

Development of a gaseous detector based on Gas Electron Multiplier (GEM) Technology

Introduction

F.Murtas (LNF-INFN)

- Gas mixture choice
- Performance: gain, time resolution, efficiency
- > Aging and discharges
- Chamber 20x24 cm²
- Other possible applications

Conclusions

Gas Electron Multiplier

A Gas Electron Multiplier (F.Sauli, NIM A386 531 **1997**) is made by 50 μ m thick kapton foil, copper clad on each side and perforated by an high surface-density of bi-conical channels;

F. Murtas LNF/INFN

Photolithographic technology used for printed circuit board construction

Copper etching by chemical solution

GEM different geometries

DOUBLE-CONICAL (Optimized) 50 µm kapton width 70 µm holes and 140 µm pitch

Other hole densities developed at CERN with a Double Conical structure : $50 \ \mu m$ kapton, 140 μm holes at 280 μm 25 μm kapton, 70 μm holes at 140 μm

Other hole geometries are under studies:

CONICAL 50 µm kapton, 60/120 µm holes CYLI NDRI CAL 50 µm kapton, 70 µm holes

Gas Electron Multiplier

Filed lines

By applying a potential difference between the two copper sides an electric field as high as 100 kV/cm is produced in the holes acting as multiplication channels.

Potential difference ranging between 400 - 500 V

GEM principia: electrons

Working with Fields

Collection efficiency decrease at high drift field values due to defocusing of field lines above the GEM /

Extraction efficiency decrease at low transfer fields values due to a worst electron extraction capability from the lower side of the GEM

Single vs triple GEM

Measurements with alfa particle

F. Murtas LNF/INFN

GEM Readout

Gain and readout functions on separate electrodes
Fast electron charge collected on patterned anode
Energy signal detected on lower GEM electrode

Cartesian

Small angle

Pads

F. Murtas LNF/I NFN

GEM Group

Sezione I NFN di Cagliari – Cagliari, I taly W. Bonivento, A.Cardini, C. Deplano, D.Pinci, D. Raspino

Laboratori Nazionali di Frascati - INFN, Frascati, Italy

G. Bencivenni, P. de Simone, F.Murtas,

M. Poli-Lener, M.Alfonsi

With the technical support of : SSCR /SPAS (LNF) Electronic Pool Service (LNF) Electronic Pool Service (CA)

The triple-GEM detector

- Multiple GEM structures allow to reach high gain in safe operating conditions;
- Several 3-GEM detector prototypes have been built and tested in last two years by our group;

region (R1) of the first station (M1) of the LHCb muon system.

Detector Requirements

A triple-GEM detector is being proposed for the Central Region of the first Muon Station of the LHCb experiment at CERN, for which the requirements are:

- Rate Capability
- Station Efficiency
- Cluster Size
- Radiation Hardness

- ~ up to 0.5 MHz/cm²
- ~ 99% in a 25 ns time window (*)
- ~ 1.2 for a 10x25 mm^2 pad size
- ~ 6 C/cm² in 10 years (for G ~ 10⁴)

(*) A station is made of two detectors "in OR", pad by pad.

This improves time resolution and provides some redundancy.

The frame is glued on GEM with a CI BA 2012 : ~2 h for epoxy polymerization with 50% of final curing All operations in clean room !

F. Murtas LNF/INFN

Prototype construction

10x10 cm² GEM stretched and glued on frames

The triple-GEM prototype assembled inside a gas tight box

Frascati 28 November 2002

F. Murtas LNF/I NFN

X-Ray System @ LNF

- E = 5.9 keV monochromatic X-ray beam
- Flux = 50 MHz/cm² (10² times max LHCb rate)
- > Spot size = π mm²

With this setup we have measured vs Gas mixture : Gain , Plateau , Rate Capability and Aging

F. Murtas LNF/INFN

The gas mixtures

In the beam tests we studied 4 different gas mixtures:

- 1. Ar/CO₂ 70/30;
- 2. Ar/CO₂/CF₄ 60/20/20;
- 3. Ar/CO₂/CF₄ 45/15/40;
- 4. Ar/CF₄/C₄H₁₀ 65/28/7;

Given

- n: the number of clusters per unit length;
- v: the electron drift velocity in the drift gap;

The 1/nv term is the main contribution to the intrinsic time resolution of this kind of detector.

The Ar/CO₂/CF₄ 45/15/40 gas mixture should give the same time performance as the Ar/CO₂/C₄H₁₀ 65/28/7. Frascati 28 November 2002

The gas gain

The GEM detector gain was measured by using X-rays for the different gas mixtures;

The detector gain is an exponential function of the sum of the 3 GEM supply voltages :

 $G = A e^{\alpha(Vgem1+Vgem2+Vgem3)}$

A and α depend on the gas mixture.

