

Initial State Radiation Studies at the Y(4S) in BaBar

Evgeny Solodov, Novosibirsk on behalf of the BaBar collaboration

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

1

Motivation

Initial State Radiation Studies at the $\Upsilon(4S)$ are equivalent to low-energy e+e- experiments. Due to very high luminosity of B factory it could give competitive results in various fields (e.g. spectroscopy and hadronic contributions to g_ -2 and _em) in spite of _ suppression of the ISR cross-section and (10-15)% efficiency of ISR photon reconstruction. It is of special interest in the 1.4-3.0 GeV range of c.m. energy where few e+e- data are available.

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

ISR Cross Section

$$\frac{d\sigma(s,x)}{dx} = W(s,x)\sigma_f[s(1-x)]; \qquad x = \frac{2E_{\gamma}^*}{\sqrt{s}}$$

$$W(s,x) = \beta \cdot \left[(1+\delta) x^{(\beta-1)} - 1 + \frac{x}{2} \right] \qquad (\delta \approx 0.067 \text{ at } \Upsilon(4S))$$

$$\beta = \frac{2\alpha}{\pi} (2 \ln \frac{\sqrt{s}}{m_e} - 1)$$
 (~0.088 at Y(4S))

<u>Cross Section for final state f (normalized to radiative dimuons)</u>

89.4 fb-1 of BaBar data have been processed requiring:

- • E_{CM} >3 GeV photon has been found ($\sqrt{S'}$ <4.68 GeV) or E_{CM} >0.5 GeV if there is µ-ID for any track
- number of charged tracks ≥ 2
- even number of "good" (from IP) tracks with sum of charges=0
- NO electrons (radiative Bhabha events pre-scaled 1/40 for tests)
- ISR photon candidate is in 0.3 radian cone with axis along the missing momentum vector constructed using the other tracks in the event

Essentially ALL exclusive ISR final states have been preliminary NTUPLEd (~2% of all events)

Current ISR Activity

2pi Form Factor μμγ -MC, IFR efficiency, luminosity _____ Michel Davier (ORSAY), Laurent Tantot (ORSAY) Oliver Buchmueller, Laurent Tantot, and Oliver Buchmueller (SLAC) Evgeny Solodov, Vladimir Druzhinin Kkpi, KKeta , 6pi Study MC-all, J/Psi, 3pi cross section F. Anulli, A.Zallo and R.Baldini (Frascati INFN) Vladimir Druzhinin (Novosibirsk) M.Sokoloff (SLAC) **4pi Cross Section** 2mu and 2hadron charge asymmetry _____ _____ Evgeny Solodov (Novosibirsk) Eckhard Elsen (DESY, SLAC) 2K Cross Section Inclusive R for SQRT(s')>5 GeV (photon energy) _____ _____ Peter Lukin (Novosibirsk) Andreas Petzold (DRESDEN) **2proton Form Factor** Inclusive R using the photon energy to define s' _____ Sergey Serednyakov (Novosibirsk) Su, Dong (SLAC) and Nicolas Berger (SLAC)

Already a rather active field. However, most of the people are not spending 100% on their time on ISR analyses. ⇒ Still a lot of things to do and volunteers are really welcome

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov,

June, 2003

Novosibirsk

 $\pi^+\pi^-\gamma$

 $K^+K^-\gamma, K_8K_L\gamma$ $\pi^+\pi^-\pi^0\gamma$ $\pi^+\pi^-\pi^+\pi^-\gamma$ $\pi^+\pi^-\pi^0\pi^0\gamma$ $\pi^+\pi^-\gamma\gamma$ $K^+K^-(\phi)\pi^0\gamma$ $K^+K^-(\phi)\gamma\gamma$

p⁺p⁻γ *KK**(892, 1410)γ π⁺π⁻π⁺π⁻π⁺π⁻γ π⁺π⁻π⁺π⁻π⁰π⁰γ

June, 2003

ISR Monte Carlo generators (AFKQED package)

