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Abstract

In this note we discuss the search for new gauge forces beyond the Standard
Model. In particular we give an overview for the simplest case of a new U(1),
kinetically mixed with the Standard Model photon (hypercharge boson), a so-
called hidden photon (also known as dark photon, heavy photon or A′).

1 Introduction

The Standard Model (SM) features three gauge forces, electromagnetism, the

weak force and the strong force. The corresponding gauge group is U(1) ×
SU(2) × SU(3). This is certainly not an obvious structure, and it is therefore

only natural to ask if these are the only ones or, if there are additional (gauge)

forces.
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In this note we concentrate on the simplest case: an extra U(1)X kineti-

cally mixed with the electromagnetic/hypercharge U(1) of the Standard Model.

This corresponds to an extra photon-like particle, the hidden photon (HP).

Of course, when looking for a new extra force we immediately have to

confront the question why we have not seen it. This is directly linked to the

properties of the new gauge bosons responsible for the force. In principle there

are two ways in which particles can hide from observation in experiments. The

first, and so far the most commonly investigated, is that the new particles are

very heavy. In this case one needs a lot of energy to create them and forces

mediated by them are of extremely short range. Moreover, heavy particles that

are not protected by a new symmetry decay very fast. The second option is that

the interactions between the new particles and those of the SM are extremely

weak. In this case their effects would simply be too feeble to have been observed

so far. This is why such particles are often referred to as belonging to a so-

called hidden sector. Particles in these hidden sectors could even be very light,

potentially even massless.

These two possibilities suggest that exploring new physics is in a sense (at

least) two-dimensional. One needs to explore in the direction of higher mass

and energy, as well as in the complementary direction of very weak couplings.

This suggests two entirely different search strategies. Higher masses can be

most directly explored in high energy experiments like, for example, the Large

Hadron Collider (LHC) at CERN. Probing very weak couplings requires high

precision/intensity/luminosity but can often be done at fairly low energies.

Both approaches nicely complement each other as can be seen in the case of

an extra U(1) that we discuss in this note.

2 Hidden photons

Let us consider an extra U(1) gauge group. If all Standard Model particles are

uncharged under this new gauge group the dominant interaction with ordinary

matter is via kinetic mixing 1) with the hypercharge U(1) gauge boson. This
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is encoded in the following Lagrangian,

L ⊃ −1

4
W a
µνW

a,µν − 1

4
BµνB

µν − 1

4
XµνX

µν − χ
Y

2
BµνX

µν (1)

+
m2
X

2
XµX

µ +
1

2

m2
W

g2
(−gW 3

µ + g′Bµ)2 +
1

2
m2
W (W 1

µW
1,µ +W 1

µW
1,µ)

+ SM matter and Higgs terms,

where Bµ and Wµ denote the usual electroweak gauge fields and Xµ denotes the

hidden U(1) field with gauge coupling g
X

. Importantly the term
χ
Y

2 BµνX
µν

introduces a mixing between Xµ and Bµ.

The naive one loop estimate for the mixing parameter is

χ
Y
∼ eg

X

6π2
log
(m

Λ

)
(2)

where m is the mass of a heavy particle coupled to both the new U(1) and

hypercharge and Λ is some cutoff scale. In general models of field 1) and

string theory 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14) a wide range of ki-

netic mixing parameters are predicted, stretching from χ ∼ 10−12 to χ ∼ 10−3.

In general, the HP mass might result from a Higgs or a Stückelberg mech-

anism. In the first case a Higgs particle appears in the spectrum, with mass

∼
√
λmX/gX where gX is the hidden sector gauge coupling and λ the Higgs

self-coupling. Even if we take gX to be relatively small, the Higgs particle

phenomenology tightly constrains this scenario, especially for sub-eV values of

mX
15). However, for very small gX , as one finds in large volume string sce-

narions 16, 9, 13), viable hidden Higgs models can be realized. The expected

regions are shown inside the dotted lines in Fig. 2. The Stückelberg case also

occurs naturally in large volume string compactifications 9, 13). Typical ex-

pected parameter values are indicated by the dash-dotted lines of Fig. 2.

