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Abstract 
 

A simple design solution of manifolds is suggested to get nearly uniform flow of the gas 
mixture inside the GEM chamber. Analytical expressions concerning the design of the piping 
system are derived and numerically checked by means of the ANSYS-FLOTRAN code v.13 
[1]. A full gas flow CFD simulation of the trapezoidal detector is finally performed on the 
basis of the proposed formulae that should be thoroughly validated only by further 
experimental tests. 
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1 – Introduction. 
 

Uniform and vortex free flow inside GEM chambers is highly recommended to avoid regions 
where contaminants are accumulated or trapped in; in [2] the effect of some grooves in the 
aluminium frame are simulated as well as the benefits of multiple inlets and outlets; the 
present solution is, in some way, an improvement of that design keeping in mind the 
following criticisms: 

 
a) the cross section of the grooves (about 1 mm²) is of the same order of that of the holes through which 

the gas mixture is injected into the chamber; then the pressure losses between two adjacent holes is 
considerably high and the gas flow path will privilege those holes closer to inlets (or outlets) anyway; 
then the resulting flow inside the chamber is far to be uniform; 

b) multiple inlets and outlets (flow parallelization) may weaken the effects of a) but they never 
overcome them; the doubling of all the hydraulic circuits is a little bit difficult not only for the 
available room but, above all, because the pressure of all of them must be well balanced for each 
chamber (otherwise there will be always one favourite inlet or outlet); a flow serialization does not 
have any of these drawbacks; 

c) recirculation regions between any two adjacent holes (in the chamber side) may develop even at very 
low Reynolds numbers.  

 
Nevertheless the small room of the grooves is important for the budget of the available surface of the 

detector; it will be shown that a well dimensioned manifold will take from 10 to 20 mm along the two sides of 
the chamber and the geometric design should be revisited in some way.   

 
2 – A pipe with a lateral slot as a nearly uniform flow source. 
 
The proposed design is very simple (see Fig. 1): a single inlet (or outlet) is made of a manifold (a straight 

pipe of length 𝐿, large equivalent diameter 𝐷!". and low pressure loss ∆𝑝!"#$%&'() and a nozzle (a lateral slot of 
small height 𝐻, width 𝑊 and high pressure loss ∆𝑝!"##$%); that nozzle replaces the row of holes; the manufacturing 
of the manifold is not expensive also (may be an extruded aluminium tube having a Ω shape cross section with 
high precision spacers of height 𝐻); the manifold pressure loss ∆𝑝!"#$%&'( = 𝑝! − 𝑝! is computed between 𝑧 = 0 ( 𝑝!: 
manifold inlet pressure) and 𝑧 = 𝐿 ( 𝑝!: manifold closed end pressure, fluid at rest)  while the nozzle pressure loss 
∆𝑝!"##$% = 𝑝! − 𝑝!  is computed at the closed end of the collector 𝑧 = 𝐿 between 𝑥 = 0 (nozzle entrance) and 𝑥 = 𝑊 
(nozzle escape); the pressure 𝑝! downstream the nozzle is assumed to be constant (i.e. independent on 𝑧). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In terms of impedances the preferred gas flow path will be always that of the manifold (𝑧  direction) rather 

than that of the nozzle (𝑥 direction) if: 
 
 

∆𝑝!"#$%&'(   ≪   ∆𝑝!"##$%   (1) 
 
 
3 – Assumptions. 
 
a) the flow is assumed to be laminar everywhere since the Reynolds numbers range is about 0.01 to 10 

depending on the section and the flow rates; for such low Reynolds numbers the flow is said to be a 
creeping flow [3] (a Stokes flow) and the inertial forces can be neglected; 

b) the kinetic energy is very small too and the difference between the total and the static pressure is 
negligible; 

c) the recirculation regions are smaller and smaller as 𝑅𝑒𝑦 → 0 and the flow uniformity inside the chamber 
is the major design parameter rather than the vortex free field; nevertheless the design should take into 
account higher flow rates for which recirculation regions may develop in the proximity of sharp corners; 

d) the flow is assumed to be incompressible and the body forces can be cancelled because there is no free 
surface and the density gradients are negligible as well as the thermal ones (the energy equation is 
ignored); then the density ρ and the dynamic viscosity µ are assumed to be independent on the 
temperature; 

e) in a steady state flow the continuity equation consists in the null divergence of the velocity vector 
∇ ∙ 𝑣 = 0 and the momentum equation (the Navier-Stokes equation ∇𝑝 = µμ∇!𝑣) is reduced to ∇!𝑝 = 0 ; then 
in a steady incompressible creeping flow the static pressure is harmonic; in two dimensions it is 
possible to introduce a bi-harmonic stream function that leads to a bi-potential flow problem; a similar 

