Detector Challenges at a Super B Factory

Francesco Forti INFN-Pisa October 5, 2004 Laboratori Nazionali di Frascati

Outline

- Experimental conditions at a Super B Factory(ies)
- Detector requirements at a Super B Factory
- Summarize findings of BABAR Roadmap Committee:
 - Up to what Luminosity will the current detector sub-systems survive?
 - What effects limit the detector lifetime?
 - What upgrade options are possible?
 - What is the amount of time required for R&D, Engineering, Procurement, Fabrication and Installation?
- Method
 - Extrapolate what we know from current PEP-II and BABAR performance, making reasonable assumption about what can be improved
 - Concrete approach moving from existing detector technologies

Experimental Conditions

- Machine background is the name of the game
 - Extrapolate from current conditions
 - Parameterized by LER, HER current and Luminosity terms

 $bkgd=a+b\cdot I_{HER}+c\cdot I_{LER}+d\cdot Luminosity$

Conf.	I_{LER}	I_{HER}	$\mathcal{L}(10^{33})$
0	2.2A	1.4A	8
1	11A	4.8A	200
2	15.5A	6.8A	700
3	23A	10.1A	1000

- Luminosity term dominates the extrapolations!
 - In contrast Belle has no luminosity term
- The large Luminosity term is due to radiative Bhabhas and might be a feature of head-on collisions.
- Look at detector survival based on extrapolations with 20% and 100% of the measured Luminosity terms.
- There may be significant gains from improved shielding against backgrounds.
- Much depends on the details of the interaction region

BABAR Interaction Region

HER Radiative Bhabhas

Radiative Bhabhas

KEK Interaction Region

Detector Requirements

- Physics at Super B Factory covers the entire range of current B Factory physics
 - Requirements for current detectors are all retained
 - Hermeticity. As large as possible angular coverage
 - High efficiency and precision charged particle tracking and vertexing
 - Good particle identification (π, K, e, μ) for event selection and tagging
 - Good energy and angle resolution in the reconstruction of gamma and π^0 .

- But at Super B Factories something more is needed
 - Harsh environment
 - Rate capability
 - Radiation hardness
 - More physics
 - Very rare channels
 - Physics on the recoil B
 - Channels with large missing energy
 - \rightarrow more requirements
 - Even more angular coverage.
 - Better vertexing to increased the background rejection capability

Backgrounds to fight

- Machine background → affects basic detector performance
 - Reduce tracking efficiency
 - Increase number of fake tracks
 - Increase number of fake calorimetric clusters
 - Deteriorates calorimeter energy resolution
 - Deteriorates PID performance
- Physics background main categories
 - Continuum (udsc) events with same topology as channel under study
 - Eg: $B \rightarrow \pi\pi$, $b \rightarrow s\gamma$, $b \rightarrow d\gamma$
 - BB events with missed or misreconstructed particles
 - Eg: $B \rightarrow \tau v$, $B \rightarrow K_{VV}$, many rare decays
 - BB events with same topology as channel under study
 - Many high multiplicity channels (Eg. $B \rightarrow DK$)

Experimental tools

- Masses: m(D), m(D*)-m(D), m_{ES}, ΔE
 - Effectiveness depends critically on momentum resolution
- Event shape variables
 - Fox-Wolfram moments, Thrust, Sphericity, etc.
- Angular distributions
 - known angular momentum relations to select events or in the fits.
- Particle ID
 - Different usage pattern depending on how delicate the analysis and on how well the PID is understood:
 - Use directly to select events with a given particle
 - Use information in Maximum Likelihood fit
- Vertexing
 - Crucial for time-dependent asymmetries
 - But don't need more resolution than we have for this
 - Can use B-B separation along z for event selection
 - Effective to reject udsc bkgnd if one B is reconstructed (semi)-exclusively
 - Using the charm vertex separation would enormously improve event selection and tagging capabilities, but requires significantly better vertex resolution.
 - Can only be achieved with very thin and small beam pipe: out of reach?

