The ϑ_{13} angle of the leptonic mixing matrix: experimental status and perspectives

> Francesco Terranova LNF

1998–2002: a golden age for neutrino physics

"Evidence for oscillation of atmospheric neutrinos" The **Super–Kamiokande** Collaboration, Phys. Rev. Lett. 81 (1998) 1562

"Direct Evidence for Neutrino Flavor Tranformation from Neutral–Current Interactions in the Sudbury Neutrino Observatory" The **SNO** Collaboration Phys. Rev. Lett. 89 (2002) 011301

"First results from KAMLAND: evidence for reactor anti–neutrino disappearance" The **KAMLAND** Collaboration. Dec 2002. hep–ex/0212021

"Indication of neutrino oscillations in a 250 KM long baseline experiment." The **K2K** Collaboration. Dec 2002. hep-ex/0212007

No more wandering in the dark...

Test the flavours involved in the oscillation and the oscillation predictions (appearance of new flavours and/or sinusoidal pattern of disapperance)

MiniBoone	\Rightarrow	confirm/disprove LSND		
		(sterile neutrinos?)		
ICARUS+OPERA	\rightarrow	first direct evidence of		Improved
		appearance of new flavours		precision
MINOS	\Rightarrow	sinusoidal pattern + flavour	1	on atm.
		partecipation (NC/CC)	J Oscil	parameters

The final question: Can we perform precision CKM physics also in the leptonic sector? (determination of real angles and phases, CP, test of unitarity etc.)

The ϑ_{13} angle

Neutrino oscillations possible for massive neutrinos with a non trivial mismatch between mass (v_i) and gauge eigenstates (v_{α})

$$v_{\alpha} = \sum_{i} U_{\alpha i}^{*} v_{i} \qquad Amp[v_{\alpha} \rightarrow v_{\beta}] = \sum_{i} U_{\alpha i}^{*} e^{-im_{i}^{2} \frac{D}{2E}} U_{\beta i}$$

Three light active neutrinos $(v_e, v_\mu, v_\tau) \Rightarrow U$ is a 3x3 (approximately) unitary matrix and can be parameterised with three angles and 1 (+2) phases. Recover the CKM formalism $(s_{ij}=\sin \vartheta_{ij})$:

$$U = R(\vartheta_{23}) \begin{vmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{vmatrix} R(\vartheta_{12})$$

Nature simplified a lot the formulas...

$$P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sum_{jk} U_{\beta j} U_{\beta k}^{*} U_{\alpha j}^{*} U_{\alpha k}^{*} e^{-i\Delta m_{jk}^{2} L/2E}$$

Only differences of (squared) masses enter the formula (no info on absolute mass scale).

Three neutrinos \Rightarrow two differences Δm_{12}^2 and Δm_{23}^2

Nature has chosen for us a strong hierarcy:

$$\Delta m_{12}^2 \ll \Delta m_{23}^2 \approx \Delta m_{13}^2$$

"solar scale" "atmospheric scale"

If L/E is tuned to maximise the P at Δm_{23}^2 ("atmospheric scale") all the terms proportional to $\sin^2 (\Delta m_{12}^2 L/E)$ are strongly suppressed

If the atmospheric scale dominates:

$$P(v_{e} \rightarrow v_{e}) = 1 - \sin^{2} 2 \vartheta_{13} \sin^{2} \Delta_{23}$$

$$P(v_{e} \rightarrow v_{\mu}) = \sin^{2} 2 \vartheta_{13} \sin^{2} \vartheta_{23} \sin^{2} \Delta_{23}$$

$$P(v_{e} \rightarrow v_{\tau}) = \sin^{2} 2 \vartheta_{13} \cos^{2} \vartheta_{23} \sin^{2} \Delta_{23}$$

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - 4 \cos^{2} \vartheta_{13} \sin^{2} \vartheta_{23} (1 - \cos^{2} \vartheta_{13} \sin^{2} \vartheta_{23}) \sin^{2} \Delta_{23}$$

$$P(v_{\mu} \rightarrow v_{\tau}) = \cos^{4} \vartheta_{13} \sin^{2} 2 \vartheta_{23} \sin^{2} \Delta_{23}$$

$$\Delta_{23} \equiv 1.27 \Delta m_{23}^{2} L/E$$

Note that:

