Precision determinations of $|V_{cb}|$ and $|V_{ub}|$

Probing weak interactions and CP violation in the quark sector with semileptonic B decays

> Bob Kowalewski University of Victoria

- Importance of testing CKM picture of CF
- B factories the luminosity frontier
- HQET and OPE for heavy quarks
- NEW $|V_{cb}|$ from inclusive decays (b \rightarrow clv)
- NEW $|V_{cb}|$ from exclusive decays $(B \rightarrow D^* \ell v)$
- Soon $|V_{ub}|$ from inclusive decays (b \rightarrow ulv)

soon $|V_{ub}|$ from exclusive decays $(B \rightarrow \pi \ell v)$

Weak interactions of quarks

- Historically fruitful area of research
 - τ / θ puzzle (1950s)
 - Parity violation (1956)
 - Flavour oscillations (1956 (K⁰), 1987 (B⁰))
 - CP violation (1964 (K⁰), 2001 (B⁰))
- The only verified mechanism for CP violation is the non-trivial phase in CKM matrix
- B factories allow precision studies of CKM
- Rare B decays offer window on new physics

The Wolfenstein++ parameterization is used here

Buras, Lautenbacher, Ostermaier, PRD 50 (1994) 3433.

$$V_{CKM} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + \frac{1}{2}A^2\lambda^5 \left[1 - 2(\rho + i\eta) \right] & 1 - \frac{1}{2}\lambda^2 - \frac{1}{8}\lambda^4 \left(1 + 4A^2 \right) & A\lambda^2 \\ A\lambda^3 \left[1 - (\rho + i\eta) \left(1 - \frac{1}{2}\lambda^2 \right) \right] & -A\lambda^2 + A \left(\frac{1}{2} - \rho - i\eta \right) \lambda^4 & 1 - \frac{1}{2}A^2\lambda^4 \end{pmatrix} \begin{bmatrix} 1 - \frac{1}{2}A^2\lambda^4 \\ 1 - \frac{1}{2}A^2\lambda^4 \end{bmatrix}$$

- shown here to $O(\lambda^5)$ where $\lambda = \sin\theta_{12} = 0.22$
- V_{us} , V_{cb} and V_{ub} have simple forms by definition
- Free parameters **A**, ρ and η are order unity

A Unitarity Triangle

$$\lambda, A, \overline{\rho} \text{ and } \overline{\eta}$$
At the 1% level: $|V_{us}|$

$$\lambda = |V_{us}| = \sin \theta_c$$

$$\lambda = 0.2205 \pm 0.0018$$
At the 2% level: $|V_{cb}|$

$$A = |V_{cb}| /\lambda^2$$

$$A = 0.84 \pm 0.02$$

$$|V_{ub}| \text{ and } |V_{ud}|$$

$$\rightarrow \overline{\rho} \cdot \overline{\eta} \text{ plane}$$
Unitarity: $1+R_t+R_u = 0$

$$\overline{\eta} (\overline{\rho}, \overline{\eta}) \qquad \overline{\rho} = (1-\lambda^2/2)\rho$$

$$\overline{\eta} = (1-\lambda^2/2)\eta$$

$$\overline{\eta} = (1-\lambda^2/2)\eta$$

$$R_u = \frac{V_{ud}V_{ub}}{V_{cd}V_{cb}} \approx -\sqrt{\overline{\rho}^2 + \overline{\eta}^2} e^{i\gamma}$$

$$R_t = \frac{V_{td}V_{tb}^*}{V_{cd}V_{cb}^*} \approx -\sqrt{(1-\overline{\rho})^2 + \overline{\eta}^2} e^{-i\beta}$$

$$\gamma = \arg V_{ub}^*, \quad \alpha = \pi - \gamma - \beta$$

Constraints on CKM

- Good precision (and improving) on sin2β
- |V_{ub}|/|V_{cb}| is powerful;
 improvements will
 have impact
- These two measurements alone could show a violation of unitarity

