Diffractive results at the Tevatron

Michele Gallinaro The Rockefeller University

✓ Introduction
 ✓ Soft and hard diffraction
 ✓ Run II diffractive program
 ✓ Exclusive production (Higgs etc.)

Tevatron Collider

- high (low ?) inst. luminosity (L ~ 2-3 \times 10³¹ cm⁻²sec⁻¹)
- multiple interactions

Tevatron and detector upgrades
 ✓ C.M. energy 1.96 TeV
 ✓ 396 nsec bunch spacing
 ✓ 600 pb⁻¹ delivered (as of Aug. 2004)

Tevatron Experiments

- Peak luminosity
 - x2 increase since 2003
 - \checkmark reached L=10³²cm⁻²s⁻¹
- Future
 - run until 2009
 - ✓ deliver 4-9 fb⁻¹

Hadronic Diffraction

Small transferred momentum

Elastic and diffractive processes: leading hadron emitted at small angle

Rapidity gap: the exchange ("pomeron") is colorless

Diffraction and Rapidity Gaps

✓ rapidity gaps are regions of rapidity devoid of particles

□ <u>Non-diffractive interactions</u>:

rapidity gaps are formed by multiplicity fluctuations

From Poisson statistics:

$$P(\Delta \eta) = e^{-\rho \,\Delta y} \left(\rho = \frac{dn}{dy}\right)$$

(p=particle density in rapidity space)

Gaps are exponentially suppressed

Diffractive interactions:

rapidity gaps survive unaltered

$$\Delta y \approx \ln(1/\xi) = \ln s - \ln M^2$$

$$\frac{d\sigma}{dM^2} \sim \frac{1}{M^2} \quad \rightarrow \quad \frac{d\sigma}{d\Delta y} \sim \text{constant}$$

 \checkmark large rapidity gaps are signatures for diffraction

Energy flow in MB events

•most particles are in the central region (|y|<3)

•all particles on average have the same p_T

<u>however</u>, •most of the energy is carried by a few forward particles

Energy flow in SD events

Diffractive events are "asymmetric"

Soft diffraction

unitarity problem $\sigma_{\rm SD} \sim s^{2\varepsilon} \qquad \sigma_{\rm T} \sim s^{\varepsilon}$ $\Rightarrow \sigma_{SD}$ exceeds σ_T at ~2 TeV Renormalization (normalize flux to 1) $\frac{d^2 \sigma_{SD}}{dt d\xi} = f(t,\xi) \cdot \sigma(M_X^2)$ K. Goulianos, PLB 358 (1995) 379

⇒measurement is suppressed by a factor of ~10 to Regge theory and agrees with renormalization model PRD 50 (1994) 5518, 5535, 5550

Diffraction in Run I

>Large rapidity gaps are signatures for diffraction

Methods: large rapidity gaps or leading anti-proton tag

Detectors in Run I

Rapidity gaps

CDF Run | Detector CENTRAL MUON UPGRADE STEEL ABSORBER $\eta = 0$ $\eta = 0.9$ CENTRAL MUON CENTRAL END HADRON WALE HADRON CENT/RAL/EM CES CPR SOLENOID Forward 50 END (Not-To-Scale) PŁUG 415 HITS HADRON 0 END CENTRAL 10 BBCH PLU TOWERS 10 TRAKCING CHAMBER $\eta = 2.4$ ENL HADRON 15 20 (3,2<η<5,9) BBC 25 Vertex Tracking Chamber 2 30 Silicon Vertex Detector $\eta = 4.2$ Z INTERACTION POINT

BBC 3.2<η<5.9 FCAL 2.4<77<4.2 Rapidity gaps seen as zero multiplicity in both forward calorimeter and beam-beam counters

18

Diffractive rates

$$p p \rightarrow X + \text{gap}$$

Measure SD/ND fractions at 1800 GeV

PRL	process	fraction [%]
84 (1997) 2698	W(ev)	1.15 (0.55)
PLB 574 (2003) 169	Z	1.44 (0.60)
84 (1997) 2636	jet-jet	0.75 (0.10)
84 (2000) 232	ð	0.62 (0.25)
87 (2001) 241802-1	J/ψ	1.45 (0.25)

All SD/ND fractions ~ 1% Different sensitivities to quark/gluon \Rightarrow gluon fraction f_q=0.54 (0.15)

Gap between jets

$$p\overline{p} \rightarrow \text{jet} + \text{gap} + \text{jet}$$

jet
$$\leftarrow \Delta y_{jet} \longrightarrow jet$$

Multiple gaps

Determine gap survival probability experimentally in soft diffraction

Gap rates suppressed by: jet radiation and non-pQCD

Measure the rate of <u>additional</u> gaps in soft diffractive events

$$R_{1-gap}^{2-gap} \stackrel{?}{=} R_{\theta-gap}^{1-gap}$$

Gap survival

Diffractive dijets

 ξ : fraction of anti-proton momentum loss β : fraction of pomeron momentum carried by parton

parton
$$\mathbf{x}_{Bj} \equiv \mathbf{\beta}$$
.
$$x_{Bj} = \frac{\sum_{jet} E_T \cdot e^{-\eta}}{\sqrt{s}}$$

