Diffractive results at the Tevatron

Michele Gallinaro
The Rockefeller University

✓ Introduction
✓ Soft and hard diffraction
✓ Run II diffractive program
✓ Exclusive production (Higgs etc.)
Tevatron Collider

- Tevatron and detector upgrades
 - C.M. energy 1.96 TeV
 - 396 nsec bunch spacing
 - 600 pb⁻¹ delivered (as of Aug. 2004)

- high (low ?) inst. luminosity
 \[L \sim 2-3 \times 10^{31} \text{ cm}^{-2}\text{sec}^{-1} \]

- multiple interactions

Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Tevatron Experiments

- Peak luminosity
 - x2 increase since 2003
 - reached $L = 10^{32} \text{cm}^{-2}\text{s}^{-1}$
- Future
 - run until 2009
 - deliver 4-9 fb$^{-1}$

Over 200 pb$^{-1}$ more this year
Winter 2005 results,
~400 pb$^{-1}$

Summer 2004 results
~200 pb$^{-1}$
Hadronic Diffraction

Small transferred momentum

Elastic and diffractive processes: leading hadron emitted at small angle

Rapidity gap: the exchange ("pomeron") is colorless
Diffraction and Rapidity Gaps

- Rapidity gaps are regions of rapidity devoid of particles

Non-diffractive interactions:
- Rapidity gaps are formed by multiplicity fluctuations

From Poisson statistics:

\[P(\Delta \eta) = e^{-\rho \Delta y} \left(\rho = \frac{dn}{dy} \right) \]

(\(\rho \) = particle density in rapidity space)

Gaps are exponentially suppressed

Diffractive interactions:
- Rapidity gaps survive unaltered

\[\Delta y \approx \ln(1/\xi) = \ln s - \ln M^2 \]

- Large rapidity gaps are signatures for diffraction

\[\frac{d\sigma}{dM^2} \sim \frac{1}{M^2} \rightarrow \frac{d\sigma}{d\Delta y} \sim \text{constant} \]
Energy flow in MB events

- Most particles are in the central region (|y|<3)

- All particles on average have the same p_T

However,
- Most of the energy is carried by a few forward particles
Energy flow in SD events

Diffractive events are “asymmetric”
Soft diffraction

unitarity problem

\[\sigma_{SD} \sim S^{2\epsilon} \quad \sigma_T \sim S^{\epsilon} \]

\(\Rightarrow \sigma_{SD} \) exceeds \(\sigma_T \) at \(\sim 2 \) TeV

Renormalization
(normalize flux to 1)

\[\frac{d^2 \sigma_{SD}}{dt d\xi} = f(t, \xi) \cdot \sigma(M_X^2) \]

\(\equiv 1 \)

K. Goulianos, PLB 358 (1995) 379

measurement is suppressed by a factor of \(\sim 10 \) to Regge theory and agrees with renormalization model

PRD 50 (1994) 5518, 5535, 5550
Diffraction in Run I

- Large rapidity gaps are signatures for diffraction

Soft diffraction

- Non-Diffractive (ND)
- Single-Diffractive (SD)
- Double Diffractive (DD)
- Double Pomeron Exchange (DPE)
- Single + Double Diffractive (SDD)

Hard diffraction

- Methods: large rapidity gaps or leading anti-proton tag
Detectors in Run I

CDF Detector

- Tag rapidity gaps
- Tag antiproton

Acceptance: $0 < |t| < 1$, $0.03 < \xi < 0.1$

Scintillator fiber xy-tracker
270 \(\mu \)m pitch, 2 m lever arm

Diagrams showing CDF detector components and acceptance regions.
Rapidity gaps

\[\eta = 3.2 < \eta < 5.9 \]

\[\eta = 2.4 < \eta < 4.2 \]

Rapidity gaps seen as zero multiplicity in both forward calorimeter and beam-beam counters.
Diffractive rates

\[p\bar{p} \rightarrow X + \text{gap} \]