Plateau with Xray

F. Murtas LNF/I NFN

Rate capability

- > The rate capability was measured with X-ray;
- The detector was operated with an Ar/CO₂/CF₄ (60/20/20) mixture at a gain of about 2x10⁴;

Aging test

By irradiating the detector with an X-rays flux of 50 MHz/cm² :

- ~ 20 C/cm² was integrated with 60-20-20 @ Gain $2x10^4$ (15 LHCb Y)
- ~ 4.5 C/cm² was integrated with 45-15-40 @ Gain 6x10³ (10 LHCb Y)
- ~ 11 C/cm² was integrated with 65-28-7 @ Gain 1x10⁴ (17 LHCb Y)

P and T variations are corrected by using a low irradiated 3-GEM chamber

F. Murtas LNF/INFN

The time performance

Considerable improvement with respect to the $Ar/CO_2=70/30$ mixture, which exhibits a poor time resolution of about 10 ns (r.m.s.), is obtained with the new CF_4 and iso- C_4H_{10} based gas mixtures, which allow to reach time resolutions

better than 5 ns (r.m.s.)

F. Murtas LNF/INFN

The efficiency in 25 ns

A very important requirement for triggering in LHC experiments is to ensure an high efficiency in a 25 ns time window for a correct bunch crossing identification;

Discharge studies @ PSI

With X ray NO discharges !

The occurrence of discharges in gas detectors is correlated with the transition from avalanche to streamer.

➤ The transition depends on the voltage and ionization density.

In this case the total charge created by the multiplication processes could exceed the threshold value (Raether limit, 10⁷-10⁸ e-I + pairs) for the transition from avalanche to streamer.

Due to the very small anode-cathode distance in GEM detectors, the transition from avalanche to streamer is most of the time followed by discharges.

A discharge is seen on the read-out pads as a current drop

F. Murtas LNF/I NFN

Discharge Results (@PSI)

probability per incident particle of 10⁻¹² in 10 years at LHCb.

F. Murtas LNF/INFN

1250 1300 1350 1400 1450 Vg1+Vg2+Vg3 (Volt)

-14

10

Results: Ar/CO₂/CF₄ 45/15/40

65 V wide working region

F. Murtas LNF/INFN

Chamber 20x24 cm²

All the measurements shown until now are performed with 10x10 cm² prototype

In the last months we have started the construction of 20x24 cm² chamber

Load Measurements

We have built a new gem stretcher for GEM foils 30x30 cm².

Sag measurements have been performed as a function of different loads

But the second s

F. Murtas LNF/INFN

Load measurements results

The GEM with a tension of 30 Kg per side (~1Kg/cm) shows a sag of 100 μ m (central region) for a distributed load of 100 gr (equivalent to 0.1 mbar).

The electric field corresponds to a force of ~ 0.01 mbar.

The total sag due to the electrostatic force should be of the order $10\mu m.$

Large size triple GEM detector without spacer

F. Murtas LNF/INFN

Module-O construction

Few months ago we started to built the first chamber 20x24 cm²

The GEMs are stretched.

The G10 frames glued on the GEM foil

In the frames 6 holes house 1MΩ SMD resistors for HV decoupling Frascati 28 November 2002

GEM Chamber Layout

GEM Chamber top view

F. Murtas LNF/I NFN

Module O assembling

The assembling starts with the HV panel placed on top of a reference plane with 4 reference pins

The three GEM frames are glued on top of the others and tested with HV each time.

Frascati 28 November 2002

Module O assembling

Connector for FEE _ (ASDQ 25 mV/fC)

The GEM stack is closed with the Readout Pad Panel

The HV GEM contacts are soldered on the Drift Cathod Panel

The GEM are assembled without internal spacers

Module O Layout

Module 0 tests beam results

Both chambers reach the operating Voltage with few nA of dark current

F. Murtas LNF/INFN

Material budget & cost

_	
Act	One triple GEM chamber
	3 Frames of 22 mm wide 1-3 mm thick
0.	3 GEM Foils 50 μm Kapton and 5+5 μm Cu
0.	Honeycomb + Cathode and Anode $5+5 \mu m$ Cu
0.3	Total

er	Active area	Border
ick		4.0 % X ₀
Cu	0.2 % X ₀	0.1 % X ₀
Cu	0.6 % X ₀	0.5 % X ₀
tal	0.8 % X ₀	4 .6 % X ₀

Actually only the CERN is able to built different type of GEM foil ... you have to decide only the HV sectors organization and HV road...

