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1 Introduction

As known, a charged particle emits electromagnetic radiation at its acceleration indepen-
dently on the origin of this acceleration [1]. This phenomenon well studied both theoreti-
cally and experimentally, moreover, for more then 50 years it has been used within various
branches of the science, from the basic research (acceleration physics, particle physics,
etc.) to many applications as a source of radiation (synchrotron and undulator radiations,
free electron lasers, applications in material sciences, chemistry, biology, medicine, etc.).

However, a charged particle can emit electromagnetic radiation even without its
acceleration, in presence of various media, for instance. The pioneering works on this
radiation brings us to the discovery by P. Cherenkov and S. Vavilov, presently known
as Cherenkov (or Cherenkov-Vavilov) radiation, the origin of which was first suggested
within the phenomenology developed by their colleagues I. Tamm and I. Frank [2]. This
radiation is emitted when a charged particle crosses the media with the velocity exceeding
the speed of light in media. Later on, developing the proposed theory for charged particles
propagation in solids, I. Tamm and V. Ginzburg predicted another kind of electromagnetic
radiation that was called transition radiation [2,3]. The latter is emitted when the parti-
cle crosses the media interfaces characterized by different dielectric constants, thereby,
creating polarization currents that, in turn, explains the origin of radiation. Obviously, in
this case, to suppose that power (intensity) independently, the possibility of electromag-
netic radiation emission at propagation of charged particle bunches near the solid ends
that can be also characterized by induced polarization in media. And one of these types
of radiation is known as diffraction radiation (DR), and can be registered at propagation
of a charged projectile of constant velocity near the sharp solid end [4]. Special inter-
est represent so-called optical diffraction radiation interference (ODRI), the features of
which was previously discussed in [9]. Indeed the sensitivity of this technique based on
the interference is higher.

As seen, DR, by its nature, is a kind of transition radiation but with some essential
features. Of course, and it is the name, this phenomenon appears when a charged particle
moves near optical heterogeneity, hence, it requests taking into account the diffraction
effects on the media end. The theory of diffraction radiation was in details considered
by many authors (see, for instance [5] and Refs. in), and presently, we can apply it for
various schemes either to predict or to analyze the results of both planned and performed
experiments.

In this work we present the results of theoretical analysis for various possible schemes
to be experimentally realized. The studies were done to reveal fine features of DR in both
near and far zones of radiation for one-slit as well as two-slit systems. The latter induced
us to use the wave approximation at the radiation distribution, spatial and angular, and
radiation intensity simulations.

Below we use a simple definition as DR



2 Basics of DR on a planar slit

Below, following the description presented in [5], we briefly introduce to the basics of
diffraction radiation by relativistic electrons on a planar slit.

Figure 1: Geometry of DR on a
half-plane (reproduced from [1]).

As known DR is observed when charged particle moves near the solid media end.
Let consider the case of a perfectly conductive media, i.e. an infinite thin screen, the
geometry of which is shown in Fig. 1. Following the method described in [4,5] we can
define the components of current and charge density induced by passing particle in such
geometry by the following expressions (here h = ¢ = 1)
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correspond to the particle field, the relativistic angular parameter and attenuation param-
eter respectively. The z-component of current j, we can reduce from the continuity equa-
tion nj = p, where k = nw, f3 is the velocity, 7 is the Lorentz factor, h is the impact
parameter and e is the charge of electron. The Fourier components of the field we can



be reduced directly from the Maxwell’s equations [4,5]. For simplicity, the coordinate
system associated with the wave vector k is selected:
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The coordinate system is connected to the basic through the appropriate angles. In this
coordinate system one of the components of the field is always equal to zero, and the
component along e; could be neglected due to the reason described below. Then the
component Fs for the velocity of a particle perpendicular to the screen can be presented
as

By /w(siny —i%2)
E, = —w ‘ : \/ . exp () X
A2 jwy/wsin (1 + cos )

sin ) +i%
—sinwcosgojLi%O

sing (2)