Measure SD/ND fractions at 1800 GeV

<table>
<thead>
<tr>
<th>process</th>
<th>fraction [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>W(eν)</td>
<td>1.15 (0.55)</td>
</tr>
<tr>
<td>Z</td>
<td>1.44 (0.60)</td>
</tr>
<tr>
<td>jet-jet</td>
<td>0.75 (0.10)</td>
</tr>
<tr>
<td>b</td>
<td>0.62 (0.25)</td>
</tr>
<tr>
<td>J/ψ</td>
<td>1.45 (0.25)</td>
</tr>
</tbody>
</table>

All SD/ND fractions ~ 1%
Different sensitivities to quark/gluon
\[\Rightarrow \text{gluon fraction } f_g = 0.54 (0.15) \]
Gap between jets

\[pp \rightarrow \text{jet} + \text{gap} + \text{jet} \]

DD/ND fractions

- 74 (1995) 855
- 80 (1998) 1156
- 81 (1998) 5278
- 72 (1994) 2332
- 76 (1996) 734
- PLB 440 (1998) 189

Extend range in Run II

Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Multiple gaps

Determine gap survival probability experimentally in soft diffraction

Gap rates suppressed by:
jet radiation and non-pQCD

Measure the rate of additional gaps in soft diffractive events

\[R^{2\text{-gap}} \frac{?}{R^{1\text{-gap}}} = R^{0\text{-gap}} \]
Gap survival

\[S = R_{1\text{-gap}/0\text{-gap}}^{2\text{-gap}/1\text{-gap}} \]

- Survival probability

S(0.63 TeV) = 0.29
S(1.80 TeV) = 0.23

One-gap cross sections suppressed
Two-gap to one-gap ratios not suppressed

Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Diffractive dijets

\(\xi \): fraction of anti-proton momentum loss
\(\beta \): fraction of pomeron momentum carried by parton

parton \(x_{Bj} \equiv \beta \cdot \xi \)

Measure SD/ND ratio of dijet rates

\[
\frac{\sigma (SD_{jj})}{\sigma (ND_{jj})} = \frac{F_{jj}^D(x)}{F_{jj}(x)}
\]

(LO QCD)

\[
R_{SD/ND} = R_0 \cdot x^{-0.45}
\]

\(\Rightarrow \) no significant \(\xi \) dependence

\[\langle \xi \rangle = 0.04, 0.05, 0.06, 0.07, 0.08, 0.09 \]
\[\Delta \xi = 0.01 \]

\[E_T^{jet1,2} \geq 7 \text{ GeV} \]
\[|t| \leq 1.0 \text{ GeV}^2 \]

stat errors only

\(x = 0.5 \times \xi_{\text{min}} \)

PRL 84 (2000) 5043
Diffractive structure function

CDF Run I result suppressed by factor of ~10 relative to HERA

⇒ breakdown of QCD factorization (renormalization removes s-dependence)

K. Goulianos, PLB 358 (1995) 379

Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Goals for Run II

- Diffractive structure function
 - Q^2 and ξ dependence
 - Process dependence

- Exclusive production in DPE
 - Dijet, heavy flavor, low-mass

- Jet-Gap-Jet w/large gaps
New Detectors for Run II

- Tracking
 - Silicon
 - Central Outer Tracker
- Time of Flight
- Expanded Muon Coverage
- Endplug Calorimeter
- Forward Detectors
 - Beam Shower Counters
 - Miniplugs
 - Roman Pots (same as Run I)

All detectors are used in the diffractive program!
Run II diffractive program
Beam Shower Counters

Beam Loss vs time

p

$p\bar{p}$

BSC1

beam loss

beam rate

Rapidity gap trigger

BSC1+BSC2+BSC3(+BSC4)

rate vs inst. luminosity
MiniPlug Calorimeters

- liquid scintillator + lead
- flexible tower geometry
- full coverage (no dead regions)
- detect charged/neutral

Group fibers to form “towers”
Particles/jets in MP

One PMT channel

One MAPMT

One tower (3 PMT channels)

CDF Run II Preliminary

multiplicity

ND

SD

MP_p Multiplicity

Events (ND norm to SD)

10^1

10^2

10^3

10^4

10^5

10^6

10^7

10^8

10^9

10^10

10^11

10^12

10^13

10^14

10^15

10^16

10^17

10^18

10^19

10^20

10^21

10^22

10^23

10^24

10^25
MP calibration

“Seed” and neighbor towers in ϕ

“Seed” tower ADC counts

ADC counts vs ϕ
before/after calib.