- Arbuzov-Fadin-Kuraev, ISR, FSR extra photons

simulation is based on: 'Four Pion Final State with Tagged Photon at Electron Positron Colliders", by H. Czyz and J.H.Kuehn, Eur.Phys.J. C18(2001)487-509 (hep-ph000826) realistic simulation with cross sections taken from e⁺e⁻ experiments multiple ISR,FSR (structure functions,PHOTOS)

G.Bonneau and F.Martin, Nucl.Phys. B27(1971)381

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

$\mu^+\mu^-\gamma$ - main test tool

-<1% accuracy in MC generator
DATA – MC comparison
IFR efficiency study

 $-\sqrt{s(1-x)}=M_{\mu\mu}$ resolution check -comparison with BaBar Luminosity -ISR luminosity for hadron norm-n

Radiative Dimuons: Efficiency

Very accurate knowledge of efficiency is of vital importance for a precise R measurement → Obtain the efficiencies directly from the DATA

Example: Radiative Dimuons

 \rightarrow Can be selected with very high purity ~99.99%

Other test samples:

Pi: τ events $\rho \rightarrow \pi \pi^0$ K: B events $D^0 \rightarrow K\pi$

FORWARD ECAP: X,Y

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

$\mu^+\mu^-\gamma$: Luminosity test

After correction for ID efficiency and acceptance from MC, dimuon spectrum can be compared with that calculated from BaBar Luminosity

2% agreement with BaBar Luminosity

"Initial State Radiation Studies at the **I** (4S) in BaBar" E.Solodov, Novosibirsk

$\mu^+\mu^-\gamma$: Luminosity

Topology: two charged tracks + hard photon + Muon ID

 \Rightarrow J/_ cross section is proportional to $\Gamma_{ee} B_{\mu\mu} = \Gamma B_{ee} B_{\mu\mu}$ PDG2002:

 $\overline{\Gamma} = 87 \pm 5 \text{ keV}, B_{ee} = (5.93 \pm 0.10)\%$ and $B_{\mu\mu} = (5.88 \pm 0.10)\%$

 \Rightarrow Measuring $\Gamma_{ee} B_{\mu\mu}$ one can get:

• partial J/_ width Γ_{ee} as $\Gamma_{ee} B_{\mu\mu} / B_{\mu\mu}$ (PDG) • total J/_ width Γ as $\Gamma_{ee} B_{\mu\mu} / B_{\mu\mu}$ (PDG) / B_{ee} (PDG)

"Initial State Radiation Studies at the
$$\Upsilon$$
(4S) in BaBar" E.Solodov,
Novosibirsk

Analysis Procedure

R is ratio of J/_ signal to QED background (excluding FSR) in 4 MeV bin

$$R = \frac{N_{J/\psi}}{\frac{dN}{dM} \cdot 4 \text{ MeV/c}^2} =$$

3

According to simulation FSR correction K varies from 1.08 to 1.19 dependent of selection criteria.

500

0 └ 2.8 _╪┽╬╬_{╋╋┪┷┇}╷

"Initial State Radiation Studies at the **I** (48) in BaBar" E.Solodov, Novosibirsk

 $M_{\mu\mu}$ (GeV)

3.4

3.2

Systematic Uncertainty

 interference effect 	- 0.3%
• J/_ line shape simulation	- 1.4%
• uncertainty in background	- 0.5%
• K factor cut dependence	- 1.3%
• MC statistics	- 0.9%

The total systematic error is	- 2.2%
The statistical error is	- 2.3%

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

June, 2003

$\pi^+\pi^-\gamma$

topology: 2 charged tracks , No μ ID (+ 1C fit in $\pi\pi$ hyp.)