Below we can use these relations substituting the variables by ©, = 7/2 — ¢ and ©, =
7/2 — o that, as seen from the draw of Fig. 1, allows us to pass our considerations to the
angles of radiation with respect to the particle velocity direction (see Fig. 2). As known,
the radiation of relativistic particles is mostly concentrated within the cone ~ v~! (where
v is the Lorentz-factor). Taking this fact into account, after some transformations and
neglecting terms of the order of ~ ~~2, the previous expression can be rewritten for DR
from one half-plane in more simple form

o ° exp [—2 /772 + ©2]
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where h i< the imnact narameter and ) is the wavelength of observed radiation.
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Figure 2: Schematic view of a slit and
the emission angle of DR with respect
to the projectile velocity.

It is important to underline that we consider the case of relativistic particles



Using the slit instead of a screen we have to take into account the interference of
DR from two half screens (planes), which together act as a unique slit. Thus, total field
from the slit can be defined in the form

Eqit = Eyexp (ipy) + Erexp (—igy) 4)
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in which the coefficients "u” and ”’[” correspond, respectively, to the upper and lower half-
planes. The expression for radiation from upper half-plane we can get from the expression
for lower half-plane by the complex conjugation combined with simultaneous substitution
h; — h,. Within the approximation of small angles in relativistic case it is possible to

define that ok ok
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Then, using Eqgs. (3) and (5) the total field of DR from a slit in the forward direction
can be written as follows
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3 Dependence of DR on projectile-slit position

For many problems in high energy physics, especially at accelerators when the beams of
particles move inside various cavities such as the beam-pipes, solenoids, magnets, etc.,
it is important to know the position of a particle in a space inside these guides. These
features can be evaluated studying DR dependence on the position between the beam and
the slit. Let us analyze the DR intensity versus the angle of emission at various positions
of a particle with respect to the center of a slit. Fist of all, below we simplify the task in
order to determine some parameters.

Assuming that both radiation wave vector and vector of electron velocity are situ-
ated in one plane, we get ©, = 0. Moreover, the component F; linearly depends on O,
hence we can take £; = 0. And that is the reason why we could omit this component
from our consideration. That, in experiment can be realized by means of the polarizer.
Thus, in this approximation Eq.(6) is reduced to
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To perform concrete analysis of DR angular distribution we have used the param-
eters of the DESY test facility, i.e. the bunch and radiation parameters are, respectively,
~v = 1840, A = 800 nm, and the width of a slit is 1 mm. The simulations were performed
for various electron positions in the space between two half-planes.

In Fig. 3 we have presented the angular evolution of DR in dependence on the
position of a projectile with respect to both half-planes of a slit. The distance of a particle
to the plane has been marked above each plot, the first value is the distance to the upper
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Figure 3: DR angular dependence in dependence on the position of a projectile with
respect to both half-planes of a slit. The distance between the particle and plane has been
marked above each plot, where the first value is the distance to the upper edge, while the
second number - to the lower edge.
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edge, while the second number - to lower edge. As we can see the distance between the
spikes varies at the change of electron position. This dependence is shown in Fig. 4.

It should be noted that such dependence leaves one uncertainty. We obtain the
equal angles between the spikes for two symmetric positions relative to the center of a
slit. However, this problem can be resolved if to move the slit detecting simultaneously
the change of the angular distance between the spikes. For example, if up-moving the slit
we observe the decrease of the angular distance between the spikes, then the projectile
is positioned in the upper part of a slit, and vice versa. Obviously, the sensitivity of this
method is much higher near one of the edges.

4 Additional parameters

In previous section we have considered the point like beam (which corresponds to single
projectile) to simplify our task. However, in reality the task is more complex. In order
to be closer to the reality we have to take into account a few more parameters. In next
sections we consider the size of a beam, its divergence, and, moreover, for the case of two
slit system the slits uncoplanarity will be introduced.

