Partial Width of the $\eta \rightarrow \pi^0 \gamma \gamma$ Decay

George Lolos University of Regina

Frascati, May 21, 2003

Outline

- General Comments on Symmetry
- Chiral Symmetry and Perturbation
- The η meson
- The Crystal Ball at Brookhaven
- Analysis Procedure
 - Cuts
 - Binned Maximum Likelihood Method
- Partial Width Result

Symmetry and Conservation Laws

$$i\hbar \frac{d\psi}{dt} = H\psi, [H, F] = 0 \Longrightarrow \frac{d < F >}{dt} = 0$$
$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}}\right) - \frac{\partial L}{\partial q} = 0, \ \dot{p} - \frac{\partial L}{\partial q} = 0$$

Translation: linear momentum
Rotation: angular momentum
Isotopic spin: nuclear force
Space-time: speed of light

Symmetry Breaking/Hiding
Rotation, Reflection
Electro-weak force: SU(2)xU(1)
Strong nuclear force: SU(3)xSU(2)xU(1)
Supersymmetry

Mass generation
True vacuum (ground state)
Symmetry is still there

Chiral Symmetry

- Not incomprehensible, nor a theorist's theory, nor just used for superstrings, nor just another model.
- Direct consequence of QCD.
- Rigorous calculations at low energy region.
- At low energies, processes are constrained by symmetry.
- Symmetry leads to non-trivial dynamics and predictions.
- Phenomenological input.

So, what is it?

- Pretend u, d, s quarks are massless.
- Each has a L- and R-handed helicity.
- QCD does not flip the helicity, so the symmetry is SU(3)_L x SU(3)_R.
- Massive quarks: symmetry breaks; look at the field ψ =(u d s) SU(3)_{L+R=V}

$$\Gamma_{L} = \frac{1}{2} [1 + \gamma_{5}] \Gamma_{R} = \frac{1}{2} [1 - \gamma_{5}]$$

$$\psi_{L} = \Gamma_{L} \psi; \psi_{R} = \Gamma_{R} \psi; \psi = \psi_{L} + \psi_{R}$$

 ψ_L and ψ_R have left- and right-handed chirality!

Noether says...

- 16 conserved currents and charges:
 - 8 vector currents SU(3)_V
 - 8 new axial charges
 - Particles appear in multiplets
- $H|P> = E_p|P>$, single particle state:

$$H\left(e^{iQ_5^j}|P\rangle\right) = e^{iQ_5^j}H|P\rangle = E_p\left(e^{iQ_5^j}|P\rangle\right)$$
$$\left[H,Q_5^j\right] = 0$$

• Explicit (mass difference), spontaneous (dynamics) symmetry breaking.

Chiral Perturbation Theory (χ PT)

- Small deviations: we can perturbe!
- Write L_{eff} consistent with χS .
- Calculate all possible diagrams.
- Renormalize all *L_{eff}* parameters from experiment.
- Apply at low and medium energies.
- Use matrix field U, with $U \rightarrow LUR^+$ (retains χS).
- L_{eff} has i=2,4,6,... derivatives like $\partial_{\mu}U\partial^{\mu}U^{+}$
- ∧ Perform energy expansion: $M = Aq^2 + Bq^4 + Cq^6$

What role does the η play?

- The η -meson is a massive vacuum.
- J=Q=I=s=b=c=B=L=0, P=-1, i.e. we have transitions with no flavor change.
- Mass=547.4±0.2 MeV, Γ=1.2 keV
- λ Physical η-meson state:octet-singlet mixing, with θ = -19.5⁰.

$$|\eta\rangle = [\cos\vartheta]\eta_8 - [\sin\theta]\eta_1 = \frac{1}{\sqrt{3}}(uu + dd - ss)$$

Large no. of rare n decays

3γ, 3π⁰γ, 2π⁰γ: test of C-invariance
4π⁰, 2π⁰: test of CP-invariance
3π⁰: slope; chiral perturbation test
π⁰γγ: chiral perturbation test:

Third order in the momentum expansion for the π⁰γγ decay

The interest in the $\eta \rightarrow \pi^0 \gamma \gamma$ Decay

• It is a window on high order χ PT effects.