 ✓ No CP violating phase appears
 ✓ If $\vartheta_{13}=0$ "atmospheric" ⇒ pure $\nu_{\mu} \rightarrow \nu_{\tau}$ "solar" ⇒ pure $\nu_{e} \rightarrow \nu_{\mu}$ ϑ_{13} measure the degree of decoupling of "atmospheric oscillation" from "solar oscillations"

Subdominant contributions:

In fact:

✓ if Δm_{12}^2 is not too small (e.g. 5 10⁻⁵ eV²) → OK!! Kamland!! ✓ if sin² 2 ϑ_{13} not too small (e.g. O(10⁻² - 10⁻³))

we can feature subdominant effects in terrestrial experiments (Superbeams or Neutrino Factories) to

✓ measure the CP violation phase ✓ measure precisely $\sin^2 2\vartheta_{13}$ ✓ measure the sign of Δm^2_{32}

the size of $\sin^2 2\vartheta_{13}$ is the missing link to assess the potentialities of the third generation neutrino oscillation experiments

What we know experimentally on $\sin^2 2\vartheta_{13}$?

The "golden channel" is v_e disappearance

LO approx.
$$P(v_e \rightarrow v_e) = 1 - \sin^2 2 \vartheta_{13} \sin^2 \Delta_{23}$$

NLO $P(v_e \rightarrow v_e) = 1 - \sin^2 2 \vartheta_{13} \sin^2 \Delta_{23} - \frac{1}{2} \cos^2 \vartheta_{12} \sin^2 2 \vartheta_{13} \sin^2 2 \Delta_{31} \sin^2 2 \Delta_{21} + (\cos^4 \vartheta_{13} \sin^2 2 \vartheta_{12} + \cos^2 \vartheta_{12} \sin^2 2 \vartheta_{13} \cos 2 \Delta_{31}) \sin^2 \Delta_{21}$

Reactor experiments with L ≈1 Km and E ≈ a few MeV In fact they test $\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}$ i.e. the CPT coniugate of $\nu_{e} \rightarrow \nu_{e}$

CHOOZ

Detection technique:

Prompt pulse (e⁺): 1.2–8 MeV Delayed pulse within 2–100 µs (n+Gd): 6–12 MeV

Background from reactor–OFF Fit of the event rate versus termal power of the reactors

Sistematics

Reaction cross section	1.9%
Number of protons	0.8%
Detection efficiency	1.5%
Reactor power	0.7%
Energy absorbed per fission	0.6%
Combined	2.7%

Results

Information coming from:
1) Overall rate
2) Positron E spectrum
3) Rate versus thermal power

No deficit has been observed

Results

 $\sin^2 2\vartheta_{13} < 0.14 (90\% \text{CL})$ @ $\Delta m^2_{32} = 2.5 \ 10^{-3} \text{ eV}^2$ (LO approximation)

NLO results depend on solar parameters Δm_{12}^2 , ϑ_{12} $\checkmark \Delta m_{12}^2 < 2 \ 10^{-4} \text{ eV}^2$ unchanged $\checkmark \Delta m_{12}^2 = 4 \ 10^{-4} \text{ eV}^2$, sin2 $\vartheta_{12} = 0.5$ sin²2 $\vartheta_{13} < 0.11$ (90% CL) (more stringent) S.Bilenky et al. Phys.Lett.B538(2002)77 What we know from theory on $\sin^2 2\vartheta_{13}$? Practically nothing!

Not surprising since:

- Origin of Yukawa sector of the SM completely unknown
- Leptonic mixing matrix seems VERY different from CKM (bilarge mixing among particle with big mass differences).
- Most of GUT inspired models need fine tuning to reproduce large mixings

Huge literature with predictions ranging from Chooz limits (10^{-2}) to 10^{-5} or even smaller...

A note of caution!