4.1 Beam size

Let us start our analysis from the size of a beam. Typically, the beam profile is character-
ized by the Gaussian distribution in perpendicular cross-section. If y is the distance from
the arbitrary point of a beam to the center of a slit, we can determine the beam spatial dis-
tribution as a function G(yy). Successfully,total radiation from the beam can be presented
as

b
]f:/ | E>(yo) G (o) dyo, (8)

where a and b is the limits describing the beam size.

For the Gaussian profile of a beam we can define a new parameter, a spatial disper-
sion, which determines the integration limits @ and b. Indeed these parameters are equal
to the dispersion o [6,7]. Performing some calculations we can reduce the size of a beam
with respect to the spikes position in DR angular distribution. For our calculations the
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Figure 5: Influence of the beam size on the DR distribution. On top of plots the first two
values show the distances from both upper and lower half planes, and for the each plot is
shown corresponding beam size.



DESY parameters were used. In particular, the beam size was about 80 pym. In Fig.5 on
top of plots the first two values, as in previous case, show the distances from both upper
and lower half planes, and for the each plot is shown corresponding beam size. As seen
from the plots in Fig. 5 the beam size influences on the distribution of DR but without any
spikes’ shift.

4.2 Beam divergence

Now, knowing that the beam size has no influence on the position of spikes, we can intro-
duce the divergence of a beam in our calculations. According to [6,7] in order to calculate
the distribution of DR from a divergent beam we have to take the convolution of the inten-
sity function with the function of angular distribution taken in Gaussian approximation.
Then, we obtain

d
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where c and d are the limits describing the effective divergence of a beam, and Ay is the
deviation angle with respect to the normal of a screen. In Fig. 6 (right column) you can
see the influence of beam divergence on the DR distribution. First two values show the
distance from beam line to upper and lower half-plane respectively, third value show the
beam size, and each curve corresponds to the average beam divergence (in our case the
FWHM, i.e. the full width at half maximum). The left column shows the distributions for
different beam sizes but with the same divergence angle. As we can see the influence of
angular divergence is much stronger than that of the beam size. However, this depends on
the parameters used.

As seen from this chapter, the divergence as well as the size of a beam have no
influence on the position of spikes in the DR angular distribution. Unfortunately, these
parameters might lead to disappearing all spikes on the graphs, if they are comparable
with the slits’ values. This feature is very sharp in Fig. 6, the right column.
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Figure 6: The divergence dependence for the DR angular distribution. In right column
first two values show the distance from beam line to upper and lower half-plane respec-
tively, third value show the beam size, and each curve corresponds to the average beam
divergence. In left column third value show the beam divergence, and each curve corre-
sponds to the average beam size.



5 System of two slits

In order to have more sensitive system based on DR technique let us introduce a second

slit (Fig.7).

A | FOR

Figure 7: Two slit system, top
view. Width of the first slit is
equal to 1 mm, the second - 2
mm.

For two slit configuration one of the most important parameter is the shift between
the upper and lower half-planes, because even small shift between half-planes can lead
to dramatic changes in DR distribution, as shown in [7]. Moreover, the shift between the
centers of slits should be taken into account. First of all, let us define the angular de-
pendence between two spikes versus position of a bunch. For simplicity, we have chosen
the slits to be collinear. To calculate DR from the system of two slits we have used the
approximation as described in [9]
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Figure 8: Dependence of DR on po-
sition of a bunch relative to the cen-
ter of a slit.

In Fig. 8 we have represented several distributions corresponding to different loca-
tions of the beam. As we can see, for a two-slit configuration, the distance between spikes



does not vary at the change of electron position that makes the system of two slits not
applicable for determination of electron bunch position.

6 Near-field calculations

In previous sections for all calculations a far-field approximation was used. However, in
experiment with two-slit setup the second slit is situated in 2 cm from the first one. Hence,
in order to know the changes in final DR distribution due to the presence of a second slit
we need to know DR distribution from the first slit at the position of second one. These
calculations have to be done within the near-field approximation, which we have used as
for transition radiation (TR) [10]:
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where

Figure 9: Sketch for near-field
calculation.