- > Leading $\theta(p^2)$ term and $\theta(p^4)$ tree contribution absent: γ does not couple directly to π^0 , η^0 .
- > $\theta(p^4)$ and $\theta(p^6)$ loops are suppressed by heavy intermediate states or G-parity.
- Main $\theta(p^6)$ contribution is Vector Meson Exchange.
- \neg η→π⁰γγ needed to understand semi-leptonic η→π⁰*l*+*l*-decay; forbidden as a single-photon process by C-parity.
- $\eta \rightarrow \pi^0 \gamma \gamma$ needed to understand K⁰_L $\rightarrow \pi^0 l^+ l^-$; direct signal of CPviolation.

The η decay channels

Total neutral modes	72.0±0.5%	
η>γγ	39.43±0.26%	
η→3π ⁰	32.51±0.29%	
η →π ⁰ γγ	(7.2±1.4)x10 ⁻⁴	
Total charged modes	28.0±0.5%	
$\eta \rightarrow \pi^+ \pi^- \pi^0$	22.6±0.4%	
η→π+π-γ	4.68±0.11%	
Etc.		

The Status Quo of $\eta \rightarrow \pi^0 \gamma \gamma$

• Experimental:

– GAMS2000: (0.84±0.18) eV

• Theoretical:

- VMD model: (0.30 ±0.15) eV
- $-\chi PT$ theory: (0.42 ±0.20) eV
- C-odd axial vectors: (0.47 ± 0.20) eV
- Quark boxes: (0.70 ±0.12) eV

 λ Measure the partial width with confidence!

Previous Measurements

	GAMS2000 (Serpukov)	SND (Novosibirsk)
Reference	Alde et al. Z. Phys. C25 (1984) 225	Achasov et al., NP B600 (2001) 3.
Production Reaction	π⁻p→ηn @ 30 GeV/c	$e^+e^- \rightarrow \phi^0 \rightarrow \eta \gamma @ 1044$ MeV Collider
Detector	1538 38x38mm ² Pb-Glass counters @12m	1630 Na(Tl) crystals; 90% of 4π
η Sample	600,000 produced	258,000 detected
Complications	Misidentification of $\eta \rightarrow 3\pi^0$ due to overlaps in the EM shower	Extra γ from primary $\eta \rightarrow \pi^0 \gamma \gamma$ reaction is not unique
Result	$\Gamma = (0.84 \pm 0.17) \text{ eV}$	Γ< 0.99 eV

The Crystal Ball at BNL

- C6 beam line of AGS @ BNL
- λ π⁻p->ηn reaction
- λ 720 MeV/c
- λ LH₂ target
- λ 3 x 10⁷ η mesons produced
- λ Crystal Ball: NaI crystals

The Detector

• SLAC/DESY

- 672 optically isolated NaI crystals with PMTs at rear
- 2 hemispheres
- Beam pipe
- Trigger: total energy in ball > 400 MeV
- Veto Barrel (neutrals)
- Enclosed in dry room

Background: 4-Cluster Event Types

 $\eta \rightarrow \pi^0 \gamma \gamma$ should produce 4 photon clusters in the CB

- λ <u>π=p→n2π⁰→n4γ</u>: Initially ≈3000 for every η→π⁰γγ
 - Suppressed with unique reconstruction of a single π^0 and $m_{\gamma\gamma} > (m_{\pi^0}+4\sigma)$
- λ <u>π=p→nη→ n3π⁰→n6γ</u>: Initially ≈1200 for every η→π⁰γγ
 - 2 missing clusters turn it into a 4-cluster event
- A. Two photons escape through beam tunnel
 - Suppressed with Missing Mass=m_n and Invariant Mass=m_n criteria
- B. Overlapping clusters
 - All energy is recovered so Missing Mass=m_n and Invariant Mass=m_η
 - 4 observed clusters reconstruct to a single π^0 and two clusters

Background imitates $\eta \rightarrow \pi^0 \gamma \gamma$!!