The discovery of $\sin^2 2\vartheta_{13} \neq 0$ has a scientific relevance by itself: the full three flavour mixing of neutrinos is still unestablished

However it has an even higher strategical value:

The terrestrial experiments seeking for CP violation (JHF+HyperK, Neutrino Factories, etc) and making precision physics with the leptonic mixing matrix are extremely expensive. No funding agency will spend 2billion\$ if in the meanwhile we don't have evidence of $\sin^2 2\vartheta_{13} \neq 0$: it could be the most impressive flop of the history of High Energy Physics!

How much can we improve the CHOOZ limit in the forecoming years?

Can we use the next generation Long Baseline experiments (MINOS+ICARUS+OPERA)?

Tuned for $v_{\mu} \rightarrow v_{\tau}$ appearance. Could work also in $v_{\mu} \rightarrow v_{e}$ mode. $P(\nu_{\mu} \rightarrow \nu_{\mu}) = 1 - 4\cos^2\theta_{13}\sin^2\theta_{23}(1 - \cos^2\theta_{13}\sin^2\theta_{23})\sin^2\Delta_{23}$ $P(\nu_{\mu} \rightarrow \nu_{\tau}) = \cos^{4} \vartheta_{13} \sin^{2} 2 \vartheta_{23} \sin^{2} \Delta_{23}$ $P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2 \vartheta_{13} \sin^{2} \vartheta_{23} \sin^{2} \Delta_{23}$ Precise measurement of ϑ_{23} (mainly MINOS) Evidence of v_{τ} appearance (mainly CNGS)

Search for sub–dominant mode $\nu_{\mu} \rightarrow \nu_{e} (\vartheta_{23})$

MINOS

 v_{μ} source: (NuMI) 120 GeV protons from FNAL Main Injector v_{μ} from pion decay v_e contamination from K and muon decay detectors: (MINOS) 1) 'Far' detector: **5.4 kT magnetized iron/scintillator** tracker/calorimeter in Soudan mine 2) 'Near' detector: 980 T version of far detector at FNAL

MINOS is a coarse grain calorimeter

- 2.5 cm thick iron slabs
- Plastic scintillators with 4.1 cm granularity (thickness 1 cm)
- Toroidal magnetic field (≈1.2 T)

However,

- The NuMI beam can be tuned at the oscillation maximum (about 2 GeV for L≈730 Km)
- A near detector helps to deal with systematics

Background

- NC events with π^0 production (high energy tail of ν_{μ} beam) low energy spectrum, e.m. shower development delayed (γ conversion), small visible energy (ν_{μ} outgoing)
- CC events with π^0 production and primary μ unidentified as before + visible primary muon
- v_e contamination from the beam different energy spectrum, computed at near detector
- $v_{\mu} \rightarrow v_{\tau}$ oscillation with $\tau \rightarrow evv$ low visible energy (outgoing v)

MINOS signal depends also on matter effect

Corrections of the order of $\pm 10-20\%$ depending on sign of Δm_{23}^2

Event selection

Sequential cuts on:

- Fraction of E in highest cluster $E_{cluster} / E_{tot} > 0.7$
- N strips in highest cluster ≥ 9
- $P_{\mu} < 1 \text{ GeV}$
- 100pe<E_{tot}<600pe

<u>Neural net</u> combining variables related to the event shape

Systematics

After event selection, background dominated by NC background $\Delta m_{23}^2 = 0.03 \text{ eV}^2 \quad \sin^2 2\vartheta_{13} = 0.04$

signalbeam v_e v_{μ} CC $v_{\mu} \rightarrow v_{\tau}$ NC <10 GeV</th>NC>10 GeV8.55.63.93.015.711.5

Near detector: NC rate with π^0 production v_e contamination

Still remaining uncertainty at the level of 10%

- Differences in near-far detector (geometry and overlapping events)
- Different angular coverage

Results will be limited by systematics after about 2 years of data taking

Results

Cern Neutrinos to Gran Sasso (CNGS)

An high energy neutrino beam for v_{τ} appearance

 E_{ν} is a compromise between tuning at oscillation maximum (low E) and high cross section for tau production (high E)