One GEM foil 20x24 cm² have a cost of ~ $300 \in$.

Other GEM Applications

Compass experiment

F. Murtas LNF/I NFN

Frascati 28 November 2002

Compass experiment

Frascati 28 November 2002

F. Murtas LNF/I NFN

TPGC: TPC with GEM

Beam Monitor @ PSI

Beam spot at PSI measured with a triple gem 10x10 cm² and the LNF nano-amp

GEM and CCD Cameras

T.L. van Vuure^{∇}, R. Kreuger^{∇}, C.W.E. van Eijk^{∇} and R.W. Hollander^{∇}, L. M. S. Margato^{*}, F. A. F. Fraga^{*}, M. M. F. R. Fraga^{*}, S. T. G. Fetal^{*}, R. Ferreira Marques^{*}, A. J. P. L. Policarpo^{*}

 ∇ Radiation Technology Group TU Delft

*LIP Coimbra Universidade de Coimbra

Tracks of 5.5 MeV alphas from a Am source, stopped in 1 bar of Ar/CF 60/40.

The light was produced using a triple GEM and measured with a CCD camera

The range is 3.4 cm.

F. Murtas LNF/INFN

Radiography with GEM

Radiography with Xray at 8 KeV of a small mammal (1200 x 640 Pixels)

Pixel size of $50x50 \ \mu^2$

F. Murtas LNF/INFN

X-ray polarimeter

GEM chamber with pad readout to detect the direction of the photoelectron produced by X-rays Hit Position SingleHit Nen1-30 20 Mean x = 11.11 Mean y = 7.963 18 RMSx - 1.195 Variti DRIFT **EMSy = 2.701** 16 PLANE 14 TRIGGER 12 $V_{i \phi \rho}$ Auger 10 photoelectron electron GEM V_{battam} PIXEL 12 14 16 18 20 ANODE ᆉ ADC Charge asymmetry: 5.4 KeV polarized source 5.9 KeV unpolarized source Theta hi Hent = 4522 220 Mean - 0.0303 RMS = 0.7528 Chi2/ndf = 21.01/31 p0 = 64.15 +- 2.702 p1 = 136.5 +- 5.45 900 p.D E. Costa et al, 200 800 180 Nature 411(2001)662 700 160 140 600 R. Bellazzini et al 120 500 100 400 Nucl. Instr. and Meth. 80 300 60 n i Nent = 29359 Mean = 0.00313 200 A478(2002)13 40 RMS = 0.9066 100 Chi2 /ndf = 21.65 /33 20 0 = 862.9 +- 5.038 оĿ -1.5 -0.5 0.5 1.5 1.5 0 1 -1.5 -0.5 -1 0.5

F. Murtas LNF/I NFN

Fast X-ray plasma diagnostics

Readout: 32 2 mm² pixels

(ENEA Frascati, Italy)

D. Pacella et al, Rev. Scient. Instrum. 72 (2001) 1372 R. Bellazzini et al, Nucl. Instr. and Meth. A478(2002)13

F. Murtas LNF/I NFN

Sealed GEM Photomultiplier

Single photo-electron signals:

Semi-transparent CsI photocathode

A. Breskin et al, Nucl. Instr. and Meth. A478(2002)225

F. Murtas LNF/I NFN

GEM on medical imaging

1

GEM on medical image

Radiation: ²⁴¹Am-source

- Setup: Pad-type readout + GEM (gain 30)+ drift
- Gas: ArCO₂ (80-20) at 1 atm

Readout: 6 x 100 pads, pixel size of 1.27 x 1.27 mm²

Sensitivity: 3.7 mV/fC

Integration time: 1 ms Readout time: 10 μs per pixel

Peskov (Upsala University)

Conclusions

The triple-GEM detector operated with iso- C_4H_{10} and CF_4 gas mixtures fulfills all the requirements for the High Flux region of LHCb muon system.

Requiring 99% efficiency in 25 ns and $P_{dis} < 10^{-12}$:

- $Ar/CO_2/CF_4$ 60/20/20 \Rightarrow narrow working region 10 V;
- Ar/CF₄/C₄H₁₀ 65/28/7 \Rightarrow wide working region \approx 45 V;
- Ar/CO₂/CF₄ 45/15/40 \Rightarrow wide working region \approx 65 V;
- Good rate capability (up to 50 MHz/cm²);
- Good radiation hardness (>10 LHCb equivalent years);
- Very good results also for the large size detector.

The GEM community is working on other detector applications : Xray Astronomy , Medical I maging , TPGC , Plasma monitoring , Neutron detector , and many other R&D.