At energies far below the electroweak scale and for small masses of the

new gauge boson, mX � mW , we can consider only the remaining light degrees

of freedom and the mixing is directly with the photon,

L ⊃ −1

4
FµνF

µν − 1

4
XµνX

µν − χ

2
FµνX

µν +
m2
X

2
XµX

µ + jµA
µ, (3)

where the mixing with the photon is related to that with the hypercharge via

χ = χ
Y

cos(θW ), (4)
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Figure 1: Limits on the kinetic mixing of a hidden photon with the or-

dinary photon. Figure updated from 17) with new and improved limits

from 18, 19, 20, 21). The area shaded in light red gives the area where HPs

can be cold dark matter 22).

where θW is the Weinberg angle. For later convenience we have also included

the coupling to the electromagnetic current jµ.

As we can see the kinetic mixing and the mass of the new particle are the

only two new parameters. The current constraints are shown in Fig. 1. In the

following sections we will sketch some of these constraints as well as prospects

for future searches.

3 A matter of convenience: a new force or photon–HP oscillations

In Eq. (3) we have introduced the somewhat unusual kinetic mixing term. To

get a better understanding it is convenient to remove this term by a suitable

field re-definition. There are two simple field re-definitions that we can use to

remove the kinetic mixing term1:

(1) Aµ → Aµ − χXµ.

1Here and in the following we neglect terms of the order of χ2.
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(2) Xµ → Xµ − χAµ.

Although the resulting physics is, of course, completely equivalent, the

physical picture resulting from both shifts is somewhat different. Depending

on the situation it is often easier to use one or the other picture. Let us now

briefly consider both pictures.

3.1 Option (1): A Z ′ and a new force

Inserting the shift Aµ → Aµ − χXµ into Eq. (3) removes the kinetic mixing

term,

L ⊃ −1

4
FµνF

µν − 1

4
XµνX

µν +
m2
X

2
XµX

µ + jµ(Aµ − χXµ). (5)

We now have two nicely independent particles. A massless particle A and

a massive particle X. X is a massive uncharged vector particle. In that sense

it is similar to a Z boson and therefore it is a special case of a so-called Z ′.

A is the ordinary photon and couples to the electromagnetic current

jµ = enµ, (6)

where e is the electric charge and nµ is the number current of charged particles

with unit charge.

X is the new hidden photon and it couples to ordinary matter via

−χjµXµ = −χenµXµ. (7)

In other words a particle with electromagnetic charge Q now also carries a

“hidden charge”,

QX = −χQ, (8)

coupling it to the hidden photon.

It is now easy to calculate the interaction between two charged particles

with charges q1e, q2e separated by a distance r,

V (r) = q1q2
α

r

[
1 + χ2 exp(−mXr)

]
. (9)

The first term is, of course, the ordinary Coulomb interaction. The second is

the additional contribution from the “new force” mediated by X.
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Let us note that the form of the correction makes both ways of how to

hide particles, mentioned in the introduction, explicit. For a fixed resolvable

distance rres > 0 the new force becomes negligible whenever the mass mX �
1/rres. The force has a range shorter than the resolution and is therefore not

observed. Alternatively we can make χ very small. In this case the force

becomes simply very weak and at some point unobservable even if mX is small

and the range is large.

Eq. (9) also provides a way to search for the new force: we can test

Coulomb’s law. This can be done at scales of the order of ∼ 10 cm with

Cavendish experiments 23, 24, 25). The corresponding limit is shown in Fig. 1

labelled “Coulomb” and is currently the best limit in the range of µeV. The

precision achieved, about one part in 1016, is remarkable. Nevertheless it is

also noteworthy that the best experiment is more than 40 years old. At much

smaller scales one can use atomic transitions 25, 26, 27, 28) (see Fig. 1). Fol-

lowing essentially the same arguments one can also look at magnetic fields,

which is useful at much larger scales where one can use the magnetic fields of

Earth and Jupiter which have been mapped with a good precision. This gives

the bounds labelled “Earth” and “Jupiter” 25).