Analysis Overview

- Generate MC simulations using data dynamics to reproduce the data
- Apply likelihood analysis to achieve optimal separation between signal and background
- Subtract normalized background distributions and integrate in regions with good signal-to-noise background ratio
- Compare number of $\eta \rightarrow \pi^0 \gamma \gamma$ events found to MC and number of $\eta \rightarrow 3\pi^0$ to arrive at:

$$\frac{\Gamma(\eta \to \pi^0 \gamma \gamma)}{\Gamma(\eta \to 3\pi^0)}$$

Get BR($\eta \rightarrow \pi^0 \gamma \gamma$) through the PDG value of BR($\eta \rightarrow 3\pi^0$)

Cluster Finding Algorithm

- 98% of a photon's energy is deposited in a cluster composed of a crystal and its 12 adjacent neighbors (eliminate guard crystals first)
- Crystal threshold: 2 MeV
- Cluster threshold: 20 MeV
- Identify "peak crystal" (most energetic)
- Identify cluster
- Remove all these crystals
- Iterate until all clusters have been assigned

Cluster Overlap

-20

Calibration: $\pi^-p \rightarrow n\gamma\gamma$

Excellent gain coefficient fitting: Minimization to simultaneously fit both peaks

Reconstruction of Events

Sort events based on:
Trigger type
Number of clusters
Missing Mass
Invariant Mass
Number of reconstructed pions

- For this analysis:
 - Neutrals
 - Four clusters (±1, ±2)
 - Neutron Mass
 - Eta Mass
 - Unique π^0 (± 2 σ)

Cleanup: 2-cluster events

23

MC Generation

- Aim for agreement between MC and data:
 - Signal
 - Backgrounds
- Input:
 - Experimental distributions
 - Fundamental Physics information
- Simulate Crystal Energy Deposition
- Use the same Analyzer code

Physics Distribution Input

Simulate three reactions:
π⁻p→ηn→π⁰γγn (Signal)
π⁻p→ηn→3π⁰n (Background)
π⁻p→2π⁰n (Background)
All these contribute to 4-cluster events
Distributions obtained from literature and our own data samples under different conditions (e.g. 6-cluster events for the η)

Physics channels of $\pi^- p \rightarrow 2\pi^0 n$

Studied in detailed by collaborators

Monte Carlo of $\pi^- p \rightarrow 2\pi^0 n$ from Data (Employ cuts: MM, $2\pi^0 s$, CB threshold)

Iterative 3-D fitting: $IM_{\pi\pi}$ vs. $IM_{\pi n}$ vs. θ_{CM}

Monte Carlo for $\pi^-p \rightarrow \eta n$

(Two-body kinematics, $\eta \rightarrow 3\pi^0$)

Experimental Distributions
Beam properties: chambers in beam line
Pedestals, pile-up, dead time

MC Momentum Adjustment

MC Reproduction of Data for $\pi^- p \rightarrow 2\pi^0 n$

MC Reproduction of Data for $\pi^- p \rightarrow 2\pi^0 n$

MC Reproduction of Data for $\pi^- p \rightarrow 2\pi^0 n$

Primary Cuts

- Four clusters
- No connected regions (suppresses overlaps)
- Peak crystal not a guard crystal
- Missing mass that of a neutron (suppresses $2\pi^0$)
- Invariant mass > 0.5 GeV/c² (suppresses $2\pi^0$)
- CB threshold between 0.62-0.80 GeV
- Unique π^0 (suppresses $2\pi^0$)
- $\lambda M_{\gamma\gamma}$ (suppresses $2\pi^0$)
- λ Radial energy spread ratio

These eliminate 99.9% of background and leave 35.6% of signal events: $3\pi^0/2\pi^0/\pi^0\gamma$: 925/340/35000

Probability Density Variables

$$IM = \sqrt{\sum_{i=1}^{k} E_i^2 - \sum_{i=1}^{k} \vec{p}_i \cdot \vec{p}_i}$$

Invariant Mass

Missing Mass

$$MM = \left(E_{beam} - \sum_{i=1}^{k} E_i\right)^2 - \left(\vec{p}_{beam} - \sum_{i=1}^{k} \vec{p}_i\right)$$

$$\mathbf{R} = \frac{E_{cluster} - E_{peak}}{E_{cluster}}$$

R-cut: suppresses 3π⁰ (radial energy spread)

