Nanostructured Fe-based materials obtained by mechanochemical synthesis in organic liquids

Alyona Maratkanova

Lab. for Ultra-Disperse Systems Physical-Technical Institute, Ural Branch of Russian Academy of Sciences **Izhevsk, Russia**

Nanocrystalline materials

New functional materials

Nanocrystalline materials

Small grain size (~10-100 nm)

Extended grain boundaries (up to 50% atoms are in the surface state)

Grains free of structure defects (dislocations, disclinations)

High mechanical, anticorrosion, antifriction, thermal stability, magnetic and other properties

New physical properties

Mechanochemical synthesis: Its advantages

Mechanoactivation – mechanical milling and alloying – severe plastic deformation technique

Effectiveness

- Simplicity
- Small average particle size
 Small average grain size

Mechanochemical synthesis:

What does it mean?

Experimental:

Milling Equipment

Mechanical Milling Technique: Equipment

Planetary Ball mill Fritsch Pulverisette 7

Experimental: Materials

- Technologically important materials
- Huge basic information accumulated before
- Possibility of using Mössbauer spectroscopy to analyze the local atomic structure

More disperse and corrosion-resistant powders were supposed to be obtained (compared with Fe) with keeping magnetic characteristics

Fe-Si-C

Technologically important system for iron and steel production

Experimental:

Milling conditions

Processes under fine and hyperfine dispersion? Effect of external environment on the process and energy of destruction?

Milling of metals and alloys in the liquids is used for rapid reduction of particle size, obtaining homogeneous particle size distribution, changing structure, phase composition and properties

Heptane

$$T_{\rm b}$$
 = 98 °C > temperature of outer

vial wall during milling (~ 80 °C)

Surfactant additive

(0.3% solution)

maximal effect of lowering the mechanical strength effective stabilizing layer on the Fe highly-dispersed powder surface

Effects by using surfactant additives: Plastification, increase in fragility, spontaneous self-dispersion

$$t_{\rm mil}$$
 = 1 ÷ 99 hours

Experimental: Annealing conditions

- Annealing temperature $T_{an} = 300, 400, 500, 800 \circ C$
- Atmosphere vacuum (10⁻³ Pa), Ar⁺
- Annealing regime:

Experimental: Measuring techniques

Structure and phase characterization of the powder bulk:

+ **XRD** (DRON-3M, Cu K_a)

Mössbauer spectroscopy (NGRS-4M spectrometer)

Chemical composition and topography of the powder surface:

- + Laser diffractometry (Analysette22)
- + AES
- + SEM Auger electron microprobe JAMP 10S
- + AFM (Scanning tunneling microscope P4-SPM-MDT)

+ TEM

Magnetic properties

- + Thermomagnetic behavior
- + Coercivity
- + Saturation magnetization

Fe in organic liquids: The aim of study

Initial stages of synthesis including formation of the interface between reagents, breaking interatomic bonds, migration of reagent atoms, formation of interstitial compounds

Processes of formation of:

- fineness
- structure and phase composition
- magnetic properties

for the Fe and Fe-Si powders mechanically milled in organics

- The influence of :
 - milling time
 - type of organic liquid
 - surfactant additive

on the sequence of structure and phase transformations and magnetic properties of the powders

Fe in organic liquids: Particle shape and size

0.3% oleic acid in heptane

0.3% VTES in heptane

Surfactant presence in milling liquid results in:

- Decrease in the average particle size
- Narrowing of the particle size distribution
- Change in the particle shape

Nanocrystalline structure

- ∼ 20 nm after 1h milling
- \sim 5 nm by the end of milling

Fe in heptane: Phase transformations

Mössbauer spectroscopy

Fe in heptane: Magnetic characteristics

Nanocrystalline structure - after 1 h milling (without changes in structure and properties)
 Long-time milling → aggregates

Fe (bulk)+ $C_7H_{16} \rightarrow \alpha$ -Fe + Fe-C(H)+Fe₃C+C (surface layers) + H_2

3) Decomposition of heptane (source of C and H) \rightarrow C, H diffusion \rightarrow saturation of Fe particles with C, H \rightarrow Fe-C(H) and cementite Fe₃C phases formation

Fe in heptane:

Phase transformations. Effect of annealing

Fe in heptane:

Magnetic characteristics. Effect of annealing

Fe in heptane:

Thermal stability of Fe-Fe₃C nanocomposite

Fe in heptane: Thermal stability of Fe-Fe₃C nanocomposite

Similar carbon nanofibers and nanotubes are observed under catalytic decomposition of hydrocarbons on fine metal (Fe and its subgroup) and alloys particles (A.V. Okotrub et al.)