We want to measure as a function of $s' = mass^2$

$$\frac{N_{\pi\pi}}{N_{\mu\mu}} \propto \left| F_{\pi}(s) \right|^2$$

Ratio cancels:

- luminosity
- radiative corrections
- efficiencies (photon, trigger, tracking)

Problem: large e- and $\mu\text{-background}$

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

Very encouraging agreement ! Hard work! <1% systematic error is needed for g-2

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov,

Novosibirsk

June, 2003

19

р+р-у

topology: 2 charged tracks, 2 proton ID, No μ ID + 1C fit in pp hyp.

main background: $\mu\mu\gamma$, $\pi\pi(\rho)\gamma$, KK(ϕ) γ tight cuts keep background at the <5% level $B(j/\psi -> p^+p^-) = 0.0028 \pm 0.0005$ PDG2002 -- 0.00214 ± 0.00010

Data are not finally normalized

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov,

Novosibirsk

$\pi^+\pi^-\pi^0\gamma$

topology: 2 charged tracks+2 photons (+ 3C fit in $\pi^+\pi^-\pi^0$ hyp.)

Good DATA-MC agreement. More work for background study is needed. Next after $\pi\pi$ contribution to g-2. Analysis is in progress.

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

$2\pi^+ 2\pi^- \gamma \Rightarrow 4\pi$ Cross Section

Topology: four charged tracks + hard photon (+ 1C fit in 4π hyp.)

 \Rightarrow Analysis is almost ready – BAD is in preparation

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov,

Novosibirsk

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

 \Rightarrow potential for being the world best 4π cross section measurement

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov,

June, 2003

Novosibirsk

June, 2003

25

4π Cross Section –expanded view

Good agreement with the most precision e⁺e⁻ experiments

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

June, 2003

26

$K^+K^-\pi^+\pi^-$ and $4K^\pm$ production

KKππ and 4K final states are easily selected by 1 or 2 kaon ID and 1C fit

Novosibirsk

June, 2003

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

June, 2003

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

30

June, 2003

$K_{S}K\pi\gamma, K^{+}K^{-}\pi^{0}\gamma$

- Study ϕ' resonance $\checkmark \phi' \rightarrow K_s K^+ \pi^ \checkmark \phi' \rightarrow K^- K^+ \pi^0$
- Look at $e^+e^- \rightarrow \phi \pi(\eta) + \gamma$

observed by DM2 Collaboration Z.Phys.C –Particle and Fields 52, 227-230 (1991)

for the first time

• Data samples: RUNII 80k MC events $K_s K^+ \pi^-$ 80k MC events $K^+ K^- \pi^0$ Special MC generator with $K^*(892)$, $K^*(1410)$, $K^*_2(1430)$ has been developed with all interferences included June, 2003 Novosibirsk Novosibirsk

$K^{+}K^{-}\pi^{0}(\eta)$

topology: 2 charged tracks with kaon ID $+ \ge 2$ photons

$\phi \pi (\eta) + \gamma$

Negligible background

Select events with $1.0 < m(K^+K^-) < 1.04 \text{ GeV}/c^2$

Structure has been observed by DM2 and FOCUS – no explanation!

June, 2003

"Initial State Radiation Studies at the $\Upsilon(4S)$ in BaBar" E.Solodov, Novosibirsk

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov, Novosibirsk

June, 2003

36

Can work for $\Delta \alpha_{had}$ up to \sqrt{S} ~ 7-8 GeV before photon background from
normal non-radiative hadronic events becoming significant.June, 2003"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov,
Novosibirsk

Conclusion

"ISR sample has an enormous potential and should have a bright future in BaBar! (and Belle ?)

There are many channels NEVER studied at e⁺e⁻ machines in 1-4 GeV range already available in BaBar data sample

Measurements of cross section for a few main (better all!) channels in < 3 GeV range with ~5% systematic errors (<1% needed for $\pi\pi$) can improve accuracy of hadronic contribution to muon g-2

Inclusive measurement up to 7-8 GeV can improve accuracy of $\Delta \alpha_{had}$

→ already an active field with some interesting analyses $(2\pi, 2K, 4\pi, KK\pi, \text{Asymmetry},...)$ to come soon.

June, 2003

"Initial State Radiation Studies at the Υ (4S) in BaBar" E.Solodov,

Novosibirsk