

ISTITUTO NAZIONALE DI FISICA NUCLEARE

 Sezione di Torino

 INFN-12-20/TO
 30th november 2012

SSH AUTHENTICATION USING GRID CREDENTIALS

Dario Berzano1

1)INFN - Sezione di Torino, Via P. Giuria 1, I-10125 Torino, Italy

Abstract

SSH is one of the most widely used tools in Unix. Apart from opening remote shells, its most
intriguing feature is the capability to tunnel TCP connections, providing for both a secure
channel and an authentication mechanism for generic services lacking them. We will show
how to setup a very simple infrastructure that temporarily authorizes users presenting valid
X.509 credentials, and in particular Grid users, to use SSH by performing the authentication
through HTTPS beforehand. We will also compare this method with tools that provide similar
functionalities, such as GSI-Enabled OpenSSH. Finally, a brief description of PROOF on
Demand for the LHC ALICE experiment is presented as a use case.

CCR-42/2011/P

Published by SIDS–Pubblicazioni
Laboratori Nazionali di Frascati

2

1 SSH FOR GRID SERVICES
SSH (Secure Shell)1) is the ubiquitous Unix tool used to establish encrypted connections

to remote hosts. Although it is generally known as a secure replacement for Telnet2), a SSH
TCP connection is a generic encrypted tunnel that multiplexes several data channels in
parallel, which may carry either a shell or a forwarded network connection like a TCP
connection3). Thanks to such capabilities there exist services that do not even implement
security mechanisms for remote data transmission, as they fully rely on the encryption and
authentication infrastructure provided by SSH itself.

Grid users have credentials they use to access Grid services: a personal X.509
certificate, issued by a trusted Certification Authority, and a pair of keys, a public one and the
private counterpart. The X.509 certificate is sent over the network during the authentication
and has the public key stored within.

Grid services normally accept “proxy” certificates (temporary certificates with a limited
validity created using the user’s certificate as issuer) while many Web-based Grid services
(for instance the MonALISA4) web interface of the LHC ALICE Experiment5)) directly
understand the user’s certificate: for this reason, the credentials are often installed in user’s
browser too.

There exists one more class of services that require either the capability to open a
remote shell, or the encapsulation of data through an authenticated and encrypted connection
– most notably, tools used to leverage interactive parallel computing like PROOF on
Demand6).

Using SSH by maintaining the usual Grid credentials would be extremely convenient.
There actually exists a patched SSH version, called GSI-OpenSSH7), which features Grid
proxy authentication, that requires a custom sshd to be compiled on the server and one custom
ssh client compiled for each user’s machine.

We took however the decision to comply with the mainstream distribution of SSH
because security updates for such a critical system component are deployed more quickly and
they are easier to apply: moreover, we don’t want to force our users to install and maintain a
custom client.

The authentication schema we are going to illustrate in the next paragraphs has been
achieved by complying with the constraints of zero additional requirements for the end user
and full compatibility with the existing SSH and user’s Grid credentials.

1.1 SSH public key authentication
SSH supports a wide variety of authentication methods. We are particularly interested in

the public key authentication8) mechanism.

3

Public key authentication works as follows. A pair of keys (a private key and the
matching public key) is generated on the client: the private key is known by the client only,
while the public key must be known and authorized by the server.

As soon as the client tries to connect as a certain user, it proves to the server that it has
access to the private key, while the server checks if the corresponding public key is in the list
of authorized keys for the specified user name.

1.2 Grid credentials and the SSH private key
The Grid private key is an RSA9) key generally stored under the user’s home directory

in PEM10) format. Incidentally, ssh accepts private keys in this exact format when it tries to
authenticate using the public key authentication method. This means that a Grid user could in
principle use directly this key file to connect to a remote host by issuing a command similar
to:

ssh -i ~/.globus/userkey.pem user@host

without requiring to create a Grid proxy certificate. We only have the problem to tell the

server to authorize the corresponding public key, given that the associated user certificate is
valid. The solution we propose is to perform authentication outside of SSH and beforehand,
using another standard protocol supporting X.509 certificates natively such as HTTPS.

FIG. 1: The web page presented to the user by the PHP web application when
authentication succeeds.

4

1.3 Certificate authentication via HTTPS
The HTTPS protocol is a way to perform HTTP communications encapsulated into a

SSL/TLS tunnel11), and it is practically used to establish an encrypted connection between a
web server and a browser.

Our HTTPS-for-SSH authentication works in two steps.
In the first step, the browser tries to authenticate using the user’s certificate, and the web

server checks its validity: authentication does not succeed if the certificate has been issued by
an unknown CA (certification authority), if the certificate is included in a CRL (certificate
revocation list) or if the certificate has expired.

If authentication succeeds, the web server sends the user’s certificate to a web
application written in PHP12) which will take all the necessary steps to extract the public key
shipped with the certificate and authorize it for a certain user name.

2 SSH X.509 AUTHENTICATION DETAILS
The workflow of this authentication procedure from the user’s perspective is rather

straightforward.