Figure 1 – Manifold layout. 



stream function can be derived also if the inertia terms are included and it is widely used also in the 
problems regarding with the boundary layer suction or injection (briefly referenced later in [3], [4] and 
[6]) as it happens in the proposed design. 

 
 
4 – Transport properties of Ar-CO2-CF4 (45%-15%-40%) mixture. 
 
The Ar-CO2-CF4 (45%-15%-40%) non polar gas mixture is assumed to be an ideal gas (molecular weight 

59.8 kg/kmol) in the range of temperatures of interest; the following table shows the nominal conditions (273.15 
K, 101325 Pa). 

 
density ρ 2.6670 kg/m³ 

kinematic viscosity ν 6.6797e-06 m²/s 
dynamic viscosity μ 17.815e-06 kg/ms 

thermal conductivity λ 14.991e-03 W/mK 
thermal diffusivity α 8.830e-06 m²/s 
Prandtl number Pr 0.756 - 

gas constant R 139.04 J/kgK 
constant pressure specific heat  636.12 J/kg/K 

ratio of specific heats γ 1.280 - 
 
In these thermodynamic conditions the mean free path of that mixture is 41.9 nm and the Knudsen number 

for a GEM foil hole (70 microns diameter) is Kn=0.0006; it follows that the gas flow through the GEM foil holes 
(if any) can be still considered continuous. 

 
5 – Some useful Hagen-Poiseuille expressions. 
 
The Hagen-Poiseuille expressions for circular and square sections (manifold, 𝑧 axis) are given in (2), (3), for 

parallel plates (nozzle and chamber, 𝑥 axis) in (4); 
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In these expressions the subscript m refers to the mean velocity and 𝑓!"#$% is the Darcy friction factor (four 
times the Fanning); 𝐷 is the diameter of the circular section or the side of the square section (the “equivalent 
diameter” 𝐷!".) while H  is the distance between either the walls in the nozzle or the GEM foils in the chamber; 
the constant in (3) is given in (5) while the others are well known. 
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6 – An extremely simplified analytic approach. 
 
The boundary layer suction or injection is one of great relevance subject in fluid dynamics both from theory 

and application points of view; focusing the attention to the laminar boundary layer only, the pioneering work of 
Berman [4] was the starting point of analytical improvements during all these years and many of them are based 
on the above mentioned stream function to solve the momentum equation; in 2001 Karode [5] presented a brief 
but remarkable work showing that the gross balance of the volumetric flow rate in a porous channel agrees very 
well with the Berman solution; in other words a high level of approximation of the laminar boundary layer can 
be obtained without the direct integration of the Navier-Stokes equation by means of the stream function; the 
work of Karode is of great help and allows to build-up very simple and manageable expressions in the present 
design. 

It must be underlined that there are some fundamental differences between the flow in the GEM manifold 
and that in the channel of Karode: 

 
a) the boundary layer suction/injection is concentrated in the region close to the nozzle entrance in the 

former while it is equally distributed over the wetted perimeter in the latter; then the boundary layer 
in the GEM manifold loses the axial symmetry and it is substantially different from the one of 
Karode; 

b) there are additional entrance pressure losses in the nozzle to be taken into account. 
 
As far as a), at first glance, there is no reason to think that the gross balance of the volumetric flow rate does 

not work; there are local differences of the boundary layer in the cross section between the two flow fields and 
the problem is to investigate how the gross balance depends on them; for instance in [6] the suction/injection 
along only one wall of a square pipe in a laminar flow regime is solved on the basis of the Berman stream 
functions in conjunction with an integral continuity equation (see eq. 25 in [6]; it is a gross balance of the 
volumetric flow rate: the variation of the volumetric flow rate along the pipe equates the escaping volumetric 
flow rate through the single porous wall - the same assumption of Karode on the whole wetted perimeter); the 
reference [6] shows the complexity of such a flow: the present problem is even more complicated because the 
suction/injection is located only on a small part of the single wall of a square duct and any analytical solution 
requires a numerical integration anyway.  