The beam

Beam composition : $97 \% v_{\mu} + 2.1 \% \overline{v_{\mu}} + 0.9 \% v_{e}$ Neutrino energy $\langle E_{v} \rangle = 17 \text{GeV}$ Intensity: 4.5 10^{19} p.o.t/y $\Rightarrow 6.7 \ 10^{19}$ p.o.t./y (+50% w.r.t. Proposal) Baseline: 732 km

CNGS as a tool for $v_{\mu} \rightarrow v_{e}$ investigation

A beam tuned for tau appearance has:

- ✓ An energy not well tuned for $\nu_{\mu} \rightarrow \nu_{e}$ (1.27 Δm²₂₃ L/E ≪ π/2)
- ✓ No near detector

Need very precise detectors (small mass)

However:

- Employs detectors with very high granularity (tau decay topology)
 - 1) Strong suppression of NC π^0 background
 - 2) Subtraction of $v_{\mu} \rightarrow v_{\tau}$
- ✓ Perform a "pure" $\sin^2 2\vartheta_{13}$ measurement

A pure measurement of $\sin^2 2\vartheta_{13}$

<u>CNGS is insensitive to the CP violating phase</u> Suppressed by $\Delta m_{12}^2 L/E_{CNGS} \ll \Delta m_{12}^2 L/E_{MINOS}$ If Δm_{12}^2 big enough (i.e. $O(10^{-4})$) MINOS could see distortion of its appearance signal.

CNGS is insensitive to matter effect

"Solar scale"

$$P(\nu_{\mu} \rightarrow \nu_{e}) = \frac{\sin^{2} 2 \vartheta_{13}}{S^{2}} \sin^{2} \vartheta_{23} \sin^{2} \frac{\Delta m_{23}^{2} L S}{4E} \simeq \frac{\sin^{2} 2 \vartheta_{13}}{S^{2}} \sin^{2} \vartheta_{23} \left(\frac{\Delta m_{23}^{2} L}{4E}\right)^{2} S^{2}$$

In case of null result it would be difficult to put a limit on $\sin^2 2\vartheta_{13}$ due to our complete ignorance of δ and sign Δm^2_{23} MINOS loose sensitivity with respect to CNGS

OPERA

An appearance experiment for tau detection on an **event-by event basis**

The cleanest channel to demonstrate $v_{\mu} \Rightarrow v_{\tau}$ oscillations <u>BUT</u>

v oscillation \rightarrow huge mass <u>AND</u> τ decay \rightarrow O(µm) resolution

Charge and momentum of penetrating particles

56 emulsion films

Background in OPERA

• NC events with π^0 production (high energy tail of ν_{μ} beam) as MINOS <u>but</u> eccellent 1mip/2mip separation by grain counting in emulsion + π^0

 CC events with π⁰
 production and primary μ unidentified suppressed by one order of magnitude w.r.t. NC

Background in OPERA

- v_e contamination from the beam different energy spectrum
- $v_{\mu} \rightarrow v_{\tau}$ oscillation with $\tau \rightarrow evv$ kink observed on a event by event basis + low visible energy

Event selection

- Identified electron E>1 GeV (suppress low γ component)
- Kink below 20 mrad (against $v_{\mu} \rightarrow v_{\tau}$ oscillation with $\tau \rightarrow evv$)
- $E_{vis} < 20 \text{ GeV}$ (suppress v_e contamination from the beam)
- Grain deposition near the vertex consistent with 1 m.i.p. (NC with π^0 suppression)
- $P_t^{\text{miss}} < 1.5 \text{ GeV}$ (NC and $\tau \rightarrow e$ reduction)

Scanning load

Scanning load is dominated by the vertex finding of neutrino interaction \Rightarrow roughly unchanged w.r.t. the standard tau analysis

Kinematical analysis ($\Delta m^2=2.5 \ 10^{-3} \ eV^2$; $\sin^2 2\theta_{13}=0.076$; $\sin^2 2\theta_{23}=1$)