B factories

PEP-II/BaBar and KEK-B/Belle

- Asymmetric e^+e^- colliders, $\sqrt{s} = 10.58$ GeV
- Approved in 1994, first data in 1999
- CP violation observed in 2001
- Luminosity records continue to be set
- Two big success stories
 - Focus of this talk is on BaBar
 - Belle results will be mentioned where relevant

Luminosity (as of April 7, 2004)

Both B factories are running extremely well:

April, 2004

	Belle	BaBar
\mathcal{L}_{max} (10 ³³ /cm ² /s)	12.0	8.3
best day (pb ⁻¹)	880	622
total (fb -1)	222	184

BaBar detector

- General purpose collider detector
- F-B asymmetric due to boost of CM
- Crossings every n*4.2 ns
- Standalone 5-layer Si tracker for low-p_T (<0.1 GeV)
- Low-mass drift chamber with He-isobutane gas
- Unique ultra-thin imaging
 Cherenkov detector
- CsI(TI) crystal calorimeter
- Instrumented flux return

increasing radius

Y(4S) experiments

- $e^+e^- \rightarrow Y(4S) \rightarrow B^+B^-$ and $B^0B^0 \sim 50\%$ each
- B nearly at rest ($\beta\gamma \sim 0.06$) in 4S frame \rightarrow overlapping decays
- Asymmetric beam energies boost into lab: (βγ)_{4S} ~0.5,

Understanding B decay

- b quark weak decay is complicated by QCD
- Both perturbative (m_b) and non-perturbative (Λ_{QCD}) effects
- Tools:
 - Heavy quark symmetry
 - Heavy Quark Effective Theory
 - Operator Product Expansion (HQE effective field theory)
 - Lattice QCD

Heavy Quark Symmetry

- Heavy quark is "invisible" to gluon probes with de Broglie wavelength λ_q >> 1/m_Q
 - HQ spin and mass (flavour) are good symmetries as $m_Q / \Lambda_{QCD} \rightarrow \infty$
 - Departures from HQ symmetry can be expressed as $(\Lambda_{QCD} / m_Q)^n$ corrections
 - In several important cases, the (Λ_{QCD} / m_Q)¹ term vanishes (Luke's theorem)

$|V_{cb}|$ from exclusive b \rightarrow c ℓv decays:

$B^0 \rightarrow D^{*+} \ell \nu$

Heavy Quark Effective Theory

- Based on HQ symmetry for $Q \rightarrow Q'$
 - Applies to $b \rightarrow c$ transitions, e.g. $B \rightarrow D^* \ell_V$
 - Departures from HQ limit ~ $(\Lambda_{QCD} / m_c)^k$
- All B→D^(*)ℓv transitions are governed by one form factor (the Isgur-Wise function ξ(w), w = v_B · v_{D*} ≥ 1) in the HQ limit
 - In HQ limit, $\mathcal{F}(1)=\xi(1)=1$ (D^{*} at rest in B rest frame)
 - Extract $\mathcal{F}(1)|V_{cb}|$ from rate d Γ /dw (w \rightarrow 1)
 - Calculate F(1) using non-perturbative methods

 $2 \overline{p}_{B} \overline{p}_{D*l}$

-2

⁰→Kπ

Uncorr

 $B \rightarrow D^* \ell v$

April, 2004

R.V. Kowalewski

Measure differential decay rate (w = D^{*} boost in B frame [1-1.5])

$$\frac{d\Gamma(B \to D^* \ell \nu)}{dw} = \frac{G_F^2}{48\pi^3} G(w) |V_{cb}|^2 (F(w))^2 \quad \text{extrapolate to w=1}$$

