Super B Factory: The Machine* and Physics Capabilities

Stanford Linear Accelerator Center

Frascati µ-Workshop on B Factories October 5, 2004

*Warning: Not a machine expert!

PEP-II integrated luminosity

2004/07/31 09.21

PEP-II schematic layout

October 5, 2004

PEP-II HER RF cavities

BR_049

HER copper vacuum system: limit at 3A

Photon Stop limits

3.0 A at 9 GeV 4.8 A at 8 GeV 6.2A at 7.5 GeV

Cu chambers absorbing 100 W/cmof synchrotron radiation

Total HER SR power 5 MW

PEP-II Copper High Power Vacuum Chambers

LER aluminum vacuum system: limit at 4.5A

Lessons learned from PEP-II & KEKB

- Asymmetric beam energies work well.
- Energy transparency conditions are relatively weak.
- Asymmetric interaction regions can be operated.
- IR backgrounds can be handled though are not easy.
- \Box High current RF can be operated (1 A x 2 A).
- Bunch-by-bunch feedbacks work (4 ns spacing).
- Beam-beam tune shifts reach 0.08 (v) to 0.10 (h).
- Injection rates good; continuous injection feasible.
- □ Electron Cloud Instability (ECI) ameliorated for now!

Trickle injection at the B Factories

October 5, 2004 D.MacFarlane at Frascati µ-Workshop on B Factories

Electron Cloud Instability & multipacting

Resonance multipacting in solenoid field when the electron time of flight is equal to the bunch spacing

Windings added for ECI reduction

October 5, 2004

Projected performance of PEP-II

Luminosity (x10 ³⁴)	0.9	2.4	Units				
e⁺	3.1	3.1	GeV				
e-	9.0	9.0	GeV				
I ⁺	2.45	4.5	A	LER photon			
I -	1.55	2.2	A	stop limit			
β(γ*)	11	8	mm				
β (**)	30	30	cm				
Bunch length	10	7.5	mm				
# bunches	1588	1700					
Crossing angle	0	0	mrad	For 05 &			
Tune shifts (x/y)	4.5/7	8/8	x100	Additional			
rf frequency	476	476	MHz	stations,			
Site power	40	40	MW	upgrade			

Jul 04 Jul 07

For 05 & 06 shutdowns: Additional LER and HER rf stations, vacuum chamber upgrades, stronger B1 separation field,...

PEP II Luminosity Projections

Projections at KEKB

Projections for Penguin Modes

Projections are statistical errors only; but systematic errors at few percent level

BABAR Roadmap Study: Jan - July 04

Defining physics case for Super B Factory

- Emphasis on sensitivity to new physics in CP violation & rare decays
- Emphasis on need & capability for precision SM measurements
- Requirements of viable project plans
 - Estimates for duration of approval and funding process
 - Collider options and upgrade capabilities
 - Detector capabilities & requirements in light of projected backgrounds
 - Integrated scenarios for collider and detector construction, with implications for time to first data

Projections of physics reach in light of competition & other opportunities

oProjections of samples and sensitivities; analysis of physicsOctpleachD.MacFarlane at Frascati µ-Workshop on B Factories

Luminosity Equation

- ξ_y is the beam-beam tune shift parameter (~0.065)
- I_b is the bunch current (1 to 3 mA)
- n is the number of bunches (~1600)
- β_y^* is the IP lattice optics function (vertical beta) (10 mm)
- E is the beam energy (3.1 and 9 GeV)
- L is luminosity in units of 10^{33} cm⁻² s⁻¹

Achieving Super B Luminosities

Higher Currents:

- o More rf power, cooling, injector
- o More HOM heating (more bunches)
- o Beam instabilities
- o Electron clouds, fast ions

- o Smaller physical/dynamic aperture
- o Shorter lifetime, more background

Shorter σ_z :

- o More HOM heating
- o Coherent synchrotron radiation
- o Shorter lifetime, more background

Higher tune shifts:

- o Head-on collisions replaced by angled crossing
- o Degrades maximum tune shift unless crabbing cavities used