Visible energy

Missing p_T

Powerful v_{e} CC (beam cont.) rejection

Powerful NC bkg. rejection

Expected events

5 years data taking with the nominal CNGS beam and

 $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1$

$\sin^2 2\theta_{13}$	θ_{13}	Signal	$\tau { ightarrow} e$	ν _μ CC	$\nu_{\mu}NC$	Ne ^{CC} beam
0.095	9°	9.3	4.5	1.0	5.2	18
0.076	8°	7.4	4.5	1.0	5.2	18
0.058	7°	5.8	4.6	1.0	5.2	18
0.030	5°	3.0	4.6	1.0	5.2	18
0.011	3°	1.2	4.7	1.0	5.2	18

OPERA is dominated by the intrinsic v_e beam contamination. Here, we assume for consistency with other works a 5% error on the v_e flux. However, given the small number of expected events in OPERA the sensitivity to θ_{13} is dominated by the statistical fluctuations of the background A systematic error up to 10% does not change appreciably the experimental sensitivity

OPERA sensitivity to ϑ_{13}

By fitting simultaneously the E_{e} , missing p_{T} and E_{vis} distributions

ICARUS

Technology based on Liquid Argon TPC

- High granularity depending on the drift time resolution and the induction wire pitch
- Electronic detector: no scanning time lag
- Calorimetric measurement: $3\%/\sqrt{E\oplus 1\%}$ (e.m.); $16\%/\sqrt{E\oplus 1\%}$ (hadr)

Construction and operation of big size detector has been recently demonstrated (600 tons) A 2.4 kton detector in Gran Sasso Hall B could be ready for 2006

A different philosophy to see the τ

Granularity to poor to see the kink:

- Kinematical cuts to see distortion in the inclusive distribution of visible energy, lepton and hadronic p_T , missing energy etc.
- Liquid argon is much cheaper than Emulsion Cloud Chambers ⇒ high mass detectors can be built

Limitation from poor granularity less dramatic for $v_{\mu} \rightarrow v_{e}$ search (kink finding is used only to anti-tag the $v_{\mu} \rightarrow v_{\tau}$ background) Good detector for v_{e} appearance

Background in ICARUS

- v_e contamination from the beam different energy spectrum (the same problems as OPERA but with better energy resolution)
- $v_{\mu} \rightarrow v_{\tau}$ oscillation with $\tau \rightarrow evv$ kinematical cuts (less effective than OPERA kink-based suppression)
- NC events with π^0 production radiation length in Argon \gg Lead : easier to see converted photon and employ a π^0 /e separation procedure

Sensitivity per unit mass is approximately the same between ICARUS and OPERA when $v_{\mu} \rightarrow v_{\tau}$ is not the dominant background. However ICARUS has higher fiducial mass.

Expected events

5 years data taking with the nominal CNGS beam and $\Delta m_{23}^2 = 2.5 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23} = 1$

$\sin^2 2\theta_{13}$	θ_{13}	Signal	$\tau { ightarrow} e$	ν _μ CC	NµNC	v _e CC beam
0.095	9°	27	24	—	_	50
0.076	8°	21	24	—	—	50
0.058	7°	16	24	—	—	50
0.030	5°	8.4	25	—	—	50
0.011	3°	3.1	25	—	_	50

Including a kinematical analysis similar to the previous one (OPERA) we get ICARUS 90% C.L. ; $\Delta m_{23}^2 = 0.025 \text{ eV}^2$ $\sin^2 2\vartheta_{13} < 0.04$ (old intensity) $\sin^2 2\vartheta_{13} < 0.035$ (new intensity)

ICARUS and OPERA combined sensitivity

CNGS 5 years nominal beam

Comparing different scenarios

Experiment	$\sin^2 2\theta_{13}$	θ ₁₃
CHOOZ	<0.14	<11°
MINOS 2yr	<0.06	<7.1°
ICARUS 5yr	<0.04	<5.8°
OPERA 5yr	<0.06	<7.1°
ICARUS+OPERA 5yr ≡3yr CNGSx1.5	<0.03	<5.0°
ICARUS+OPERA 5yr CNGS new intensity	<0.025	<4.5°
JHF 5yr	<0.006	<2.5°