- use data for relative calib. of towers at same η
- use MC for relative calib. vs η and overall energy scale
Roman Pot Spectrometer

Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Roman Pot Trigger

Use 3-fold coincidence of RP trigger counters

Acceptance: \(0 < |t| < 2, \ 0.03 < \zeta < 0.1\)
Diffractive dijets

\[\xi : \text{momentum loss fraction of pbar} \]

\[\xi = \frac{\Sigma_{\text{all towers}} E_T e^{-\eta}}{\sqrt{s}} \]

Approx. flat at \(\xi < 0.1 \)

MP energy scale: \(\pm 25\% \rightarrow \Delta \log \xi = \pm 0.1 \)

RP acceptance (0.03 < \(\xi < 0.1 \)) ~ 80% (Run I)
Kinematic Properties

compare ND and SD
SD/ND ratio in Run II

ratio of SD/ND dijet event rates compared to Run I data

• slope and normalization agree with Run I result
• no ξ dependence observed $0.03 < \xi < 0.1$
 \Rightarrow confirms Run I results

no appreciable Q^2 dependence observed within $100 < Q^2 < 1,600 \text{ GeV}^2$

\Rightarrow pomeron evolves similarly to proton
Roman Pot tracking

FIBER TRACKER

Reconstructed track
A bunch of fibers

True Track

Pot 3
Pot 2
Pot 1

\textbf{x} : measured hit position

0.255mm, (0.1 in)

0.8mm

: Scintillating fiber
(KURARAY SCSF81 single clad)

Expected position resolution 80 \mu m
Expected angle resolution 60 \mu rad

Run 175066, Event 517876
POT-X Fiber

POT-1 POT-2 POT-3

POT-Y Fiber

\xi = 0.059

POT-1 POT-2 POT-3
Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004

ξ: RP vs calorimeter

ξ from RP

Overlap events

Signal region

ξ_cal distribution for slice of ξ_RP
DPE Dijet Production

from SD data:

SD: anti-proton side

SD: proton side

SD: anti-proton side

SD: proton side
DPE dijets

\[R(\text{DPE/SD}) \approx 5 \times R(\text{SD/ND}) \]

\[\Rightarrow \text{additional gap is not suppressed} \]
Exclusive production in DPE

exclusive

Khoze, Martin, Ryskin
Eur. Phys. J.
C23, 311 (2002)
C25, 391 (2002)
C26, 229 (2002)

C. Royon, hep-ph/0308283

inclusive

Attractive Higgs discovery channel at the LHC

$\overline{p}p \rightarrow pH\overline{p}$

Standard Model light Higgs:

- "exclusive" channel \Rightarrow clean signal
- $M_H=\Delta M_{miss}= (s \xi_1 \xi_2)^{1/2}$
- $\sigma_H(\text{LHC}) \sim 3 \text{ fb, signal/background} \sim 3 \text{ (if } \Delta M_{miss} = 1 \text{ GeV)}$

Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Exclusive production

Measurement of exclusive processes can be used to calibrate Higgs predictions

Exclusive dijets: $gg \rightarrow gg$
- exclusive $gg \rightarrow q\bar{q}$ is suppressed

Exclusive χ_C:
- small cross section, clean signal
Exclusive Dijets in Run I

- antiproton tag: $0.035 < \xi < 0.095$
- 2 jets, $E_T > 7$ GeV
- proton-side gap ($2.4 < \eta < 5.9$)

⇒ observed 132 events

Mass fraction: $R_{jj} = \frac{M_{jj}}{M_x}$

⇒ σ_{jj} (excl.) < 3.7 nb (95% CL)

theory expectns \sim 1 nb (Run I kinematics)
DPE Enhanced Sample

- Use Run II dedicated DPE trigger (RP+J5+BSC_Gap_P)