Other experiments do not look for the mediated force, but directly for the

new exchange particle. From Eq. (5) and our discussion above it is clear that

below the electroweak scale we simply deal with a new massive vector particle

that has a coupling to charged particles according to Eq. (8). This particle

can then be produced in scattering experiments with charged particles. The

production process is similar to that of photons only that the particle is massive

and the interaction is suppressed by a factor χ. One incarnation of this are

so-called fixed-target experiments 29). In these experiments a large number

of charged particles (often electrons) with a fairly high energy is shot onto a

block or a foil (typically of metal). In the interaction between the incident

and the target particles Xs are produced. If the mass of X is now larger

than 2me, X can and will decay into electron-positron pairs which can then be

detected. The produced electron-positron pairs have to be distinguished from

those produced in ordinary electromagnetic interactions. This can be done in

two ways. First the invariant mass distribution of the electron-positron pairs

produced via an X has a clear peak at the mass mX . Second, for very low values

of χ the produced X is very long lived and we therefore have very displaced
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vertices (sometimes displaced by 100s of meters). Bounds from this type of

experiment 29, 30, 31, 18) are typically in the MeV to GeV region as shown

in Fig. 1.

Similarly scattering can be done at very high energy colliders such as

the LHC where one typically looks for peaks in the invariant mass distribu-

tion 32, 19). The only difference is that in this region the mixing is with the

hypercharge and we have an effective charge of X,

QX = χ
Y
g′
[

γ

tan2(θW )
T 3 − (1 + γ)QY

]
, where γ = tan2(θW )

m2
W

m2
X −m2

Z

.

(10)

The limits scaled to the electromagnetic mixing parameter are shown at the

very high mass end of Fig. 1.

Instead of real particle production we can also look at loop-effects such

as (g-2) of the electron and the muon. The tight constraints in the MeV-GeV

range from precision measurements of these quantities are shown in Fig. 1,

labelled “ae,µ”. As is well known, the muon (g-2) has a slight deviation from

the SM expectation. HPs in a suitable range, shown red in Fig. 2 can fit

this 33). It should be noted that over the last couple of years this region has

shrunk considerably due to a renewed experimental and theoretical effort. Note,

however, that most of these limits hold only when the dominant decay of the

HP is into SM particles. If there are additional “hidden sector” decay modes,

fixed target and similar constraints will be relaxed, while it is still possible to

fit (g-2).

3.2 Option (2): Photon–hidden photon oscillations

Let us now turn to the second option of dealing with the kinetic mixing term.

Before we proceed let us, however, stress again that physical results are, of

course absolutely independent of which picture we choose.

Inserting the shift Xµ → Xµ − χAµ into Eq. (3) we obtain,

L ⊃ −1

4
FµνF

µν − 1

4
XµνX

µν +
m2
X

2

(
XµX

µ − 2χXµA
µ + χ2AµA

µ
)

+ jµA
µ.

(11)

With this shift we have again succeeded in removing the kinetic mixing

term. Moreover, charged particles are still charged only under A in contrast

to the previous subsection. However, we now have a non-diagonal mass term,
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mixing X and A. This mass term now leads to A↔ X oscillations, in complete

analogy to the non-diagonal mass matrices of neutrinos that lead to neutrino

flavor oscillations. Indeed this analogy goes even further. In the basis used in

this section we are in the interaction eigenbasis and have oscillations. In the

previous section we were in the mass eigenbasis and had non-trivial couplings

to charged matter, but no oscillations2.

The interaction basis we are discussing in this section is particularly con-

venient when the interactions with matter are in some sense “strong”. An

example are the so-called light-shining-through-walls experiments (LSW). In

these experiments a laser is shone onto an opaque wall and one looks for light

“coming out of the wall”. The idea is that an initial photon oscillates into a

hidden photon, which traverses the wall unimpeded and after the wall oscillates

back into a photon that is subsequently detected. For this it is convenient to

use the interaction basis, as it is only the A component that interacts with the

wall (and the laser and the detector) and is completely suppressed (this is the

“strong” effect caused by the large amount of interacting particles in the wall).

Current limits 34) from “LSW” are shown in Fig. 1.