Measure SD/ND ratio of dijet rates

$$\frac{\sigma(SD_{jj})}{\sigma(ND_{jj})} = \frac{F_{jj}^{D}(x)}{F_{jj}(x)} \quad (LO QCD)$$

$$R_{SD/ND} = R_0 \cdot x^{-0.45}$$

 \Rightarrow no significant ξ dependence

Diffractive structure function

Goals for Run II

✓ Diffractive structure function
 ⇒Q² and ξ dependence
 ⇒process dependence

✓ Exclusive production in DPE ⇒dijet, heavy flavor, low-mass

✓ Jet-Gap-Jet w/large gaps

New Detectors for Run II

- Tracking
 - -Silicon
 - -Central Outer Tracker
- Time of Flight
- Expanded Muon Coverage
- Endplug Calorimeter
- Forward Detectors
 - -Beam Shower Counters
 - -Miniplugs
 - -Roman Pots (same as Run I)

All detectors are used in the diffractive program !

Run II diffractive program

Beam Shower Counters

P IP P BSC1 Out-of-Time ADMEN BSC-1 beam loss In-Time BSC-1 beam rate

> <u>Rapidity gap trigger</u> BSC1+BSC2+BSC3(+BSC4)

rate vs inst. luminosity

MiniPlug Calorimeters

- •liquid scintillator + lead
- •flexible tower geometry
- •full coverage (no dead regions)
- detect charged/neutral

Group fibers to form "towers"

Particles/jets in MP

MP calibration

- \checkmark use data for relative calib. of towers at same η
- \checkmark use MC for relative calib. vs η and overall energy scale

Roman Pot Spectrometer

Roman Pot Trigger

Use 3-fold coincidence of RP trigger counters

Kinematic Properties

CDF Run II Preliminary

ND

SD

SD/ND ratio in Run II

- ratio of SD/ND dijet event rates compared to Run I data
- slope and normalization agree with Run I result
- •no ξ dependence observed 0.03<ξ<0.1
 ⇒confirms Run I results

Roman Pot tracking

FIBER TRACKER

 ξ : RP vs calorimeter

DPE Dijet Production

DPE dijets

⇒additional gap is not suppressed

Exclusive production in DPE

exclusive

Khoze, Martin, Ryskin Eur. Phys. J. C23, 311 (2002) C25, 391 (2002) C26, 229 (2002)

C. Royon, hep-ph/0308283

Attractive Higgs discovery channel at the LHC

Standard Model light Higgs:

□ "exclusive" channel ⇒ clean signal □ $M_H = M_{miss} = (s \xi_1 \xi_2)^{1/2}$ □ $\sigma_H (LHC) \sim 3$ fb, signal/background~3 (if $\Delta M_{miss} = 1$ GeV)

Exclusive production

Measurement of exclusive processes can be used to calibrate Higgs predictions

Exclusive dijets: $gg \rightarrow gg$ •exclusive $gg \rightarrow q\overline{q}$ is suppressed

Exclusive Dijets in Run I

PRL 85 (2000) 4215

✓ antiproton tag: 0.035< ξ<0.095
✓ 2 jets, E_T>7 GeV
✓ proton-side gap (2.4<η<5.9)
⇒ observed 132 events

Mass fraction:
$$R_{jj} = \frac{M_{jj}}{M_{x}}$$

DPE Enhanced Sample

• Use Run II dedicated DPE trigger (RP+J5+BSC_Gap_P)

Data presented from 26 pb⁻¹:

Triggers	397 k
$N_{vertex} \le 1$, $ z_{vertex} < 60$ cm	365 k
RP offline cut	309 k
N _{jets} ≥2 (E _T >5 GeV, η <2.5)	163 k
E _T (jet2)>10 GeV	116,473
SD (0.01<ξ<0.1)	54,552
DPE (MP-East N _{hit} =0)	17,101

DPE: kinematics

Dijet Mass Fraction

Exclusive Dijet Events ?

Prospects w/exclusive dijets

Experimental method: normalize R_{jj} for all jets to R_{jj} for qq ⇒look for excess of events at large Rjj

<u>Pros:</u> many systematics cancel out good HF quarks id small g mistag O(1%)

<u>Cons:</u> heavy quark mass contribution from exclusive b/c

Difference between gluon and quark jet

•charged particle multiplicity in jet N_{g-jet} =1.6 N_{q-jet} (from Run I) \Rightarrow study how N_{jet} behaves as Rjj \rightarrow 1

sensitive to light quark jets
q/g jets are not well separated

Theory:

 $gg \rightarrow gg$ dominant contribution at LO $gg \rightarrow qq$ suppressed when $M_{ii} \gg m_q$

Exclusive low-mass states

$$p\bar{p} \rightarrow p\chi\bar{p}$$

 $J/\psi \gamma \rightarrow \mu\mu \chi$
($\gamma \text{ is soft}$)
(same quantum numbers as Higgs boson)

Event selection: ✓ start from J/ψ sample ✓ exclusive events ✓ invariant mass (μμ+EM tower)

Background: ✓ cosmics ✓ calorimeter noise

Event Selection

Khoze, Martin, Ryskin, Stirling Eur. Phys. J. C 35, 211 (2004)

Diffractive Higgs Production

Rapidity Gaps at LHC

Soft and hard diffraction non suppressed two-gap to one-gap ratios

> forward detectors working well dedicated diffractive triggers

re-established Run I measurements no significant Q² dependence in SD/ND ratio no exclusive dijet/low-mass production