Here K is the McDonald function, a and c are the sizes of a plate, hg, and ho, are
the initial shifts with respect to the center of a plate, and d is the distance between the TR
source and the plane of radiation detection (Fig.9). In order to calculate DR, we have to
exclude from the integral expression for TR the part corresponding to the slit. Indeed, it
means that we can consider DR as TR from two half-planes without the coefficient before



the integral (11)
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where wy; is the width of a slit.
Now let us analyze and successfully compare the results of calculations for both far-
and near-field approximations.
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Figure 10: Far- and near-field approximations for DR.



In Fig. 10 a) and b) we have presented the angular distributions for both far- and
near-field calculations when electron passes through the center of a slit with the width
of 1 mm. As seen, the distributions are characterized by visible differences, while the
positions of maxima remains unchanged. We deal with the opposite situation when the
bunch is shifted with respect to the center of a slit. Namely, the DR angular distributions
simulated for far-field approximation are different from those for near-field one. This
situation is shown in Fig. 10 c¢) and d) (here, the impact parameter for upper half plane is
0.7 mm, and for lower half plane - 0.3 mm). This feature becomes easy to understand if
we consider DR from one half-plane.
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Figure 11: DR from half-planes of one slit in far- and near-field approximations.

In Fig. 11 for both pictures the blues line represent the distributions from the upper
half-plane, the red line - from lower half-plane, and the dashed line - the sum of these
distributions. From the distributions the intensity maxima in far-field approximation are
revealed in forward direction (at zero angle), while for near-field distributions the maxima
are shifted from “zero” in opposite directions to each other.

In Fig. 12 we can see that the position of maximum for DR angular distribution,
simulated in near-field limit, tends to zero at moving the detection plane far away from
the slit that corresponds to the far-field approximation at long distances. As seen, the DR
intensity at such long distances are extremely low that is, obviously, expected result (it is
shown by normalized black curve). Moreover, from these calculations we can conclude
that the pronounced maximum of DR in near-field case becomes less sharp by its intensity
for a distant observation plane.
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It should be underlined that in experiments the angular distributions are measured by
mean of a lens that allows direct (distance independent) angular scan for DR distributions.
This feature is taken into account for further simulations.

Let us apply near-field calculations to two-slit system. Typically, we measure the inter-
ference between forward DR (FDR) from the first slit and backward DR (BDR) from the
second slit (Fig.7). At reflection of FDR from the second slit some portion of radiation
passes through the hole; evidently, this portion does not contribute to BDR. In order to
calculate this part we have to use the near-field calculations. Spatial distribution of FDR
at the distance of 2 cm for 1 mm slit can be simulated by the expression (13).
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Figure 13: FDR at the second slit position.

At such small distances total DR, which is generated by two half planes, does not
still overlap. Thus, at the second slit position we can resolve two independent maxima.



Indeed, the emission distributions overlap in the hole space of a slit that results in its loos-
ing for further evaluation. However, this portion of radiation is rather small (the second
slit of only 0.5 mm), and successfully, we can see that it does not change essentially the
final distribution.

In order to understand how DR distribution depends on the shift between the centers
of two slits several angular distributions for various shifts were compared (Fig. 14). First
distribution (a) corresponds to the beam passing through the center of first slit without
the slits shift. Dashed line is DR from the second slit in absence of the first one. In
presence of the first slit the central maxima get lower and, vice versa, the second (side)
maxima become higher. Following the DESY experiments, the second slit is fixed to have
a beam passed through its center, while the position of the first slit has been changed. In
Fig. 14 b) we have shown the case when the edges of the upper half-planes of both first
and second slits are on the same level. For such configuration we lose part of radiation
from upper half-plane that corresponds to negative angles. As a consequence, the relative
influence of the first slit on positive part of DR will be stronger. In Fig. 14 b) we observe
the positive spike less intense than negative one (with respect to zero position), and, vice
versa, for the second maxima. As above mentioned, for the collinear slits, additional slit
makes central maxima less, while for the side maxima we have got the intensity increase.
Now let us decrease the impact parameter for upper half plane of the first slit with respect
to that for the second slit (Fig. 14 c). For this geometry we can neglect the radiation from
lower half-plane of the first slit due to relatively distant beam pass. Radiation in negative
angles (especially for big angles) is completely lost and, hence, its influence becomes
disappearing. But some part of radiation for positive angles even more intensive than the
radiation from the second slit, is reflected (Fig. 14 c¢). Comparing these results we can
conclude that the influence of the slits shift is mostly significant when beam passes very
close to one of the half-planes.