■ In HQ limit $\mathcal{F}(w) \rightarrow \xi(w)$. In HQET parameterize as

 $B \rightarrow D^* \ell v$

$$\begin{aligned} & \text{expansion in (1-w)} \\ F(w) &= \mathcal{F}(1) \left(1 + \rho_F^2 (1-w) + c(1-w)^2 + ... \right) \text{ or} \\ \mathcal{F}^2(w) &= \frac{\mathcal{A}_1^2(w)}{1 + \frac{4w}{1+w} \frac{1-2wr+r^2}{(1-r)^2}} \left\{ 2 \frac{1-2wr+r^2}{(1-r)^2} \left[1 + \frac{w-1}{w+1} R_1^2(w) \right] + \left[1 + \frac{w-1}{1-r} \left(1 - R_2(w) \right) \right]^2 \right\} \text{ with} \\ R_1(w) &\propto \frac{V(w)}{A_1(w)} \text{ and } R_2(w) \propto \frac{A_2(w)}{A_1(w)} \text{ and } r = \frac{m_{D^*}}{m_{B^0}} \\ \mathcal{A}_1(w) &= \mathcal{A}_1(1) \left[1 - 8\rho_{\mathcal{A}_1}^2 z + (53\rho_{\mathcal{A}_1}^2 - 15)z^2 - (231\rho_{\mathcal{A}_1}^2 - 91)z^3 \right] \text{ with } z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} + \sqrt{2}} \\ & \text{expansion in } z \end{aligned}$$

$B \rightarrow D^* \ell v$ (preliminary results)

- High statistics sample
- w resolution ~ 0.04

 $\begin{aligned} \mathcal{F}(1)|V_{cb}| &= (34.03 \pm 0.24_{stat} \pm 1.31_{syst}) \times 10^{-3} \\ \rho^2 &= 1.23 \pm 0.02_{stat} \pm 0.28_{syst} \\ Br(B^0 \to D^* lv) &= (4.69 \pm 0.02_{stat} \pm 0.24_{syst})\% \end{aligned}$

- Main uncertainties from FF ratios R₁ and R₂, extrapolation to w=1, D^{**} composition, slow π⁺ efficiency
- Using *F*(1)=0.92±0.03 (from LQCD¹)

 $|V_{cb}| = (37.27 \pm 0.26_{stat} \pm 1.43_{syst}^{+1.50}) \times 10^{-3}$

¹S. Hashimoto *et al.*, PRD **66** (2002) 014503

$|V_{cb}|$ from inclusive b \rightarrow c ℓv decays

 $B \rightarrow X_c \ell v$

OPE for $b \rightarrow clv$ transitions

• b \rightarrow c ℓ_V described by OPE in (1/m_b)ⁿ and α_s^k

$$\Gamma(B \to X_c | \nu) = 1.014 \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \left[z_0(r) \left[1 + A_3^{pert}(r,\mu) \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \right) - (1 + A_5^{pert}(r,\mu)) 2(1-r)^4 \frac{\mu_G^2}{m_b^2} + O\left(\frac{1}{m_b^3} \right) \right] = 0.014 \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \left[z_0(r) \left[1 + A_3^{pert}(r,\mu) \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \right) - (1 + A_5^{pert}(r,\mu)) 2(1-r)^4 \frac{\mu_G^2}{m_b^2} + O\left(\frac{1}{m_b^3} \right) \right] = 0.014 \frac{G_F^2 m_b^5}{192 \pi^3} |V_{cb}|^2 \left[z_0(r) \left[1 + A_3^{pert}(r,\mu) \left(1 - \frac{\mu_\pi^2 - \mu_G^2}{2m_b^2} \right) - (1 + A_5^{pert}(r,\mu)) 2(1-r)^4 \frac{\mu_G^2}{m_b^2} + O\left(\frac{1}{m_b^3} \right) \right] \right]$$

 μ =1 GeV/c, scale which separates effects from long- and short-distance dynamics $r = m_b/m_c$, z_{θ} = tree-level phase space factor, A^{pert} = pert. corrections (α_s , $\alpha_s^2\beta_0$)

non-perturbative parameters arise at each order:

- \wedge (=m_B-m_b)
- μ_{π}^{2} (aka λ_{1}), μ_{G}^{2} (aka λ_{2}) at (1/m_b²)
- ρ_{1-2} , T_{1-4} at $(1/m_b^{-3})$...
- parton-hadron duality assumed
- predicts many observables → testable

The Big Picture

Spectral moments: $\langle M_X^k \rangle$, $\langle E_e^k \rangle$

- Measure hadronic mass and lepton energy moments (in presence of minimum lepton energy cut)
- Compare with OPE calculation Calculations available to $O(m_B^{-3})$ and $O(\alpha_S^k)$, k = 1 or 2
- Applying OPE calculations to real hadrons (duality) requires summing over a "large enough" phase space
- Spectral moments should be insensitive to duality
- A complete set of calculations is available in one renormalization scheme (soon to come in a second scheme)

Electron spectrum measurement

- Exploit angular correlations in di-electron events
- Extract partial BF and moments, compare with theory

R.V. Kowalewski

Electron energy moments

15000

- Correct for BB mixing, b→uev, backgrounds, Bremsstrahlung, QED radiation, elec id and misid...
- Extract 0th 3rd moments vs E_{e,cut}

Measuring M_X in b \rightarrow c ℓv decays

1400

1200

1000

800

600

400

200

 $0.9 \, \text{GeV}/c$

Date D' + D

BABAR

Preliminary

Background

- Analysis strategy: fully reconstruct one B and study semileptonic decays of the recoiling B
 - Require E_{miss}≈|p_{miss}|
 - kinematic constraints → fit for better m_X resolution (σ ~0.35 GeV)

Hadronic mass moments

- Method validated on data using partiallyreconstructed D^{*}l_ν decays (π_s-l correlations)
- Extract $\langle M_X^k \rangle$, k=1..4 as a function of $E_{e,cut}$
- Main systematic uncertainties:
 - non b \rightarrow c ℓv background
 - simulation of track and neutral reconstruction
 - modeling of QED radiation
 - B-reco sideband subtraction

Fit to moments

• Fit E_e and M_X moments vs. E_0 to set of parameters:

- $|V_{cb}|, \mathcal{B}(b \rightarrow c\ell v), m_b, m_c, \mu_{\pi}^2, \mu_G^2, \rho_D^3, \rho_{LS}^3$
- 8 unkowns, 25-35 observables (with reasonable correlations)

 $V_{cb}|_{,,master" formula :} |V_{cb}|^{2} = Br(B \to X_{c}ev)/\tau_{B} f_{\Gamma}^{\ell}(E_{0}, m_{b}, m_{c}, \mu_{G}^{2}, \mu_{\pi}^{2}, \rho_{LS}^{3}, \rho_{D}^{3})$ $Fr(B \to X_{c}ev, E_{l} > E_{0}) : M_{0}^{\ell}(E_{0})/Br(B \to X_{c}ev) = f_{0}^{\ell}(E_{0}, m_{b}, m_{c}, \mu_{G}^{2}, \mu_{\pi}^{2}, \rho_{LS}^{3}, \rho_{D}^{3})$ $Fr(B \to X_{c}ev, E_{l} > E_{0}) : M_{0}^{\ell}(E_{0}) = f_{i}^{\ell}(E_{0}, m_{b}, m_{c}, \mu_{G}^{2}, \mu_{\pi}^{2}, \rho_{LS}^{3}, \rho_{D}^{3}) (i = 1..3)$ $Fr(B \to X_{c}ev, E_{l} > E_{0}) : M_{i}^{\ell}(E_{0}) = f_{i}^{\ell}(E_{0}, m_{b}, m_{c}, \mu_{G}^{2}, \mu_{\pi}^{2}, \rho_{LS}^{3}, \rho_{D}^{3}) (i = 1..3)$ $Fr(B \to X_{c}ev, E_{l} > E_{0}) : M_{i}^{\ell}(E_{0}) = f_{i}^{\ell}(E_{0}, m_{b}, m_{c}, \mu_{G}^{2}, \mu_{\pi}^{2}, \rho_{LS}^{3}, \rho_{D}^{3}) (i = 1..3)$ $Fr(B \to X_{c}ev, E_{l} > E_{0}) : M_{i}^{\ell}(E_{0}) = f_{i}^{\ell}(E_{0}, m_{b}, m_{c}, \mu_{G}^{2}, \mu_{\pi}^{2}, \rho_{LS}^{3}, \rho_{D}^{3}) (i = 1..3)$