Data presented from 26 pb$^{-1}$:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triggers</td>
<td>397 k</td>
</tr>
<tr>
<td>$N_{\text{vertex}} \leq 1$, $</td>
<td>z_{\text{vertex}}</td>
</tr>
<tr>
<td>RP offline cut</td>
<td>309 k</td>
</tr>
<tr>
<td>$N_{\text{jets}} \geq 2$ ($E_T>5$ GeV, $</td>
<td>\eta</td>
</tr>
<tr>
<td>$E_T(jeT2)>10$ GeV</td>
<td>116,473</td>
</tr>
<tr>
<td>SD ($0.01<\xi<0.1$)</td>
<td>54,552</td>
</tr>
<tr>
<td>DPE (MP-East $N_{\text{hit}}=0$)</td>
<td>17,101</td>
</tr>
</tbody>
</table>
DPE: kinematics

Compare ND and SD and DPE
Dijet Mass Fraction

use dedicated DPE trigger (RP+J5+BSC_Gap_P)

rate falls smoothly as $R_{jj} \rightarrow 1$

no excess at large R_{jj}

independent of rapidity gap size

<table>
<thead>
<tr>
<th>Minimum E_T(Jet1)</th>
<th>Cross section ($R_{jj}>0.8$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 GeV</td>
<td>970 ± 65(stat) ± 272(syst) pb</td>
</tr>
<tr>
<td>25 GeV</td>
<td>34 ± 5(stat) ± 10(syst) pb</td>
</tr>
</tbody>
</table>

~ 60 pb (factor of 2 uncertainty)

Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Exclusive Dijet Events?

$R_{jj}=0.81$

$R_{jj}=0.36$
Prospects w/exclusive dijets

Experimental method:
- normalize R_{jj} for all jets to R_{jj} for qq
- look for excess of events at large R_{jj}

Pros:
- many systematics cancel out
- good HF quarks id
- small g mistag $O(1\%)$

Cons:
- heavy quark mass
- contribution from exclusive b/c

Theory:
- $gg\rightarrow gg$ dominant contribution at LO
- $gg\rightarrow qq$ suppressed when $M_{jj}\gg m_q$

Difference between gluon and quark jet
- charged particle multiplicity in jet
 $N_{g\text{-jet}}=1.6 N_{q\text{-jet}}$ (from Run I)
- study how N_{jet} behaves as $R_{jj}\rightarrow 1$
- sensitive to light quark jets
- q/g jets are not well separated

P. Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Exclusive low-mass states

\[p\bar{p} \rightarrow p\chi\bar{p} \rightarrow J/\psi \gamma \rightarrow \mu\mu\gamma \]

(same quantum numbers as Higgs boson)

Event selection:
- start from \(J/\psi \) sample
- exclusive events
- invariant mass (\(\mu\mu + EM \) tower)

Background:
- cosmics
- calorimeter noise
Event Selection

Data sample of 93 pb\(^{-1}\):

- BSC+MP veto: 107
- (calorimeter+CLC+trk+muon) veto: 23
- EM tower: 10

- Mass resolution is poor
- Bkg from multiplicity fluctuations (under threshold)
- Difficult to estimate noise contribution

Cross section upper limit for exclusive production:

\[\sigma_{\text{excl}}(J/\psi+\gamma) = 49 \pm 18(\text{stat}) \pm 39(\text{syst}) \text{ pb} \]

\(~70\text{ pb}\)

Khoze, Martin, Ryskin, Stirling
Diffractive Higgs Production

Exclusive diffractive Higgs production $pp \rightarrow p\, H\, p$: 3-10 fb
Inclusive diffractive Higgs production $pp \rightarrow p+X+H+Y+p$: 50-200 fb

Advantages Exclusive:
- $J_z=0$ suppression of $gg\rightarrow bb$ background
- Mass measurement via missing mass

$M_H^2 = (p + \bar{p} - p' - \bar{p}')^2$

$\Delta M = O(1.0 - 2.0) \text{ GeV}$

Thanks to A. de Roeck: Tev4LHC, Sept 16-18, 2004

Michele Gallinaro - "Diffractive Physics at the Tevatron", Frascati 2004
Rapidity Gaps at LHC

Number of overlap events versus LHC luminosity
distribution of number of interactions
Doable at startup luminosity!

Benefit from experience of HERA/Tevatron experiments!!
Summary

Soft and hard diffraction
non suppressed two-gap to one-gap ratios

forward detectors working well
dedicated diffractive triggers

re-established Run I measurements
no significant \(Q^2 \) dependence in SD/ND ratio
no exclusive dijet/low-mass production