Parameters for High-Luminosity B Factory

Luminosity (x10 ³⁴)	0.9	2.4	15	25	70	Units
e⁺	3.1	3.1	3.1	3.5	8.0	GeV
e-	9.0	9.0	9.0	8.0	3.5	GeV
I+	2.45	4.5	8.7	11.0	6.8	A
I -	1.55	2.2	3.0	4.8	15.5	A
β (γ*)	11	8	3.6	3.0	1.5	mm
β (x*)	30	30	30	25	15	ст
Bunch length	10	7.5	4	3.4	1.7	mm
# bunches	1588	1700	1700	3450	6900	
Crossing angle	0	0	0	±11	±15	mrad
Tune shifts (x/y)	4.5/7	8/8	11/11	11/11	11/11	x100
rf frequency	476	476	476	476	952	MHz
Site power	40	40	75	85	100	MW
J.Seeman	Jul 04	Jul 04 Jul 07 LER +IR +HER vacuun vacuum 952MHz rt				

October 5, 2004

New techniques for Super B-Factory

- \square Beam lifetimes will be low \rightarrow continuous injection.
- q Very low β_{y}^{*} (6 to 10 mm \rightarrow 2 to 3 mm).
- q Higher tune shift (trade beam-beam lifetimes for tune shifts)
- Higher beam currents (x 10 or so).
- Higher frequency RF (more bunches).
- □ Bunch-by-bunch feedbacks at the 1 ns scale.
- Very short bunch lengths (2 mm).
- High power vacuum chambers with antechambers and improved or no bellows.

Reduce energy asymmetry to save wall power.

Vacuum system for Super B Factory

clouds.

Interaction region design

Luminosity-dependent backgrounds

IR concept for a Super B-Factory

New IR magnet design

Quadrupole, antisolenoid, skew quadrupole, dipole and trims located in one magnet.

October 5, 2004

D.MacFarlane at Frascati µ-Workshop on B Factories

120

115

(m 110 105

≌ ₁₀₀

95

A82

SCO

SCB (HDC)

AS1

VDC.

AS3

Power scaling equations

HOM calculations: 476 MHz cavity

HOM calculations: 952 MHz cavity

Site power limits

PEP-II upgrades schemes

Luminosity (x 10 ³⁵)	1.5	2.5	7	5→7
RF frequency (MHz)	476	476	952	476→952
Site power (MW)	75	85	100	70→100
Crossing angle	No	Yes	Yes	Yes
Crab cavities	No	Yes	Yes	Yes
Replace LER	Yes	Yes	Yes	Yes
Replace HER	No	Yes	Yes	Yes
Upgradeable	No	Yes (to 952MHz)	Yes	Yes

Recommended

Detector requirements depend on projecting backgrounds for luminosities that are >20 times larger than at present

Recommended scenario: 5 to 7 x 10^{35}

- Replace present RF with 952 MHz frequency over period of time.
- \Box Use 8 x 3.5 GeV with up to 15.5 A x 6.8 A.
- New LER and HER vacuum chambers with antechambers for higher power (x 4).
- Keep present LER arc magnets but add magnets to soften losses; replace HER magnets as well.
- New bunch-by-bunch feedback for 6900 bunches (every bucket) at 1 nsec spacing. (Presently designing feedback system being 0.6-0.8 nsec spacing.)

Push β_y* to 1.5 mm: need new IR (SC quadrupoles) with 15 mrad crossing angle and October 5, 2004 Crab Cavities

Upgrade Plan: Initial 5x10³⁵ Project

LER replacement

- + HER replacement
- + 952 MHz rf
- SVT striplets

Silicon outer tracker

Rad Hard EMC

DRC replacement

October 5, 2004

Upgrade Plan: Ultimate Reach

LER replacement

- + HER replacement
- + 952 MHz rf

SVT striplets

Thin pixels

Silicon outer tracker

Rad Hard EMC

DRC replacement

October 5, 2004

Important Factors in Upgrade Direction

Project is "tunable"

- Can react to physics developments
- Can react to changing geopolitical situation
 - Project anti-commutes with linear collider
 - Will emerge from *BABAR* and Belle, but could be attractive to wider community in context of other opportunities
- As we learn more about machine and detector requirements and design, can fine tune goals and plans within this framework