The centre of stars contains an extremely high number of photons which

can oscillate into HPs and then leave the star (the rest of the star is basically a

thick wall). This is a very efficient way for stars to loose energy. In this kind of

environment the oscillations are modified by the presence of a plasma allowing

for resonances (similar to the MSW effect for neutrinos) but also allowing the

longitudinal modes to contribute. Limits on an extra energy loss for the sun

and horizontal branch stars give extremely tight constraints 35, 21) (cf. Fig 1).

Similarly production of HPs in the early universe plasma either before

the CMB release 36) (region “thermal cosmology”) or after 37, 38) (region

“CMB”) benefits from resonances and leads to a very sensitive test.

2In the mass eigenbasis the “oscillations” appear as follows. Both mass
eigenmodes couple to charged particles. Accordingly to know the effect on a
charged particle we have to add the amplitudes of both eigenmodes multiplied
with their respective couplings. This sum exhibits the oscillatory behavior
because the two eigenmodes with different masses acquire different phases when
moving in space (similar in frequency).
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3.3 Have it your way

As stressed before observables are independent of the chosen picture. But in

the above examples the description may be more transparent in one picture.

In others no clear preference is obvious.

For example the regions “BR(π0 → γe+e−)” 20) and “e+e− → γµ+µ−”

arise from decays of pions and decay of Υ resonances 39, 40, 41, 42), respec-

tively. These mesons can decay into two photons. In presence of a kinet-

ically mixed hidden photon we can now have one photon oscillate into a HP

which subsequently decays into an electron-positron pair with an invariant mass

≈ mX . Alternatively one can take picture (1) and imagine that the meson cou-

ples (via the charged quarks) to a photon and a hidden photon.

For the electroweak precision, “EW”, constraints 42) arising most notably

from the linewidth and lineshape of the Z resonance one has to take into account

the full electroweak symmetry breaking and mixing effects.

4 Searching hidden photons: The future

In the previous section we have reviewed existing constraints on hidden pho-

tons, spanning a wide range of masses from 10−15 eV to more than 1012 eV.

Yet, the search is far from over. In Fig. 2 we compare the existing constraints

(grey areas) with interesting target regions from models of string theory (re-

gions enclosed by dashed, dotted and dashed-dotted lines) 9, 13). The hint

from (g-2)µ
33) (red) and the region where hidden photons can be dark matter

(light red) 22) (and next section). It is obvious that there are large regions that

still need to be explored. In this section we look at the near future experimental

prospects (shown in different shades of green).

4.1 Low energy probes

A clear step forward in the meV mass range will be the next generation of

LSW experiments, most notably ALPS-II 44) (cf. the corresponding region in

Fig. 2) and REAPR. These experiments will feature a resonant regeneration

scheme 49, 50). In such a setup the light is reflected back and forth in an

optical cavity on the production side (this was already pioneered by ALPS-

I 51)) as well as on the regeneration side. This enhances the signal by a factor

NprodNreg where Nprod and Nreg are the number of passes on the production
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Figure 2: Prospects for near future searches for hidden photons (shaded green).
The regions labeled, ADMX, CERN and UWA are LSW experiments in the mi-

crowave range (cf. 43)), ALPS-II will operate in the optical regime 44). Radio
astronomy searches for a frequency dependence of distant sources could pro-

vide sensitivity at very small masses 45). The dish antenna region gives the

prospects for a broadband search for dark matter HP according to 46). At higher

masses we have fixed target experiments 43, 47) and the LHC as well as a de-
tection of ionization signals, caused by HP DM in direct detection experiments

for WIMP DM 48). The small red region at high masses corresponds to the

(g − 2)µ hint 33).

and regeneration side, respectively. As ∼ 100000 passes seem feasible this yields

an enormous gain in sensitivity. Moreover, ALPS-II will be significantly longer,

allowing to probe also smaller masses.

At even smaller masses in the µeV region, LSW with “light” in the mi-

crowave range 52, 53) is very promising. Here, resonant regeneration is easier

to achieve and first experiments have already been performed 54, 55, 56). Such

experiments also benefit from a potentially enormous number of passes of up

to 1011 in the microwave cavities and very sensitive detection techniques 57).