- cross-check lepton vs. hadron moments
- compare |V_{cb}| with D^{*}l_v result
- compare non-perturbative parameters with other determinations

Combined Fit to E₁ and M_x Moments

Thorsten Brandt (TU Dresden)

Cross-checks of fit results

- Overall power of E_e and M_X moments is comparable
- Values for μ_G^2 and ρ_{LS}^3 are consistent with independent measurements based on m_{B^*} - m_B and HQ sum rules.

OPE preliminary fit results

Comparison of inclusive and exclusive $|V_{cb}|$ determinations

- HFAG average from $D^{*}\ell_{V}$ $|V_{cb}| = (40.1 \pm 0.9_{exp} \pm 1.8_{theo}) \times 10^{-3}$
- BaBar (preliminary) $D^*\ell_V$ $|V_{cb}| = (37.3 \pm 1.5_{exp} \pm 1.6_{theo}) \times 10^{-3}$
- BaBar (preliminary) HQE fit to semileptonic moments

$$|V_{cb}| = (41.4 \pm 0.4_{exp} \pm 0.4_{HQE} \pm 0.6_{theo}) \times 10^{-3}$$

 $F(1)=0.92\pm0.03$

|V_{ub}| from inclusive decays

- OPE gives $|V_{ub}|$ from $\Gamma(B \rightarrow X_u \ell v)$ to <5%
- Challenges:
 - separate $b \rightarrow u$ from $b \rightarrow c$
 - calculate |V_{ub}| from partial rate after b→c suppression cuts
- review of published results and methods
- new method
- outlook

Finding b \rightarrow u decays

Thorsten Brandt (TU Dresden)

Lepton endpoint

- ☺ Experimentally clean for $E_e > 2.3 \text{ GeV} \approx \frac{m_B^2 m_D^2}{2m_B}$
- ⊗ Can't go below E_e ~ 2.2 GeV due to b→c background
- OPE breaks down when restricted to endpoint region (need twist expansion in which power corrections are resummed into a light cone distribution function, or "shape function", which must be measured...)
- ⊕ Determine shape function from b→sγ or perhaps from semileptonic decays
- Best measurements give $\sigma_{|Vub|} / |V_{ub}| \sim 0.15$

Mass of recoiling hadrons

 Larger phase space (~70%) means smaller theoretical uncertainties (but not that simple...)

- Experimentally more challenging; need either B tagging (cleanest, very low efficiency) or "simulated annealing" (poor S/B, higher efficiency)
- Combine with q² (invariant mass of e-v pair) to improve theory error?
- Early measurements show promise

BaBar |V_{ub}| from tagged analysis

- Reconstruct $B \rightarrow D^{(*)}n\pi$
- Select lepton p_l>1 GeV;
 good signal/background
- Perform kinfit to remaining particles to determine m_x
- Measure $BF(B \rightarrow X_u \ell v)$

0.1

0.06 0.04 0.02

0 0.5 1 1.5 2 2.5

$$Br(B \to X_u \, lv) = (2.24 \pm 0.27_{stat} \pm 0.26_{syst} \pm 0.39_{theo}) \times 10^{-3}$$