Project has headroom

- Major upgrades to detector and machine, but none contingent upon completing fundamental R&D
- Headroom for detector up to 5×10^{35} ; with thin pixels beyond

• Headroom for machine up to 8.5×10^{35} ; requires additional rf,

OctWhigh 2600 be staged into machine over time B Factories

Possible Timeline for Super B Program

LOI: Super B Factory at KEK

- Machine Parameters
- Beam-Beam Interactions
- Lattice Design
- Interaction Region
- Magnet System
- Impedance and Collective Effects
- RF System
- Vacuum System
- Beam Instrumentation
- Injector Linac

Scenario D.MacFarlane at Frascati μ-Workshop on B Factories

SuperKEKB LOI: KEK Report 04-4 http://belle.kek.jp/superb/

Super KEKB machine parameters

Parameter		LER	HER	Unit
Beam currrent	I	9.4	4.1	А
Number of bunches	n _b	50	18	
Horizontal beta at IP	β_{x}	2	0	cm
Vertical beta at IP	β_y		3	mm
Bunch length	σ_{z}		3	mm
Emittance	ε _x	2	24	
Coupling	к	0.	75	%
Crossing angle	θ_{x}	30 (crab-	-crossing)	mrad
Momentum compaction	$lpha_{\sf p}$	2.7x10 ⁻⁴	1.8x10 ⁻⁴	
RF voltage	V _c	15	20	MV
Synchrotron tune	ν_{s}	0.031 0.019		
Vertical beam-beam	ξy	0.14 (0.28)		
Luminosity	L	2.5	x10 ³⁵ cm ⁻² s ⁻¹	

Beam-beam parameter is obtained from simulations: strong-strong (weak-strong)

Simulation: head-on vs finite-crossing

- Beam-beam limit is ~0.05 for finite-crossing collision from the both simulations. (Not much difference between 11 & 15 mrad)
- Head-on collision much improves beam-beam parameter.
- Discrepancy between Weak-Strong and Strong-Strong simulation is a factor of 2 for head-on collisions.

Opportunities for Super B Factory

- Current program of PEP-II/BABAR and KEKB/Belle could attain ~1-2 ab⁻¹ by end of the decade
 - Data samples will be almost 10x larger than now and 100-200x times larger than CLEO
 With such a large increase in sensitivity to rare decays, expect that there is a significant discovery potential
 Rich program of flavor physics/CP violation to be pursued
- Even larger samples may offer opportunity to search for new physics in CP violation and rare decays
 - High-luminosity asymmetric e⁺e⁻ colliders with luminosities 10³⁵-10³⁶ cm⁻²s⁻¹ and up to 10 ab⁻¹/year - "Super B Factory" o Emphasis on discovery potential and complementarity in an era when LHC is operating, along with LHCb and BTeV (?) o Complementary flavor physics if LHC discovers SUSY, etc: discovery window if no new physics seen?

Physics Capabilities: Angle Projections

Unitarity Triangle Anales [dearees]		e⁺e⁻ [ab⁻¹]	Hadronic b [1yr]		
Measurement	3	10	50	LHCb	BTeV
α(ππ) (Sππ, B→ ππ BR's+ isospin)	6.7	3.9	2.1	-	-
$\alpha(\rho\pi)$ (Isospin, Dalitz) (syst ≥ 3)	3, 2.3	1.6, 1.3	1, 0.6	2.5 -5	4
α (ρρ) (penguin, isospin, stat+syst)	2.9	1.5	0.72		
$\beta(J/\psi K_{s})$ (all modes)	0.3	0.17	0.09	0.57	0.49
$\gamma(B \rightarrow D^{(*)}K) (ADS)$		2-3		~10	<13
γ(all methods)		1.2-2			

