-Z + V1s-e- + V2p-e- + V1s-1s + V2p-2p + 3V1s-2p                                       

(2) 

 

                  E4 = E2 + V1s-Z + V2p-Z + V1s-e- + V2p-e- + 2V1s-1s + 3V1s-2p                                            

(3) 

 

Here Vnl‒ n’l’ represent the Coulomb interaction between two electrons in the shells nl and n’l’, 

respectively, while Vnl‒Z takes into account of the Coulomb attraction with the Z protons of 

Cu nucleus and Vnl‒e‒ counts the interactions with all electrons other than 1s and 2p, as 

represented in red in Fig. 1. Notice that the two expressions (2) and (3) are not strictly correct, 

because orbitals are not frozen, and even neglecting the extra 1s and 2p electrons, the 

remaining electrons in the configuration E3 are not exactly comparable to those of 

configuration E1, because of the relaxation due to the extra shielding (and similarly for E4 and 

E2). However, as E4 and E3 are subtracted, and as both terms are characterized by this extra 



shielding, we can suppose that the neglected relaxation effects, being of the same order of 

magnitude, cancel out, so that what is left is the correct x-ray energy. Thus, we get: 

 

                                ΔE = ΔE’ ‒ (V1s‒1s ‒ V2p‒2p) ≅ 7665 eV                                                      

(4) 

 

where we used the values V1s‒1s ≅ 483 eV and V2p‒2p ≅ 110 eV for the direct Coulomb 

integrals. These latters, in their Slater F2n form, are taken from the “Atomic Structure 

Calculations” of Ref. [2]. The connection between F2n and Vnl‒ n’l’ can be found, e.g., in Ref. 

[3], and reads: V1s‒1s  = F0 and V2p‒2p = F0 ‒ !
!"

 F2. 

 
 

B.   Kβ -emission. 
 
 

We can follow exactly the same path as in the previous subsection, with the only difference 

that the “normal” energy for Kβ emission is E Kβ   ≅  8905 eV, and that instead of V2p‒2p, one 

has to use V3p‒3p ≅ 20 eV. Thus in this case the corrected energy is: 

 

                                ΔE = ΔE’ ‒ (V1s‒1s ‒ V3p‒3p) ≅ 8442 eV                                                            

(5) 

 
 

C. K-edge decay. 
 

Referring to Fig. 2, we can perform the same calculation as before, with the warning that now 

we are dealing with Cu atoms, instead of Cu1+ ions, when comparing with the “normal” case. 

Due to this and to the fact that the decaying electron comes from an outer valence shell and 

not from a core one, we expect a better result within our scheme of frozen orbitals. 

 



 
 
FIG. 1: Energy levels for Kα -emission. The ensemble of “spectator” electrons (2s2), (2p5), 

(3s2), (3p6), (3d10), (4s1) are called e‒. The subset of E4 and E3 corresponding, respectively, to 

E2 and E1 is also indicated. 

 

Again, we are interested in the energy difference Δ𝐸 ≡   𝐸3 ‒ 𝐸4, while the usual K-edge 

transition is given by Δ𝐸′ ≡   𝐸2 ‒ 𝐸1  ≅  8979 eV. If we write, like before, Δ𝐸 ≡   𝐸′ ‒ 𝑘, 

where the term  𝑘  takes into account of the extra correlations, and suppose again that the state 

of all electrons labelled by e‒ (in red in Fig. 2) is not much affected by the presence of an 

extra 1s electron, we can express 𝐸3  in terms of 𝐸1 and 𝐸4 in terms of 𝐸2 as follows: 

 

                                𝐸3 = 𝐸1 + V1s-Z + V1s-e- + V2p-e- + V1s-1s + V1s-3d                                                                           

(6) 

 

                                   𝐸4 = 𝐸2 + V1s-Z + V1s-e- + V2p-e- + 2 V1s-1s                                                                                       

(7) 

 

Thus, with the same idea of the previous two subsections, we get: 



 

                                  ΔE = ΔE’ ‒ (V1s‒1s ‒ V1s‒3d) ≅ 8534 eV                                                           

(8) 

 
 

FIG. 2: Energy levels for K-edge transition. The ensemble of “spectator” electrons (2s2), 

(2p6), (3s2), (3p6), (4s2), (3d10), (4s2) are called e‒. The subset of E4 and E3 corresponding, 

respectively, to E2 and E1 is also indicated. 

 

Again, we used the values V1s‒1s ≅ 483 eV and V2p‒2p ≅ 38 eV for the direct Coulomb 

integrals, as taken from Ref. (2). The connection with F2n  in the case of V1s‒3d  is taken from 

Ref. (3), without exchange term, as appropriate for a Pauli-principle-violating electron: V1s‒3d  

= F0. 

 
 
 

III. CONCLUSIONS. 
 
 

In this Note we have calculated the energy of an emitted “Pauli-principle-violating” x-ray in 

the three more plausible decay channels. Our results, for the anomalous Kα, Kβ and K-edge, 



are, respectively: ΔEKα = 7665 eV; ΔEKβ = 8442 eV; ΔEK-edge = 8534 eV. The approximations 

introduced here do not allow to get an uncertainty less than some tens of eV, and for this 

reason this calculation should be considered just as a first step. However, we believe that the 

importance of the present approach lies in its handiness, that allows a simple comprehension 

of the related physical ideas, even though to the detritement of the precision. 

In the next future we shall perform a more precise, ab-initio evaluation of the x-ray energies 

by means of a Dirac-Fock numerical code(4), which should improve the uncertainty of a factor 

of about ten (from several tens of eV to several eV). 
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8048 eV and EKα2 ≅ 8028 eV), neglecting spin-orbit splitting, with the usual statistical weight 

2:1=Kα1:Kα2. 

 

(2) Joseph B. Mann, Los Alamos Scientific Laboratory report LA-3690, UC-34 Physics, TID 

4500 

"Hartree-Fock energy results for the elements Hydrogen to Lawrencium". 

 

(3) R.D. Cowan, "The theory of atomic structure and spectra", pag. 165, University of 

California 

Press, 1981. 

 

(4) The adopted code is described in: J.V. Mallow, J.P. Desclaux, A.J. Freeman, Phys. Rev. A 

17, 

1804 (1978). 

 