B-Beam technique

- Exclusively reconstruct one B in many hadronic modes and use the other tracks (recoil B) for the analysis
 - Eliminate almost completely continuum background $e \longrightarrow Y(4S) \longleftarrow e^+$ Recoil - The exclusive reconstruction

 $B_{\rm reco}$

- The exclusive reconstruction of one B fully determines
 - The flavor of the recoil B at $\Delta t = 0$.
 - The four momentum of the recoil B
- The tracks belonging to the Breco are already assigned
 - Great reduction in combinatorial background
- Selection efficiency is of the order of 4x10⁻³
 - With $10ab^{-1} \rightarrow 40$ million Breco \rightarrow access 10^{-6} BR
 - Sacrifice statistics in exchange of
 - Improved kinematics \rightarrow reduce model dependence in $|V_{ub}|$ and $|V_{cb}|$ studies
 - Reduces background for rare decays, especially those involving photons and neutrinos

K

π

The BABAR Detector

SVT: 97% efficiency, 15 μ m z hit resolution (inner layers, perp. tracks) SVT+DCH: $\sigma(p_T)/p_T = 0.13 \% \times p_T + 0.45 \%, \sigma(z_0) = 65 @ 1 GeV/c$ DIRC: K- π separation 4.2 σ @ 3.0 GeV/c \rightarrow 2.5 σ @ 4.0 GeV/c EMC: $O_{Coctober} \mathcal{G}_{E}/\mathcal{G}_{4} = 2.3 \% \cdot E^{-1/4} \oplus 1.9 \%$ F.Forti 10

Detector Upgrades / New Detectors

- Current detectors (Babar, Belle) will not work at a high luminosity machine.
- Detector complexity undergoes a "phase transition" around few x 10³⁵

- Requires significant R&D to go beyond

- Belle approach is to stay below the phase transition
- Babar is trying to define an "upgradeable platform" where the detector can be upgraded in due time up to 10³⁶.

- This may require an almost new detector.

Vertexing and Tracking

Drift Chamber

Occupancy extrapolations

Both SVT and DCH are unusable at very high lumi

Vertexing and Tracking at 10³⁶

- The tracking system could be made of
 - One or two layers of pixel detectors near beam pipe
 - Pixel required mainly because of high occupancy
 - Beam pipe radius is a big issue, depends on machine details:
 - KEK-B plans on 1cm \rightarrow more performing
 - PEP-II plans on 1.5-2 cm → safer
 - A few layers of silicon strip detectors at intermediate radii
 - Vertexing, impact parameter resolution, low P tracking
 - For the main tracker two possible solutions:
 - Small cell/fast gas drift chamber, combined with normal DCH
 - All silicon tracker
- Main issues
 - Radiation hardness: possible using LHC technology
 - Material budget: current hybrid pixel layers are thick; the all silicon solution can get pretty heavy
 - Rate capability: effects on silicon segmentation and drift chamber cell size

Pixel

Possible central detector config.

Babar approach to tracking

- All silicon tracker
 - Two inner layers of pixel detectors (or striplets for initial luminosity)
 - Three intermediate layers of strips as with current SVT
 - Replace DCH with 4-layer silicon tracker with lampshade modules.
 Remove support tube
 Flectronics & cooling on
 - Radii of pixel modules: 3.3, 4.0

Electronics & cooling outside of the tracking volume.

Babar ™ and © L. de Brunhoff

- Radii of barrel part of SVT modules : 5.9, 12.2, 14.0 cm
- Radii of barrel part of CST modules: 25,35,45,60 cm

Pixels

• Hybrid pixels

In hybrid pixel systems the readout chip is connected to the sensor through solder or Indium bumps

- + Separate development of readout electronics and sensors
- + Use best available technology for each component
- Complexity and reliability issues in assembly
- Material budget is high due to overlap of Sensor and readout chip + services.

- At least 1-2% $\rm X_0$ per layer (current Babar Si is around 0.4% $\rm X_0$)

Monolithic Active Pixels

- MAPS = Monolithic Active Pixels = sensor and electronics on the same substrate.
- R&D on monolithic pixels has started in several places.
- Possible approaches:
 - Integrate electronics on the high resistivity substrate usually employed for sensors
 - Active components are not of the best quality
 - The fabrication process is highly non-standard with large feature size (>1-2 μ m)
 - Signal is high quality, and large
 - Use the low resistivity substrate of standard CMOS process as sensor
 - Can use standard sub-micron process with state-of-the-art electronics
 - Proven by the success of CMOS video cameras, replacing CCDs.
 - Signal is louzy, and very small

Pixel R&D

- Two possible R&D directions
- Reduce thickness of conventional hybrid pixels
 - It doesn't seem possible to go too far
- Develop large area MAPS
 - Development on-going in several places:
 - LEPSI, LBNL, Japan, Perugia
 - Proposal by Pisa-Pavia-Bergamo-Trento-Trieste-Modena approved by the Italian Ministry for Education and Scientific Research
 - Main goal is to develop a submicron CMOS MAPS that can be used on large area systems
 - Time frame is 2-3 years (at least)