Capsulation of Fe₃C particles in carbon shell \rightarrow thermal stability under annealing in inert gases up to 800°C (or decomposition in vacuum because of destroying carbon nanotubes)

Fe in oxygen-containing liquid: Particle shape and size

Surfactant presence in milling liquid results in:

- Decrease in the average particle size
- Narrowing of the particle size distribution
- Change in the particle shape

Fe in oxygen-containing liquid Phase transformations

Milling liquid – oleic acid solution (0.3 wt.% in heptane)

X-ray diffraction

Fe in oxygen-containing liquid Phase transformations

α-Fe Grain size, 12 01 2 Saturation magnetization, 1 h agy200 175 6 h 150 Ĕ 47 h 99 h C and O concentration, at.% CC 15-10-0 150 300 -12 -4 0 4 8 -8 2 H, kOe V, mm/s60 Mössbauer spectroscopy 20 40

Fe-O-H phases (oxides and hydroxides)

100

80

Fe in oxygen-containing liquid Phase transformations under annealing

For powders milled for 99 h

 $T_{an} = 300 \div 700 \circ C, Ar^+$

T _{an} , ^o C	Fe ₃ C, wt.%	Fe ₃ O ₄ , wt.%	FeO, wt.%	a-Fe, wt.%
300	29	28		43
400	44	29	-	27
500	45	28	-	27
600	43	24	6	28
700	_	2	2	96

Fe in oxygen-containing liquid

Phase transformations under annealing

Fe in silicon-containing liquid: Particle shape and size

Average particle size is less than in oleic acid solution Particle shape – thin crusts due to severe plastic deformation Melting of particles under electron beam

Fe in silicon-containing liquid Phase transformations

Milling liquid – vyniltrietoksisilan solution (0.3 wt.% in heptane)

	t _{mil.} , h	<l>, nm</l>	a, nm	<€ ² > ^{1/2}	
Fe+	24	2	0.2865	0.3	
heptane+ VTES	48	< 2	0.2863	0.7	
	99	*	*	*	
	24	4	0.2868	0.4	
Fe+ heptane	47	4	0.2866	0.4	
	99	3	0.2854	0.3	

* Were not determined because of strong line broadening

T _{anneal}	Fe_3C , wt.%					
	48 h	99 h				
500°C	0.44	0.75				
800°C	0.39	0.66				

General scheme of phase transformations

- 1. Severe plastic deformation
 - 2. Developing nanocrystalline structure in Fe powder
 - 3. Thermocatalytical destruction of organic liquid on the as-formed metal surface
 - 4. Adsorption of destruction products and their diffusion out of surface on the grain boundaries
 - 5. Formation of nonperiodic interstitial (amorphous and metastable) phases in the interface
 - 6. After annealing the formation of new phases in the powder bulk and developing nanocomposite structure

Fe-Si in organic liquids: Fe-Si-C phases

Manufacturing steels and cast-irons.

Amorphous Fe-Si-C alloys – better mechanical strength, plasticity, corrosion stability and magnetic properties compared to technical cast-iron

Metastable Fe-Si-C phases of different:

Crystal structure (amorphous, bcc, orthorhombic, triclinic, hexagonal and cubic with the structures of α - and β -Mn type;

Chemical composition (Fe₃SiC, Fe₄SiC, Fe₁₀Si₂C₂, Fe₁₀Si₂C₃, Fe₈Si₂C, Fe₉SiC₂)

Particle size and shape

Fe-Si in organic liquids Particle size and shape

 Agglomerate size 22 μm (heptane) 2 μm (oleic acid)

> Unlike Fe powders for Fe-Si powder surfactant additives produce little effect on the particle size but significantly reduces agglomerate size

Phase transformations

Sequence of structure and phase transformations in Fe-Si under milling in organic liquids

- Formation of nanocrystalline structure;
- Saturation of the particle bulk with the milling environment decomposition products (C, O, H – depending on liquid composition) followed by the formation of solid solutions and amorphous phases;
- After annealing formation of chemical compounds, for example, iron silicon carbides, iron carbides and so on.