• The user points the browser to https://hostname/auth. Assuming the browser already

knows user’s Grid certificate, it uses it to authenticate to that web page. In case of
success a web page like the one in Fig. 1 is shown to illustrate the procedure to do
ssh and the expiration date of the authorization.

Certificate and key for this host
SSLCertificateFile /etc/grid-security/hostcert.pem
SSLCertificateKeyFile /etc/grid-security/hostkey.pem

Certificates of the authorized CAs (from AliEn)
SSLCACertificatePath /etc/grid-security/cadir

Maximum certificate depth
SSLVerifyDepth 10

<Directory /var/www/html/auth>

 # Require SSL auth
 SSLVerifyClient require

 # Set envvars for CGI scripts to some small data
 # plus the whole encoded certificate
 SSLOptions +StdEnvVars +ExportCertData

</Directory>

FIG. 2: Relevant portions of the Apache 2 configuration
for the authentication web application.

5

• The user does ssh on the target machine: the private key must be accessible by ssh
on the filesystem.

• When the authorization expires it will be sufficient to go back to the authentication
web page to renew it.

2.1 Web server configuration
Any SSL-enabled web server capable of performing certificate authentication may be

used for our purposes. The following guidelines focus on Apache 2 mod_ssl13).
First of all we have to tell the web server which certificates should be recognized as

valid: the SSLCACertitificatePath directive can be used to point to a path of Grid CAs, for
instance.

Apache 2 can pass information to an underlying CGI web application (such as our PHP
script) by means of environment variables: by default no variables containing SSL
information are set. By setting the option SSLOptions as shown in Fig. 2 we are exporting
these variables (+StdEnvVar) and the full client certificate in PEM format
(+ExportCertData): this last option is particularly important because the public key will be
extracted from it.

2.2 sshd configuration
By default, sshd looks for the authorized keys in a file stored under each user’s home

directory. Since we do not want users to tamper those keys, even accidentally, we set the
AuthorizedKeysFile directive in sshd configuration file to a directory owned by root
containing one file for each user like this:

AuthorizedKeysFile /etc/ssh/authorized_keys/%u

// Default SSH port
$sshPort = 22;

// Authorized keys directory
$sshKeyDir = '/etc/ssh/authorized_keys';

// Maximum token validity, in seconds
$maxValiditySecs = 3600;

// Plugin to retrieve user name from subject
$pluginUser = 'alice_ldap';

FIG. 3: Example configuration file (conf.php) for the PHP
web application.

6

where %u is substituted with the user name. For security reasons the SSH server
automatically ignores key files stored in a system directory that are not owned by root.

Each key file may contain more than one key for each Unix user: this is useful when
mapping users to a set of pool accounts.

2.3 Web application configuration and Unix user name
The PHP web application, available on GitHub14) must be installed under a directory of

the web server served by SSL. Any directory can be used.
There is only one configuration file (see Fig. 3) with a few configuration options: the

authorized keys directory $sshKeyDir must match sshd’s AuthorizedKeysFile directive
(without the final %u).

Since the method to retrieve the user name from the user’s certificate is not unique, a
plugin method has been adopted. The plugin consists of an external PHP script to be saved in
the plugins/user directory: the desired plugin can be chosen by setting the variable
$pluginUser to its file name without the .php extension.

The file should contain the implementation of a function with the following prototype:

function authGetUser($certSubject, &$userName, &$validitySecs, &$errMsg);

This function (which is expected to return true on success and false if authentication

shall not continue) takes as arguments:

• $certSubject – the certificate’s subject;
• &$userName – a variable where the Unix user name will be returned – root is not

considered safe and will be discarded by the caller;
• &$validitySecs – a variable where the validity, expressed in seconds, shall be stored

– unlimited validity is not allowed;
• &$errMsg – an array where to append error strings.

This function (which returns true on success and false if authentication shall not

continue) takes as arguments:

2.4 Public key format conversion and expiration
The public key included in the X.509 certificate needs first to be extracted, then to be

converted into the SSH public key format.
For this task we use phpseclib15), a complete and popular implementation of SSH, SFTP

and RSA written natively in PHP.

7

SSH public key format stores keys in one long ASCII line, and allows for a free field
called the “comment” field. We set this field to a special string containing a human-readable
expiration date, for instance:

Valid until: Jan 06 2012 06:55:52 +0100

This field will be used by an external program to identify and prune expired keys.

2.5 Storing and pruning keys
Superuser permissions are needed to access the directory of public keys, however the

web server does not run as root. A program external to the PHP script has been written to
manage the authorized keys: our security policy is to allow the user that runs the web server to
invoke this program (and this program only) as root without requiring a password by means
of sudo, resulting in the following sudoers configuration entry:

webserver-user ALL=(ALL) NOPASSWD: /path/to/www/auth/keyskeeper.sh add

The script works in two modes: an “add” mode that adds, or replaces, an existing key

for a given user to the authorized keys, and an “expiry” mode that scans all the keys in all
files and removes the expired ones. If no more valid keys are left in a file, the file is deleted.