Theory: $\alpha \sim 5\%$, $\beta \sim 1\%$, $\gamma \sim 0.1\%$

Potential New Physics contributions

New Physics Sensitivity

Ciuchini, Franco, Martinelli, Masiero, & Silvestrini

October 5, 2004

Averages for sin2 β and s-penguin modes

CP Violation in $b \rightarrow s$ penguins

Rare Decays, New Physics, CPV [%]		e⁺e⁻ [ab⁻¹]			Hadronic b [1yr]	
Measurement	Goal	3	10	50	LHCb	BTeV
<i>S(B⁰→</i> φK _S)	SM: <5	16	8.7	3.9	16 (?)	7 (?)
<i>S(B⁰→</i> φK _s +φK _L)	SM: <5					
<i>S</i> (<i>B</i> →η′ <i>K</i> _s)	SM: <5	5.7	3	1		
<i>S(B→K_s</i> π ⁰)	SM: <5	8.2	5	4		
<i>S(B→K_sπ⁰γ)</i>	SM: <2	11.4	6	4		
A_{CP} (b \rightarrow s γ)	SM: <0.5	2.4	1	0.5		
$A_{CP}(B \rightarrow K^* \gamma)$	SM: <0.5	0.59	0.32	0.14	-	-
CPV in mixing (q/p)		<i><</i> 0.6			-	-

CP Violation in $b \rightarrow s$ penguins

Rare Decays, New Physics, CPV [%]		e⁺e⁻ [ab⁻1]			Hadronic b [1yr]	
Measurement	Goal	3	10	50	LHCb	BTeV
S(B ⁰	SM: <0.25	16	8.7	3.9	16 (?)	7 (?)
$S(B^{o} \rightarrow \phi K_{s} + \phi K_{L})$	SM: <0.25					
S(B→η'K,)	SM: <0.3	5.7	3	1		
S(B→K_sπ⁰)	SM: <0.2	8.2	5	4		
s(BDiscoyery p	ot <u>entiaba</u> t	Supen B	for r	on-SN	physi	CS
A _c ρ (b→sγ)	SM: <0.5	2.4	1	0.5		
$A_{CP}(B \rightarrow K^* \gamma)$	SM: <0.5	0.59	0.32	0.14	-	-
CPV in mixing		<0.6				-
(19/pl)						

More Rare decays precision

Rare Decays - New Physics			Hadronic b [1 yr]			
Measurement	Goal	3	10	50	LHCb	BTeV
Γ (b→d γ) / Γ (b→s γ)					-	-
$B(B \rightarrow D^{(\star)}\tau V)$	<i>SM:8x10⁻³</i>	10.2%	5.6%	2.5%	l	I
B (B→s vv) (K ^{-,0} ,K*-, ⁰)	SM: ~5% 1 excl: 4x10 ⁻⁶			~3 0	l	1
B(B→invisible)		<i><2x10⁻⁶</i>	<1x10 ⁻⁶	<4 x10 ⁻⁷	-	-
B (B _d →μμ)		-	-		1-2 evts	1-2 evts
B(B _d →ττ)		-	-		-	1
<u></u> <i>B</i> (τ→μγ)			<10 ⁻⁸		-	-

More Rare decays precision

Rare Decays - New Physics			Hadronic b [1 yr]			
Measurement	Goal	3	10	50	LHCb	BTeV
Γ (b→d γ) /					-	-
<u>Г(b→sγ)</u>						
$B(B \rightarrow D^{(*)}\pi v)$	SM:8x10-3	10.2%	5.6%	2.5%	-	-
B(B→svv)	SM: ~5%			~3o	-	-
(KDiscovery	potential	at Super	r B for I	non-SM	physic	S
B(B→invisible)		<2×10-6	<1×10-6	<4x10-7	-	1
B (B_d → μμ)		-	-		1-2	1-2
					evts	evts
B (B _d →ττ)		-	-		-	-
<u> 26-Discovery</u>	potential	at Supe	· Bifor I	non-SM	physic	S -

