Recent results on CP violation in B decays

Marcello A. Giorgi Università di Pisa and INFN Pisa

presented at Laboratori Nazionali di Frascati October 5, 2004 Mini Workshop on B-Factories

5.10.2004 L.N.F.

The CKM picture with 3 quark doublets

Cabibbo-Kobayashi-Maskawa matrix

- *quark charged currents* <=> W[±]
- left-handed (q_j=d,s,b) quark mass eigenstates connected to weak eigenstates;
- Unitary (FCNC suppressed)=>4 independent parameters (e.g., 3 angles and 1 phase)
- Phase changes sign under CP
- Interfering amplitudes can give CP-violating asymmetries

From Unitary CKM matrix to Unitarity Triangles

5.10.2004 L.N.F.

3 ways for CP violation

Marcello A Giorgi

4

First observation of Direct CPV in B decays

3 ways for CP violation

Measuring time-dependent CP asymmetries

Tools to measure time dependent Asymmetries

Precise measurement of decay points of boosted B⁰B⁰ system. 1)

First projects of precise vertexing method:

vertex separation decay time measurement in

boosted heavy mesons and first Si strip detectors

before any industrial development in 1980 SILICON 'MULTIWIRE PROPORTIONAL CHAMBERS' AND THEIR APPLICATIONS IN HIGH-ENERGY PHYSICS EXPERIMENTS.

.By MAG. 1980. Published in *Pisa 1980, Proceedings, Miniaturization

Of High Energy Physics Detectors*, 25-39.

SEMICONDUCTOR DETECTORS FOR LIFETIME MEASUREMENTS AND HIGH SPACE RESOLUTION.

By G.Bellini, L.Foa, M.A.G 1982. 30pp. Phys. Rept. 83:9-38, 1982

MICRODETECTORS FOR HIGH-ENERGY PHYSICS. .By M.A.G., 1981. In *Villars-sur-ollon 1981, Proceedings, General Meeting On Lep*, 179-211

1) **Boosting system**

First idea of an asymmetric B Factory to boost the B^0B^0 system and allow the time measurement in 1989 AN ASYMMETRIC B FACTORY BASED ON PEP.

B-FACTORIES: A PERSONAL OVERVIEW.By P.Oddone 1989. In *Blois 1989, CP violation and beauty factories and related issues in physics* 299-304.

5.10.2004 L.N.F.

Asymmetric Bfactories PEPII and KEKB

e- (9GeV) e+(3Gev) e- (8GeV) e+(3.5Gev)

BaBar Detector **EMC** 6580 CsI(Tl) crystals e⁺ (3.1GeV) **1.5T** solenoid **DIRC (PID)** 144 quartz bars 11000 PMs Drift Chamber 40 stereo layers e⁻ (9GeV) Silicon Vertex Tracker Instrumented Flux Return 🔺 5 layers, double sided strips iron / RPCs (muon / neutral hadrons)

- SVT: vertexing and tracking: crucial for Δt and low p_T tracks
- DCH: main tracking device, also dE/dx for particle ID
- DIRC: K- π separation > 3.4 σ for P < 3.5GeV/c
- EMC: very good energy resolution; electron ID, π^0 and γ reco.
- IFR: Muon and neutral hadrons (K^0_L) ID

Current luminosities and data samples

B Flavour Tagging

$sin2\beta$ results from charmonium modes

sin2_, cos2_ and CKM constraints

Methods for extraction of γ

First look at $B^- \rightarrow D^{(*)0}[K_S \pi^+ \pi^-]K^-$ sample by Belle

BABAR analysis of $B^- \rightarrow D^{(*)0}[K_S \pi^+ \pi^-] K^-$

$\sin 2\alpha$ from $B \rightarrow \pi\pi$, $\rho\pi$, $\rho\rho$

From α_{eff} to α

BF of

If BF (00) is small then the Grossman-Quinn bound can be applied:

$$\sin^2(\alpha - \alpha_{\text{eff}}) \le \frac{\mathcal{B}(B^0 \to \pi^0 \pi^0) + \mathcal{B}(\overline{B}{}^0 \to \pi^0 \pi^0)}{\mathcal{B}(B^+ \to \pi^+ \pi^0) + \mathcal{B}(B^- \to \pi^- \pi^0)}$$

5.10.2004 L.N.F.

Results for $\sin 2\alpha_{eff}$ from $B \rightarrow \pi\pi$ decays

Updated for ICHEP04

Result for $B \rightarrow \pi^0 \pi^0$

Results for $\sin 2\alpha_{eff}$ from $B \rightarrow \rho\rho$ decays

Isospin Corrections for α

Basis for Dalitz plot analysis of $B^0 \rightarrow (\rho \pi)^0$

Quasi-two-body approach to Snyder-Quinn method *Phys.Rev. D 48, 2139 (1993)*

- Extract α and strong phases using interference between amplitudes
- Amplitude $A_{3\pi}$ dominated by $\rho^+\pi^-$, $\rho^-\pi^+$, $\rho^0\pi^0$ and radial excitations
- Form time-dependent decay rate coefficients of $\cos(\Delta m_d \Delta t)$ and $\sin(\Delta m_d \Delta t)$ on this basis

Marcello A Giorgi

Results from Dalitz analysis of $B^0 \rightarrow (\rho \pi)^0$

Summary of constraints on α

CKM constraints and $\sin 2\beta$ and α measurements

CKM fit to indirect constraints overlaid with $sin2_{WA}$ and α measurements

5.10.2004 L.N.F.

Beyond the Standard Model?

In SM interference between *B* mixing, *K* mixing and Penguin $b \rightarrow s\overline{ss}$ or $b \rightarrow s\overline{dd}$ gives the same $e^{-2\iota\beta}$ as in tree process $b \rightarrow c\overline{cs}$. However loops can also be sensitive to New Physics!

BABAR results for $B^0 \rightarrow \phi K^0$

More BABAR results from $b \rightarrow s\bar{s}s$ penguins

More BABAR results from $b \rightarrow s\overline{s}s$ penguins

Still another penguin mode: $B^0 \rightarrow \pi^0 K_S$

Results on $sin 2\beta$ from s-penguin modes

5.10.2004 L.N.F.

Projections for Penguin Modes

Projections are statistical errors only; but systematic errors at few percent level

Conclusions and outlook

- Success of *B* Factory experiments BaBar and Belle of $b \rightarrow c\overline{c}s$ (new sin2 β value from charmonium 0.726 ± 037)
- Good agreement between BaBar and Belle results on $b \rightarrow s\bar{ss}s$ penguin, but both experiments still show discrepancies (2.7 and 2.4 σ) with charmonium!!
- Observation by BaBar of the direct CP violation in charmless *B* decay confirmed by Belle (average value)
- Quantitative measurements of α (ϕ_2) are emerging (new value
- Constraints on $\gamma(\phi_3)$ are still poor with present statistics (low values for r_B).
- A statistical increase on these modes in the next few years could well provide initial evidence for new physics in the unitarity triangle beyond the SM.
- Modes dominated by penguin amplitudes as B0 → fK0 seem to be promising benchmarks for New Physics at a mass scale < 1 TeV. However unravelling the full flavour impact of this new physics will require a very high luminosity B Factory a Super-B Factory (luminosity higher by a factor 50-100 than in the present machines).

11