8 Comparing with experiment

In order to compare with experimental data it is necessary to introduce parameters of
both beam and slit. For far-field calculations we have already introduced the size of a
beam as all as its divergence. For near-field case, the calculations were performed paying
attention to coherent features of a beam. Indeed in our calculations we deal with the field
parameters instead of their intensities in the case of far-field limit, i.e. the coherent field
can be written as follows

d
Fup = / Es(yo, & — Ay)F(Ay)dA, (14)

here c and d defines the beam divergence cone. Preliminary calculations have shown that
the size of a beam has very small influence on final distributions. The latter allows us to
limit the analysis taking into account the beam divergence. However, we have additionally
to introduce the shift between two half-planes of the slit. This can be done by adding the
phase shift between uppers and lowers half-planes of both slits [9]. Moreover, in our
calculations we have to introduce the angle of incident
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It is well known how to calculate DR for the geometry when the beam crosses the
slit normal to the slit plane. To evaluate DR for the case of non perpendicular incidence
we can reduce the problem to known one. Namely, for each point of the slit we can apply
imaginary slit perpendicular to the incident beam (Fig. 15). That allows calculation of
radiation within known code. However, within this approach it becomes necessary to
change impact parameter for each point of the slit: i; = h; cos «, as well as to take into
account the phase shift between the points of a slit (we assume that projectile emits at
shortest impact parameter).

The experimental DR distributions are presented in Fig. 16. In experiments two-slit
system was used with the distance between the silts of 2 cm; the slits width were 1 mm
for the first slit, and 0.5 mm for the second. The electron beam passes through the center
of second slit, while the first slit is moveable. The accuracy in half-planes coplanarity was
within about 10 nm. The beam divergence was measured about 10 prad.

Fig.16 a) shows DR when the beam passes the centers of both slits, while in the



Point Figure 15: Schematical view for defini-

tion of the beam divergence.

figure b) the first slit is shifted by 25 gm. On both graphs the dashed line corresponds to
theoretical dependences, while the solid line - to experiment ones.
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Figure 16: In experiment a second slit fixed and a beam passes at the center, while a first
slit is moveable. a) the beam passes both slits at the center; b) first slit is shifted by 50 pm.

As seen, theoretical distributions are in a good agreement with experimental data
keeping the maximal error within 5%. For calculations we have defined next parameters
(close to those of the experiment): the shift between slit half-planes of 60 nm, the diver-
gence of 40 prad. Our calculations have shown better coincidence with experiment at the
second slit width of 0.57 mm instead of 0.5 mm used.



Conclusion

In this work we have presented the results on DR in near-flied limit, and its difference
from the one of far-filed approach. Having calculated spatial distribution of DR in near-
filed zone, we have studied the influence of slits incoplanarity on the final distribution.
The results obtained have shown that at definite system configurations the relative shift of
the slit centers can strongly affect the resulting DR angular distribution. The simulations
were first done for the case of coherent beam. All described models were used to compare
with experimental data, and have shown a good coincidence. Calculated beam parameters,
such as its divergence, were well comparable with beam parameters obtained by the use
of alternative methods (quadruple scanning).

Moreover, in this work we have proposed a new method to define the position of
electron beam with respect to the slit taking into account the positions of two central
maxima in DR angular distributions.
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