As far as b) the flow is an ultra-low Reynolds number flow and the entrance losses should be negligible as 
well as the entrance lengths (order of few hundreds of microns) before the boundary layer is fully developed in 
the nozzle [7]; then the following approach is expected to be fairly good only for very low Reynolds number and 
larger deviations are expected at higher and higher Reynolds number even in a pure laminar regime.  

For both of the above reasons a CFD check is needed to verify that simplified analytical approach. 
 
7 – Basic inequality. 
 
From (2) and (3) the volumetric flow rate 𝑄(𝑧) in the manifold is given in (6) where the constant 𝐵 depends 

on the cross section. 
 

𝑄 𝑧 = − !!

!"
!"
!"
                       𝐵 = 128  /  𝜋  

𝐵 = 28.45
          (𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟)(𝑠𝑞𝑢𝑎𝑟𝑒)   (6) 

Then, as Karode, the derivative (7) of the volumetric flow rate in the manifold equates the flow rate (per unit 
length) escaping the nozzle; the pressure losses are only expressed in terms of the Hagen-Poiseuille frictions as 
previously stated (i.e. no other kind of losses, such as the entrance losses, are taken into account).  
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Assuming that the nozzle downstream pressure 𝑝! is constant (i.e. it does not depend on 𝑧) then the solution 
(9) of the second order linear differential equation (8) is easily obtained. 
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𝑝 𝑧 = 𝑝! − 𝑝! 𝑐𝑜𝑠ℎ 𝛽𝑧 − 𝑡𝑎𝑛ℎ 𝛽𝐿 𝑠𝑖𝑛ℎ 𝛽𝑧 + 𝑝!  (9) 

The solution (9) satisfies the boundary conditions (10) where 𝑝! is the manifold inlet pressure and 𝑄! is the 
total volumetric flow rate entering or leaving the manifold (11). 
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And finally the manifold closed end pressure 𝑝! is given in (12).  
 

𝑝! = 𝑝(𝑧) !!! =
!!!!!
!"#! !"

+ 𝑝!  (12) 

It must be underlined that the nozzle mean escaping speed 𝑢!(𝑧) has the same behavior of the manifold 
pressure 𝑝(𝑧), i.e. it is not constant even if the nozzle downstream pressure 𝑝! is (CFD simulations show the 
correctness of that assumption if the flow has the same direction in both manifolds, i.e. inlet on left top and 
outlet on right bottom in a top view); by doing so the pressure profile of the outlet manifold 𝑝(𝑧) !"# is specular to 
the pressure profile of the inlet manifold 𝑝(𝑧) !" and the pressure drop through the chamber is nearly constant for 
each streamline being  𝑝! !"# and 𝑝! !" independent on 𝑧; the particles of the top streamline will accelerate from 
left to right while those of bottom one will decelerate; in other words the aim of both the manifolds is to lower as 
possible the component 𝜔! = 𝜕𝑤 𝜕𝑥 − 𝜕𝑢 𝜕𝑧 of the vorticity 𝜔 = ∇×𝑣 in the inlet and outlet section of the chamber 
(see Fig. 2); by doing so each of the streamlines is in some way “forced” to be straight (an ideal manifold should 
have at the nozzle exit 𝑤!(𝑧) = 0, 𝑢!(𝑧) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝑝! = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 so 𝜔! ≅ 0 but only a rather expensive 
aerodynamic shaping of the cross section of the manifolds can fulfill all these requirements). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Then the inequality (1) becomes 𝛽𝐿 ≪ 𝑙𝑛 2 + 3  that is: 
 

𝐻! ≪ 𝐻!"#! = !" !" !! !
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!
!!!
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For instance for a manifold of length 𝐿 = 500  𝑚𝑚 , square side 𝐷 = 10  𝑚𝑚 and nozzle length 𝑊 = 5  𝑚𝑚 then a 
height of the nozzle 𝐻 lower than 𝐻!"# ≅ 0.53  𝑚𝑚 should give straight streamlines in the chamber. 