This allows for very interesting sensitivity as shown by the regions “ADMX

CERN” and “UWA” in Fig. 2.
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At even smaller masses it may also be possible to probe photon-hidden

photon oscillations by observing the frequency dependence of well modelled

radio signals 45). The frequency dependence of the oscillation probability

would lead to structures in the frequency spectrum at a frequency scale ∆ω ∼
ω2/(m2

XLsource) (where Lsource is the distance to the source) and amplitude

∼ χ2. This will extend sensitivity to extremely small masses as shown by the

“Radio astronomy” region in Fig. 2.

In the sub-eV region one can also search for HP dark matter with ex-

tremely high sensitivity as we will see in the next section.

4.2 Intermediate energy probes

In the MeV to GeV region the next few years will bring new and improved

fixed target experiments. In particular the A1 collaboration with the MAMI

and MESA accelerators at Mainz 47) as well as APEX 41), Darklight 58)

and HPS 59) at Jefferson Lab will use electrons on various targets whereas

the VEPP-3 60) at SLAC intends to use positrons. The region projected to

be tested by these experiments is shown as the green “fixed target” region in

Fig. 2. It encompasses all of the (g-2)µ region. In addition proton fixed target

experiments promise additional information 61).

4.3 High energy probes

The LHC will continue to improve the limits on hidden photons in the 100 GeV

to multi TeV range over the next years. The first step in the improvement will

be the increase in the beam energy from 8 TeV to 13 TeV hopefully even 14 TeV.

This will approximately double the mass reach for hidden photons. Increased

integrated luminosity collected over the next few years will importantly improve

the sensitivity to smaller cross sections and therefore smaller kinetic mixings.

Further improvements towards somewhat smaller masses may also come from

analyses that include lower energy electrons and muons. An indication of the

tested region is the green “LHC” region in Fig. 2.

5 Hidden photon dark matter

In contrast to common belief very light particles can indeed be good dark

matter candidates. The crucial aspect is that very light dark matter particles
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need to be produced non-thermally. The most famous example is the so-called

misalignment mechanism for the axion 62, 63, 64). Its essential features are as

follows. In the early Universe the field starts with a non-vanishing expectation

value. Because the Hubble constant is much larger than the mass of the field

in question, the field is basically stuck at this initial value. This is also the

reason why it is not unreasonable to assume a non-vanishing initial value;

there is simply no time to relax to the minimum of the potential. Moreover,

after inflation the field is smoothed out and basically has the same field value

everywhere in space. Once the Hubble value drops below the mass of the field,

the field starts to oscillate and one can show that these oscillations behave

like non-relativistic matter. This becomes plausible by remembering that the

momentum of a particle is essentially the spatial derivative of the field, and

a (nearly) homogeneous field configuration therefore corresponds to particles

with extremely low momentum.

As argued recently 65, 22) a similar mechanism works also for hidden

photons. For the evolution in the early Universe the Hubble constant is larger

than the mass. It is therefore reasonable to include additional interactions with

gravity,

L = −1

4
XµνX

µν +
m2
X

2
XµX

µ +
κ

12
RXµX

µ + Lkinetic mix + LSM, (12)

where R is the Ricci scalar3 and the last two terms indicate the kinetic mixing

and the rest of the Standard Model.

As already mentioned in Sect. 2, in general, the HP mass might result

from a Higgs or a Stückelberg mechanisms. In the first case, we have to worry

when the phase transition happens and also take into account the effects of the

Higgs field. As in 65, 22), we focus therefore on the Stückelberg case, which

occurs naturally in large volume string compactifications 16, 9, 13). In this

case, there is no phase transition.

Let us briefly comment on the equations of motion and in particular

determine the behavior of the energy density in the expanding universe. Let us

see if we can find the hallmark property of non-relativistic “cold” dark matter:

3We use a coordinates such that ds2 = dt2 − a2(t)dx2i , i.e. the metric is
gµν = diag(1,−a2(t),−a2(t),−a2(t)). Moreover, the gravitational part of the
Lagrangian is LGR = −R/(16πGN ).
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the energy dilutes like the volume, i.e. ρ ∼ 1/(a(t))3 where a(t) is the scale

factor.