Future projects

Low energy superbeams:

- Tune E and L to be at the oscillation maximum of Δm_{atm}
- Very high intensity beam ("superbeams")
- Near detector to lower systematics on beam contamination

JHF (E=1 GeV L=293 Km) NUMI Off-axis (E=2 GeV L=800 Km) BNL to Homestake (1<E<8 GeV L=2500 km)

Neutrino Factories

- Very pure $\bar{\nu}_{\mu} + \nu_{e}$ from μ^{+} decays at muon storage rings
- High intensity beams to study $\overline{\nu}_e \rightarrow \overline{\nu}_\mu$ at Δm_{atm}
- Change of polarity (μ^- decays) to see CP odd asymmetries

JHF to Super-kamiokande

Main facility: JHF 50 GeV proton syncrotron. Deliver 10²¹ pot/y (about two order of magnitude higher than CNGS)

Detectors: near detector to be constructed (scintillator tracker). Far detector already there (Super–Kamiokande).

Phase I: JHF to SK will improve substantially the knowledge of ϑ_{13} and perform a precision measurement (1% level) of Δm_{23} and ϑ_{23}

Phase II: Build a new huge detector (Hyper–K: 1Mton water) and further increase (x5) of beam intensity. CP violation in the leptonic sector

Sensitivity

Search for "single ring" e-like events in SuperKamiokande.

- Low v_e beam contamination (0.3%)
- No tau background (below kinematic threshold)
- NC with single π^0 production \Rightarrow low energy π^0 (γ back-to back)

JHF-SK 90% C.L. $\Delta m_{23}^2 = 0.025 \text{ eV}^2$ $\sin^2 2\vartheta_{13} < 0.006$

A note of caution!

If JHF–SK finds evidence of v_e appearance: OK \Rightarrow phase II + NuFact

What if JHF–SK finds no evidence?

Can we say that $\sin^2 2\vartheta_{13}$ is too small and give–up phase II?

JHF–SK tuned to maximize discovery potential:

- Energy tuned to maximum of oscillation probability
- \bullet Enhance the dependence of subdominant terms to be sensitive to δ
- Small dependence on matter effect (low baseline). In NUMI Offaxis there is also this dependence

In case of no-signal one should integrate on all the subdominant parameters. Hence you could have high values of $\sin^2 2\vartheta_{13}$ still allowed \Rightarrow deterioration of sensitivity

Sensitivity reduction

Assume $\Delta m_{23}^2 = 3 \ 10^{-3} \text{ eV}^2$, $\sin^2 2\vartheta_{23} = 1$, $\Delta m_{12}^2 = 5 \ 10^{-5} \text{ eV}^2$

See P.Huber, M.Lindner, W.Winter, hep-ph/0211300

My own opinion...

This problem affects MINOS as well but <u>not</u> CNGS!!

CP violating phase:

Terms suppressed by $[\Delta m_{12}^2 L/E]^2$ (solar scale) but $E_{minos} \approx 0.1E_{CNGS}$ At CNGS further suppressed

Matter effect:

once more, being <u>not</u> at the oscillation max, the effect is suppressed (see before). CNGS doesn't care of the sign of Δm_{23}^2

The $(\vartheta_{23}, \pi/2 - \vartheta_{23})$ degeneracy:

This affect also CNGS (irrelevant if maximal mixing, $\vartheta_{23} = \pi/4$)

CNGS makes a pure ϑ_{13} measurement and, in this respect, it has a sensitivity comparable to JHF!! Next generation superbeams should be tuned in a smarter way... or we should stick on reactor experiments

Conclusions

- The knowledge of the parameter driving the sub-dominant mixing between atmospheric and solar neutrinos (ϑ_{13}) is the missing piece to start precision physics of the leptonic CKM matrix
- MINOS and CNGS can provide already a significant improvement w.r.t. CHOOZ
- The standard strategy
 MINOS/CNGS ⇒ JHF phase I ⇒ JHF phase II
 could be not the optimal one