Phase transformations

Phase transformations

Fe₈Si₂C

P1 space group symmetry

Milling liquid	Lattice parameters								
		nm		degree					
	а	Ь	С	α	β	γ			
Heptane	0.6413	0.6449	0.9724	83.651	99.307	120.423			
Surfactant solution	0.6449	0.6469	0.9711	83.550	99.500	120.900			

Phase transformations

Grain size (<L>), microdistortions (ε) and lattice parameter (a) for the Fe-Si alloy

Milling liquid	Heptane				Surfactant solution					
t _{mil} (h)	1	3	6	12	24	1	3	6	12	24
(<l>), ±0.5, nm</l>	5.1	4.2	3.5	4.0	3.0	7.7	5.2	5.9	4.2	4.0
(ε), ±0.03%	0.3	0.39	0.42	0.5	0.45	0.31	0.30	0.36	0.28	0.23
<i>a</i> , ±0.0003, nm	0.2841	0.2845	0.2848	0.2848	0.2850	0.2843	0.2844	0.2843	0.2843	0.2843
<i>a*</i> , ±0.0003, nm		0.2836				0.2855			-	

Saturation magnetization (σ_s , emu/g)

Milling liquid	Milling time, h			Annealing temperature, ° t _{mil} = 99 h		
	24	48	99	400	500	800
Heptane	150	150	133	139	146	148
Surfactant solution	137	139	121	126	129	157

Coercivity (H c, Oe)

Milling liquid	Milling time, h			Annealing temperature, ° C t _{mil} = 99 h			
	24	48	99	400	500	800	
Heptane	23	24	26	109	226	13	
Surfactant solution	28	39	57	104	194	104	

Fe-Si milled in Ar⁺

Phase transformations

Fe Dry milling of 70%Fe-13%Si-17%C
Si mixture followed by annealing of the obtained amorphous phase

Fe₅SiC

Cmc2.1 space group symmetry (*a*=1.0422, *b*=0.7939, *c*=0.7461 nm)

Ferromagnetic with Tc = 507 °C. Coercivity for the particles of a stone-like shape with an average size of 4 μ m was estimated as Hc=470 Oe with the specific saturation magnetization σ_s =150 emu/g.

Phase transformations

Scheme of the phase transformations occurring under milling the Fe-Si alloy in organic liquids and subsequent thermal treatment

Milling in liquids

Milling of metals and alloys in the presence of liquids (water, lubricants, protective coatings, etc.) is connected with the problem of environment effect on the equipment depreciation

Operation under BOTH aggressive chemicals and mechanical loading results in STRONGER DESTRUCTION of equipment materials

Mechanical effect leads to changes in structure and chemical composition of **surface layers**

Mechanical milling can be used to simulate the processes of structural and phase transformations under severe plastic deformation of metals in liquid environment

Collaboration

This study was carried out under the leadership of **Dr. S.F. Lomayeva** at the Department of Non-Equilibrium Metal Systems headed by **Prof. E.P. Yelsukov** at the Physical-Technical Institute of UB RAS.

Team members:

Dr. S.F. Lomayeva Dr. O.M. Nemtsova Dr. A.A. Chulkina Dr. A.V. Zagainov Dr. G.N. Konygin uds@pti.udm.ru

List of the main publications

- E. P. Elsukov, S. F. Lomaeva, G. N. Konygin, G. A. Dorofeev, V. I. Povstugar, S. S. Mikhailova, A. V. Zagainov, and A. N. Maratkanova. Effect of Carbon on the Magnetic Properties of Nanocrystalline Iron Prepared by Mechanical Milling in Heptane. // The Physics of Metals and Metallography. Vol. 87, No. 2, 1999, p. 114.
- Lomayeva S.F., Yelsukov E.P., Konygin G.N., Dorofeev G.A., Povstugar V.I., Mikhailova S.S. Maratkanova A.N. The influence of a surfactant on the characteristics of the iron powders obtained by mechanical milling in organic media. // Coloids and Surfaces. A. Vol. 162, 1999, p. 279.
- S. F. Lomaeva, E. P. Elsukov, A. N. Maratkanova, G. N. Konygin, and A. V. Zagainov. Structure and Magnetic Properties of Mechanically Alloyed Iron Silicocarbide Fe5SiC. // The Physics of Metals and Metallography. Vol. 99, No. 6, 2005, p. 590.
- Lomayeva S.F., Maratkanova A.N., Nemtsova O.M., Shuravin A.V., Chulkina A.A., Yelsukov E.P. Formation of iron oxides during mechanoactivation in water and oxygen-containing organic liquids. // Nuclear Instruments and Methods in Physics Research. A. V. 575. 2005, No. 1/2. P. 99.
- E.P. Yelsukov, A.N. Maratkanova, S.F. Lomayeva, G.N. Konygin, O.M. Nemtsova, A.I.Ul'yanov, A.A. Chulkina. Structure, phase composition and magnetic properties of mechanically alloyed and annealed quasibinary Fe(70)Si(x)C(30-x) alloys. // Journal of Alloys and Compounds, V. 407, 2006, p. 98.
- Lomayeva S.F. Structural and Phase Transformations, Thermal Stability, and Magnetic and Corrosive Properties of Nanocrystalline Iron-Based Alloys Obtained by Mechanoactivation in Organic Media. // The Physics of Metals and Metallography. Vol. 104, No. 4, 2007, p. 388.