For simplicity let us focus on the homogeneous solution, ∂iXµ = 0. The

equation of motion then enforces X0 = 0. As explained in 66) the invariant

XµXµ = −1/a2(t)XiXi is a coordinate independent measure for the size of the

vector and it is convenient to introduce X̄i = Xi/a(t). Using this the equation

of motion is,

¨̄Xi + 3H ˙̄Xi +
(
m2
X + (1− κ)(Ḣ + 2H2)

)
X̄i = 0. (13)

The energy density is

ρ(t) = T 0
0 =

1

2

(
˙̄Xi

˙̄Xi +m2
XX̄iX̄i + (1− κ)H2X̄iX̄i + 2(1− κ)H ˙̄XiX̄i

)
.

(14)

For H � mX and Ḣ � m2
X Eq. (13) is that of a weakly damped harmonic

oscillator. One can easily see that the amplitude oscillates with frequency mX

and it is damped by a factor exp(−3
∫
Hdt/2) ∼ 1/a3/2(t). Inserting into

Eq. (14) we then find that the energy density indeed dilutes like the volume ∼
1/a3(t). Taking a different point of view: In this limit both expressions (13) and

(14) reduce to same form as the equations of motion and the energy momentum

tensor of a scalar field (independent of the value of κ) and for such a field we

already know (e.g. from the case of axions) that this behaves as non-relativistic

matter. For κ = 1 this equivalence holds true exactly even in the very early

Universe where H & mX and/or Ḣ & m2
X .

Now we have seen that an initial field value for hidden photons can nicely

behave like cold dark matter. However, there are several questions remaining:

1) How do we get the right abundance. 2) Does it survive? 3) Does it change

observation? For a detailed discussion see 22) but let us briefly summarize the

answers. 1) The abundance is proportional to the initial field value squared.

Therefore getting the right abundance requires some amount of fine-tuning or

anthropic arguments. For 2) and 3) we have to make sure that the HPs forming

do not decay, or spoil observations such as, e.g. the CMB. This leads to upper

limits on the kinetic mixing parameter. Heavier HPs can decay into electron-

positron pairs via the kinetic mixing interaction. This is quite fast and therefore

basically4 rules out HP dark matter with masses mX & MeV. At lower masses

4Unless one considers 67) incredibly small kinetic mixings χ . 10−26.
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HPs can decay into three photons, but this decay is fairly suppressed by a

by a small algebraic factor as well as phase space. Therefore it provides a

constraint only at masses just below an MeV. At even smaller masses other

evaporation mechanisms originating from photon-HP mixing in the plasma of

the early universe and scattering with the electrons in the plasma dominate.

This both reduces the condensate as well as transferring energy to the ordinary

electrons and producing extra photons. This can lead to observable effects

such as distortions in the CMB or a changed number of effective neutrinos.

Although all these effects combined set fairly strong constraints, a large and

interesting area of viable HP dark matter remains. This is shown as the light

red area in Figs. 1 and 2.

5.1 Detecting hidden photon dark matter

Having a viable dark matter candidate it is now desirable to also have ways to

detect it.

First of all, let us note that due to the small mass of HP dark matter

particles, conventional direct detection methods designed for weakly interacting

massive particles (WIMPs) based on nuclear or electronic recoils do not work,

the recoil energy is just too small.

Nevertheless, we have a plentiful source of HPs and we have already seen

previously that those have a natural tendency to convert into ordinary photons

that can be detected. Therefore, in principle we do not need to do anything

but simply set up a detector for photons and wait. As dark matter HPs are

very slow their energy is essentially given by their mass and therefore we expect

a nicely peaked signal of photons with energy/frequency corresponding to the

HP mass.

Unfortunately things are not quite as easy since the rate of produced

photons is quite small. Therefore we need incredibly good photon receivers

as well as shielding of background noise. Moreover, it is desirable to have

techniques to enhance the signal. Two options are currently being pursued.