$b \rightarrow sl^+l^-$ precision

New Physics - Kl+l-, sl+l-			e⁺e⁻	Hadronic b			
٢%١			[ab-1]		<u>[]</u>	[1 yr]	
Measurement	Goal	3	10	50	LHCb	BTeV	
B (B→K μ⁺μ⁻)	SM: 1	~8	~4	~2	-	-	
/B (B→Ke⁺e⁻)							
$A_{CP}(B \rightarrow K^* \lambda^+ \lambda^-): all$	SM:	~6	~3	~1.5	~1.5	~2	
	<i><5</i>						
$A_{CP}(B \rightarrow K^* \lambda^+ \lambda^-): high$	SM:	~12	~6	~3	~3	~4	
mass	<5						
$A^{FB}(B \rightarrow K^* \lambda^+ \lambda^-): s_0$	SM:	~20	~9	9	~12		
$A^{FB}(B \rightarrow K^* \lambda^+ \lambda^-): A_{CP}$	±5						
$A^{\text{FB}}(B \rightarrow s\lambda^+\lambda^-): \0$		27	15	6.7			
$A_{FB}(B \rightarrow s\lambda^{+}\lambda^{-}): C_{g}, C_{10}$		36-55	20-30	9-13			

$b \rightarrow sl^+l^-$ precision

New Physics - Kl+l-, sl+l-			e⁺e⁻	Hadronic b		
٢%١			[ab-1]		<u>г1</u>	vrl
Measurement	Goal	3	10	50	LHCb	BTeV
B(B→Kμ+μ+) /B(B→Ke+e+)	SM: 1	~8	~4	~2	•	-
Ace(B-K*2+2-): all	SM: <5	~6	~3	~1.5	~1,5	~2
A _{CP} (B→K [*] λ [*] λ [*]): high mass Discovery poten	SM: tial_at	Super	B for r	non-SN	physi	cs~4
$A^{FB}(B \rightarrow K^* \lambda^* \lambda^-): s_0$ $A^{FB}(B \rightarrow K^* \lambda^+ \lambda^-): A_{CO}$	<i>SM</i> : ±5	~20	~9	9	~12	
A ^{FB} (B→sλ*λ*):		27	15	6.7		
$A_{FB}(B \rightarrow s\lambda^+\lambda^-): C_{g_1}, C_{10}$		36-55	20-30	9-13		

Projections for Super B Factory

Projections are statistical errors only; but systematic errors at few percent level

Conclusions

Strong physics case for Super B Factory

- Program rests on ability to explore of new physics through flavor couplings and phases
 - Complementary to LHC collider experiments
 - Complementary to hadron b experiments; could even be viewed as natural successor
- Precision Standard Model physics a second fundamental pillar of program

Arguments will evolve with time and data

 Perhaps our data is already hinting at new physics, which will motivate further precision studies of flavor physics

Physics case may very well continue to strengthen with time

Conclusions

Next Steps

- Working to find common ground with Belle and to engage wider community in exploring physics capabilities
- Focusing on critical issues and necessary detector R&D; will need support from DOE and national funding agencies
- Intend to develop a site specific conceptual and technical designs for a Super B Project on appropriate time scale, including better understanding of expected backgrounds
 - Builds on proven track record of high-luminosity storage rings and general purpose e⁺e⁻ detectors
 - Builds on our present knowledge of *CP* violation and rare *B* decays; expect that case will only strengthen as we explore ever increasing data samples over the next few years

o Aim to gain a better understanding of detector requirements October 5, 2004 and limitations imposed by backgrounds

References

- o EOI and LOI (Jan 04) for SuperKEKB [http://belle.kek.jp/superb/]
- o Super B Workshop in Hawaii (Jan 04) [http://www.phys.hawaii.edu/~superb04/]
- o BABAR Roadmap Report (Jul 04)
- o 10³⁶ Workshop (available shortly)

Projecting Physics Reach

- Working assumptions for projections
 - LHCb:
 - Start in Jan 2008 with 50% of design for 2 years
 - BTEV:
 - Start in Jan 2010 with 50% of design for 2 years
 - Rolling start for Super *B* Factory:
 - Oct 2011 = 2.5x10³⁵
 - Oct 2012 = 5x10³⁵
 - Oct 2013 = 7×10^{35} with replacement of inner SVT by thin pixel device

Projections for $\rho^+\rho^-$

56

Projections for K*_Y

Tagged Sample Projections for φK^0

Error Projections for φK^0

October 5, 2004

Projections for $\pi^+\pi^-$

60

Projections for 2-Body Isospin Analysis

61