TPD-cut: suppresses $2\pi^0$

(fractional two-pion mass difference)

$$TPD = \min(t_{ij} + t_{kl}), i \neq j \neq k \neq l$$

 $t_{ij} = \frac{\left| IM_{ij} - m_{\pi^0} \right|}{m_{\pi^0}}$

$$p_T = \sum_i \vec{p}_i \times \hat{z}$$

Transverse Momentum: suppresses $3\pi^{0}$

0.7

0.8

Likelihood Analysis to Separate $\eta \to \pi^0 \gamma \gamma$ from Background

- Use the shapes of *probability distributions* to separate the three channels.
- Generate likelihood functions that compare relative probability of an event being a $\pi^0 \gamma \gamma$ or to one of the background processes.

$$L_{2\pi} = \sum \ln(\frac{P[X_i = X(\eta \to \pi^0 \gamma \gamma)]}{P[X_i = X(\pi^- \mathbf{p} \to 2\pi^0 \mathbf{n})])}$$
$$L_{3\pi} = \sum \ln(\frac{P[X_i = X(\eta \to \pi^0 \gamma \gamma)]}{P[X_i = X(\eta \to 3\pi^0)])}$$

 $L_{3\pi} = 0$: Equally likely $\eta \to \pi^0 \gamma \gamma$ and $\eta \to 3\pi^0$ with 2 missing clusters. $L_{3\pi} > 0$: Relatively more likely $\eta \to \pi^0 \gamma \gamma$ than $\eta \to 3\pi^0$.

- Sum is over thirteen physical observables including invariant mass, cluster energies, etc.
- The likelihood variables are calculated on an event-by-event basis for both the experiment data and the MC simulated data.

Likelihood Islands

Normalized Background Subtraction

42

Results

- Normalizations performed and background MC simulation subtracted from data.
- Examined multiple integration regions that satisfy:
 - $\Rightarrow \text{ Number of } \eta \to \pi^0 \gamma \gamma \text{ events}$ found is statistically significant above background to 3 σ , to ensure the region is large enough to be meaningful.
- Different integration choices were considered to ensure final result was not sensitive to choice of integration region (±10%).

$$\sigma = \sqrt{\sigma_{tot}^2 + \sigma_{2\pi}^2 + \sigma_{3\pi}^2}$$
$$\sigma_{tot} = \sqrt{N_{tot}}$$

Error Considerations

• The statistical uncertainty is:	$\sim 30\%$
• Normalization was performed on multiple regions of the data and Analysis parameters were varied:	$\Big\} \sim 20\%$
• The 3 σ cutoff introduces a correction of ~ 10% and uncertainty of:	< 10%
• Uncanceled acceptance systematics were estimated to be:	< 10%
• Sensitivity to simulated distribution of $\eta \rightarrow \pi^0 \gamma \gamma$ decay products was:	<1%
• The systematic uncertainty is:	~ 30%

The GAMS-2000 Result

- GAMS had ~ $\frac{1}{50}$ our number of η 's.
 - ⇒ We were considerably more aggressive in our cuts aimed at achieving a high confidence background subtraction.
- Handling of $\eta \to 3\pi^0$ with double overlap?
 - \Rightarrow MC \rightarrow GAMS used 150k "real" γ -showers to simulate 600 k (?) η 's.
 - \rightarrow Statistically limited simulation of BG.
 - \Rightarrow Kin. Fit \rightarrow Good at eliminating BG around the peak.
 - \rightarrow How much BG is under the peak?
- Error estimate?
 - \Rightarrow Impact of limited MC stats. on errors?
 - ⇒ Total error (from unspecified sources) in reanalysed result (with fewer identified signal events) is similar to stat. error from original analysis:
 - * Were systematic errors included?

Summary and Conclusions

 λ The η→π⁰γγ decay is a sensitive test of χPT to third order in the momentum expansion

 λ The Crystal Ball result:

- Γ(η→ π^0 γγ) = (0.32 ±0.10±0.11) eV

- λ Main Limitation: CB crystal granularity
- λ More accurate measurements require perhaps a segmented e-m calorimeter