The first is based on the haloscope technique originally proposed for axions 68)

but it can also be used for detecting hidden photons 22). The idea is to enhance

the conversion of HPs into photons by employing a suitable cavity resonant with

the HP mass. This is analog to the resonant regeneration scheme discussed

above for LSW experiments. The output power is then enhanced by the Q-
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factor of the cavity (which is proportional to the number of reflections),

Pout ∼ χ2mXρHPQV G, (15)

where ρHP is the density of dark matter hidden photons, V the volume of the

cavity and G a geometrical factor encoding properties of the cavity as well

as the dark matter configuration. This technique works particularly well in

the microwave regime where good cavities as well as excellent detectors exist.

This technique has already been employed 69, 70, 71, 72, 73) and further im-

provements are underway 74, 75, 76). The currently excluded region is the

“haloscope region” shaded in grey in Figs. 1 and future prospects are indicated

as the “DM cavity” region in Fig. 2.

The cavity technique is sensitive to extremely small couplings but it has

two drawbacks. As it relies on the resonant enhancement it requires a slow scan

through masses, where each measurement is only sensitive to a small region of

masses and then the cavity has to be tuned to a new frequency and another

measurement has to be performed. In essence one needs to do a slow and

time-consuming scan through the masses. The second issue is that the output

power is proportional to the volume of the cavity. With increasing frequency

the volume of the cavity goes down, or one has to operate the cavity in a higher

mode which often leads to smaller geometrical factors.

Accordingly it would be nice to have a broadband technique without a

“volume suppression”. One option is to use a “dish antenna” 46). Here the

basic idea is as follows. On charged matter the HP dark matter field essentially

acts like a small oscillating ordinary electric field. The electrons in a conduct-

ing (reflecting) surface then start to oscillate in this field, emitting ordinary

photons. One can check that for very slow HPs the produced electromagnetic

radiation is emitted perpendicular to the surface. Using a suitable (spherical)

surface all radiation from the whole surface is concentrated in a point, the cen-

tre, where it can be detected. It is easy to understand that the concentrated

power in the centre is proportional to the area Adish of the “antenna”,

Pcentre ∼ χ2ρHPAdish. (16)

This technique can be used in the radio frequency range but also promises good

sensitivity at much higher frequencies in the optical regime. This is indicated

as the very light green “Dish antenna” region in Fig. 2.
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Finally, experiments for direct detection of WIMPs may also be used 48).

Dark matter HPs with masses in the multi keV may be completely absorbed.

This produces an ionization signal that can be detected. A rough estimate for

a future sensitivity is shown as “DM ionization” in Fig. 2 (we have assumed

that the direct detection experiment is sensitive to an ionization signal from

an 0.1 fb cross section at WIMP masses of ∼ 100 GeV; other assumptions as

in 48)).

6 Conclusions

New forces are a hallmark feature of many models of physics beyond the Stan-

dard Model. A very simple but also very well motivated example is an extra

U(1) gauge force kinetically mixed with the electromagnetic or hypercharge

U(1) of the Standard Model. In this note we have given overview over past and

future searches for such a new force and the corresponding gauge boson, often

called hidden photon, heavy photon, dark photon or A′.

The simple example of a hidden photon nicely demonstrates that there

are (at least) two directions to explore. The hidden photon could be very light

and very weakly coupled, corresponding to a very weak but long range force.

Alternatively it could be heavy in which case the interaction is very short range

(and weak in this sense).

Searches for hidden photons span a huge range of masses and energies from

10−20 eV to multi-TeV. Exploring this vast range requires to exploit the com-

plementarity between very different experimental techniques, from low energy

ultrahigh precision experiments to high energy colliders. This complementar-

ity can be nicely seen in Fig. 1 where the different energy scales probed by a

variety of experiments nicely fit together to cover a large range in masses and

couplings.

While significant progress has been made over the past few years, huge

regions remain to be explored. Interesting regions are suggested by models of

fundamental theories (e.g., string theory) but also by the intriguing possibility

that hidden photons form all or part of dark matter. It is therefore very exciting

that many experiments, exploring different energy/mass ranges and using a

variety of techniques are underway, in construction or in planning, promising

new insights into fundamental physics and even the potential for discovering a

new force.
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