The first mode is invoked with sudo by the PHP application to authorize a key. The
second mode should be configured in crontab to be run periodically by the root user, like this:

*/10 * * * * /path/to/www/auth/keyskeeper.sh expiry

where we have chosen to scan all the keys every ten minutes.
The script features a wait-lock mechanism in order to prevent potential disaster due to

concurrent access to the authorized keys repository.

2.6 The client
Although a client is not needed by design, a small and portable Ruby application has

been written in order to automatize the authentication procedure. It is a command-line
application that contacts the HTTPS authentication server in background, and immediately
invokes ssh on success.

The application caches the authentication token received and reuses it on subsequent
calls, avoiding further calls to the authentication server until the token expires.

When the application contacts the server, it asks for a XML output, instead of the
standard human-readable HTML web page.

8

The user invokes the client by specifying the remote server, plus some optional
parameters:

httpssh authserver [--cadir dir] [--cert usercert.pem] [--key userkey.pem] [ssh options]

The contacted URL is guessed to be https://authserver/auth, or it can be directly

specified in place of authserver.
Optional parameters are:

• --cadir dir – directory of the valid CAs to identify authserver’s certificate;
• --cert usercert.pem – the file containing user’s certificate in PEM format;
• --key userkey.pem – the file containing user’s private key in PEM format.

Further parameters are passed as-is to ssh.

3 USE CASE: PROOF ON DEMAND AND ALICE
PROOF on Demand6) is a tool that simplifies the setup of a dynamic PROOF16) cluster,

an interactive parallel computing framework based on ROOT17) very popular in the HEP
community and in particular in the LHC ALICE experiment18).

In a static PROOF setup, conventional Grid proxy authentication is performed by a
single PROOF daemon that serves many users. On the contrary, in a dynamic PROOF cluster,
each user requests PoD to start a personal PROOF daemon: for this reason authentication is
constrained to occur beforehand, and this Grid authentication mechanism for SSH becomes
convenient. A dynamic setup of PROOF on Demand over a cloud-computing environment
which features the Grid SSH authentication mechanism described in this paper has been set
up in the Tier-2 computing centre in Torino19).

Another reason is that every PROOF server requires its own port, while tunneling every
connection into SSH like PoD does requires only ports 22/TCP (for SSH) and 443/TCP (for
HTTPS) to be opened.

3.1 LDAP for Unix users in ALICE
In the context of the ALICE experiment, we have decided to use no pool accounts for

PoD: every ALICE user has an Unix-like user name maintained in a LDAP database.
In order to allow ALICE users to connect via SSH to the target machine, a PHP plugin

that maps the user’s subject to the proper Unix user name using the ALICE LDAP database
has been written: the plugin is distributed along the rest of the code via GitHub14).

On the SSH target machine, ALICE users are not added manually; instead, system’s
name service switch has been configured to read users information both in /etc/passwd and on

9

the ALICE LDAP. Moreover, the PAM20) mkhomedir plugin has been enabled in order to
have the home directory created upon the first login.

4 REFERENCES
(
(
(
(

(
(

(
(
(
(
(
(
(
(
(
(

(

(
(

(

1) Ylonen T. and C. Lonvick Ed. RFC 4251 (2006)
2) Postel J. and Reynolds J.K. RFC 854 (1983)
3) Ylonen T. and C. Lonvick Ed. RFC 4254 (2006)
4) Legrand I., Voicu R., Cirstoiu C., Grigoras C., Betev L. and Costan A. Comm. of the

ACM 52 (9) 49
5) http://alimonitor.cern.ch/
6) Malzacher P. and Manafov A., J. Phys.: Conf. Ser. 219 072009 (2010) (see also

http://pod.gsi.de/)
7) http://grid.ncsa.illinois.edu/ssh/
8) Ylonen T. and C. Lonvick Ed. RFC 4252 (2006)
9) Rivest R.L., Shamir A., Adleman L.M. U.S. Patent 4405829 (1983)
10) Linn J. RFC 1421 (1993)
11) Rescorla E. RFC 2818 (2000)
12) http://www.php.net/
13) http://httpd.apache.org/docs/2.0/mod/mod_ssl.html
14) https://github.com/dberzano/sshcertauth/
15) http://phpseclib.sourceforge.net/
16) Ballintijn M., Brun R., Rademakers F. and Roland G. Arxiv preprint physics/0306110

(2003) (see also http://root.cern.ch/drupal/content/proof)
17) Brun R. and Rademakers F. Nucl. Instr. and Meth. in Phys. Res. A 389 81 (1997) (see

also http://root.cern.ch/)
18) http://aaf.cern.ch/
19) Berzano D., Bagnasco S., Brunetti R., Lusso S. in proceedings of XIV Advanced

Computing And Analysis Techniques – Uxbridge, UK (in press) (2011)
20) Samar V. and Schemers R. Open Group RFC 86.0 (1995)