 $V_{ub} = (4.62 \pm 0.28_{stat} \pm 0.27_{syst} \pm 0.40_{theo} \pm 0.26_{\Gamma}) \times 10^{-3}$

In future consider q² to reduce theory error

April, 2004

R.V. Kowalewski

3 3.5 4

my [GeV]

Belle simulated annealing

 $|V_{ub}| = (4.66 \pm 0.28(\text{stat}) \pm 0.35(\text{syst}) \pm 0.17(b \to c) \pm 0.08(b \to u) \pm 0.58(\text{theo})) \times 10^{-3}$ = (4.66 ± 0.76)×10⁻³

Lepton-pair invariant mass

- New method combine E_e with q² to reduce E_e cut (and theory uncertainty); expect few ×10³ events with S/B ~ 0.6.
- Estimate neutrino momentum based on "missing" momentum. Resolution is modest but usable
- Check / limit theory error by using $b \rightarrow u lv$ distributions (e.g. $\langle E_W + |P_W| \rangle \approx m_b$).

|V_{ub}| from inclusive semileptonic decays - status and prospects

- Active area for theory and experiment
- New analyses with better acceptance and ability to measure decay distributions coming
- Expect significant progress if HQE parameters measured in b→c decays can be used in predictions for dΓ(b→u) / dy
- My view 10% measurements of |V_{ub}| will appear in 2004/05.

$|V_{ub}|$ from $B \rightarrow \pi \ell \nu$

- Extracting |V_{ub}| from exclusive decays requires Form Factors (FF)
- πℓv is the best mode experimentally (low background) and theoretically:
 - Lattice QCD is making good progress on FF
 - measure $q^2 = m_W^2$ dependence to constrain theory
- status and prospects

Current status of $B \rightarrow \pi \ell \nu$

CLEO

Based on neutrino reconstruction

■ PRD 68, 072003 (2003)

$$B(B^0 \to \pi^- \ell^+ \nu) = (1.33 \pm 0.18 \pm 0.11 \pm 0.01 \pm 0.07) \times 10^{-4}$$

 $|V_{ub}| = (3.24 \pm 0.22 \pm 0.13^{+0.55}_{-0.39} \pm 0.09) \times 10^{-3}$

- Belle... (2001 conference paper, never published)
- BaBar...

Tagged analyses

- Events where companion B is reconstructed are starting to be used:
 - Much better signal/background, kinematic acceptance
 - Much lower yield (10-100 times smaller than untagged)
 - Better for BF, but not yet for determining FF shapes
- Several tag methods:

```
Better for B<sup>+</sup>
than for B<sup>0</sup> \left\{ \begin{array}{l} Fully reconstructed hadronic B decays 
 "Fully" reconstructed semileptonic B decays to D<sup>(*)</sup> <math>\ell_{V} \\ Partially reconstructed semileptonic B decays (\pi_{s}-\ell_{orrelation}) \\ \end{array} \right\}
```

B recoil technique: as in inclusive Vub analysis

|V_{ub}| from exclusive semileptonic decays - status and prospects

Som results on $B \rightarrow \pi \ell v$ - tagged and untagged analyses

- Untagged analyses \rightarrow form factor (q²) shape
- Tagged analyses → BF with small experimental systematics, convincing S/B
- Lattice calculations are becoming more believable
- Expect $\sigma(|V_{ub}|) \sim 10\%$ in a year or two.

Summary

- Significant progress on |V_{cb}| accuracy 2% (inclusive), 5% (exclusive)
 - Clear progress due to HQE and precise measurements
- Anticipate improvements in |V_{ub}| in near future
 - Cleaner and more comprehensive measurements
 - Improvements in theoretical methods
- B factories are systematically probing the weak and strong interactions of quarks

NEW

sin2 α from B $\rightarrow \pi\pi$ and B $\rightarrow \rho\rho$ decays