The aim of following CFD simulations is to check the inequality (13) other than some of the previous 
equations as well as the nozzle entrance losses; it must be underlined that the inequality (13) involves only 
geometrical quantities, i.e. it does not depend on the flow as long as it is creeping, as above mentioned (it is valid 
only for very low Reynolds numbers); furthermore in (13) the diameter 𝐷  plays the dominant role (fourth power). 

 
8 – CFD tests on a single manifold. 
 
A small manifold (𝐿 = 100  𝑚𝑚, 𝐷 = 7  𝑚𝑚, 𝑊 = 5  𝑚𝑚, 𝐻!"# ≅ 0.96  𝑚𝑚) has been tested in four configurations 

corresponding to two manifold Reynolds numbers (respectively 6 - creeping flow - and 100 - laminar but no 
more creeping) and to two 𝐻 𝐻!"# ratios (respectively 1 and 2); the volumetric flow rate was numerically 
computed at the manifold inlet and at the nozzle exit; the two values agree very well with (11) for 𝐻 𝐻!"# = 1 

Figure 2 – The nozzle exit vorticity as the main design parameter for uniform gas flow.  
 



while there is a deviation for 𝐻 𝐻!"# = 2  more evident at high Reynolds; all the streamlines deviate from 
straight directions at the nozzle exit as the ratio 𝐻 𝐻!"# and/or the Reynolds number increase (see Fig. 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Also the numerical pressure profile 𝑝 𝑧   of the manifold agrees very well with (9) for low Reynolds while 

some deviations are present at higher Reynolds (see Fig. 4); the entrance pressure losses seems to be small too 
only for low Reynolds; the bumps at the manifold inlet at high Reynolds are due to a vortex because of the inlet 
sharp edge (rounded profile recommended there).   

 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Manifold particle traces. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 

 
 
 
Furthermore the nozzle exit speed profiles agree very well with 𝑢!(𝑧) in (7) for low Reynolds numbers (see 

Fig. 5); it must be pointed out that the derivatives 𝜕𝑢!(𝑧) 𝜕𝑧 for 𝐻 𝐻!"# = 1 are much smaller than those for 
𝐻 𝐻!"# = 2  meaning that when the inequalities (1) and (13) are approached then a strong reduction of the 
vorticity is really achieved; for higher Reynolds there are the usual deviations. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Pressure profiles. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

 
 
9 – CFD test on a large square chamber. 
A large rectangular chamber (𝐿 = 530  𝑚𝑚, 𝐷 = 7  𝑚𝑚, 𝑊 = 5  𝑚𝑚, 𝐻!"# ≅ 0.32  𝑚𝑚) of 1040 mm length was 

tested in the condition 𝐻 𝐻!"# = 1 (see Fig. 6); the volumetric flow rate is 0.25 l/h (about ¼ of that reported in 
[2] assuming three GEM foils equally 2 mm spaced); the streamlines are almost straight. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Speed profiles. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
In Fig. 6 the sections A and E correspond to the manifolds centerlines, B and D to the nozzles ends 

(respectively the exit of the inlet nozzle and the entrance of the outlet nozzle), B’ is a section just downstream 
the B section where the 2mm high chamber begins and D’ is just upstream the D section where the 2mm high 
chamber ends; C is the section of the mid of the chamber. 

The analysis shows that the pressure profiles in the sections B, C and D are constant, are previously assumed 
for the pressure 𝑝!; in the section A and E they follows the pressure profile 𝑝 𝑧  of (9) (see Fig. 7).    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 6 – CFD test on a rectangular chamber. 

Figure 7 – Pressure profiles in the test chamber. 



 
 
 
The 𝑢! 𝑧  speed profiles follow the pressure profiles in the sections B and D; in the chamber that speed is 

almost constant and approach the value of 0.1 mm/s given in [2] – sections B’, C and D’ (see Fig. 8).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
10 – Conclusions. 
 
That design seems to be fully confirmed by the previous analytical and computational analysis; experimental 

test on simple chambers should be carried out to check it; further CFD analysis should be extensively performed 
to improve geometry and other details. 
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