Momentum resolution

Central Silicon Tracker Performance

Delta E impact

October 5, 2004

F.Forti

Central Silicon Tracker

- The Central Silicon Tracker seems to be the only solution for high luminosity, but:
 - Need to evaluate consequence of degraded momentum resolution on Physics
 - It is quite a bit of silicon: 13m²
 - Requires significant engineering
 - Mechanics, support and service distribution
 - Electronics to readout very long modules
 - Trigger
 - Cost: in the range of 12 M\$ M&S
 - The CDF Run2B upgrade project has about 8M\$ M&S for 8m² of silicon.
- The inner layers are crucial
 - Silicon striplets are viable only up to few x 10^{35} .
 - To go beyond significant R&D on thin pixels is required

Layer A	vrea (cm2)
1	311
2	460
3	993
4	2382
5	3155
6	9975
7	19723
8	32487
9	57606
Total	127092

Particle Identification

- Complicated business. Current solution:
 - K identification
 - low p: dE/dx (both Babar and Belle) + TOF (Belle only)
 - high p: dedicated Cherenkov detector
 - DIRC (Babar) ring imaging cherenkov counter
 - ACC(Belle) aerogel threshold cherenkov counter
 - e identification
 - Mainly E(Calorimeter)/p(tracking)=1 for electrons
 - μ identification
 - Absorption length in iron yoke. Effective only at high momentum.
- Current PID detectors will not survive the 10³⁶ environment.

Babar PID: DIRC

- Light transmitted through length of radiator bar preserving angle information
- Rings projected in water-filled stand-off box to PM tubes
- Fused silica bars are OK, but backgrounds too high in Stand off box

Babar approach: A different kind of DIRC

- Barrel
 - New non-SOB focussing DIRC is under development in SLAC Group B
 - Quartz is sufficiently radiation hard
 - Need pixellated readout that works inside the magnetic field
 - APDs, HPDs, MAPMTs, \rightarrow Need R&D

- Endcap
 - Requires single photoelectron readout in a magnetic field
 - An aerogel threshold counter would work, as would a RICH with an aerogel radiator

Belle PID

October 5, 2004

Belle approach: TOP + A-RICH

- Time of propagation counter
 - Use internally reflected light, but measure time instead of the y coordinate. Needs < 100ps time resolution

Achieves some π/μ separation at low p

Calorimetry

• Requirements

- Speed
- Good energy resolution
- Radiation hardness
- Excellent energy and position resolution
- Large dynamic range
- Uniformity and stability
- Desirable attributes
 - Longitudinal segmentation for best possible π/e separation
 - Minimal interruption in barrel/endcap region

Options

- CsI with no doping light yield is small
- New crystals LSO, GSO, ..., which are expensive
- Scintillating liquid Xe concept

Calorimetry limitations

 Just on the base of occupancy, the calorimeters are not usuable at 10³⁶.

• Radiation damage is also important

Radiation Dose

Lowest Scenario = 20% Lumi term Highest Scenario = 100% Lumi term

Integral Lumi	Endcap	Barrel	Highest Scenario = 100% Lumi term
250 fb-1	1.0 kRad	0.6 kRad	
500 fb-1	1.5-3 kRad	0.8-2 kRad	
1 ab-1	2-8 kRad	1-5 kRad	
3 ab-1	3-24 kRad	2-15 kRad	ENDCAP
10 ab-1	7-50 kRad	5-35 kRad	needs Upgrade
20 ab-1	10-80 kRad	6-50 kRad	needs Ungrade
50 ab-1	25-200 kRad	15-120kRad	
100 ab-1	50-400 kRad	30-250kRad	Need 10x
	·		more radiation

Light output drops by ~0.7 after 10-20 kRad

hardness than CsI(Tl)

Crystal options

- Finding the right compromise between speed, light yield and cost is not straightforward.
- Belle is proposing to keep the CsI(TI) in the barrel EMC and replacing the encaps with pure CsI \rightarrow R&D on readout.

Crystal	CsI(Tl)	CsI	BGO	BaF_2	$PbWO_4$	CeF_3	YAP	GSO	LSO
$\tau \text{decay(ns)}$	680,	16	300	.6,	5,	10-30	27	56,	47
	3340			620	15			600	
$\chi_0(\mathrm{cm})$	1.86	1.86	1.12	2.03	0.89	1.66	2.63	1.39	1.14
R_{moliere} (cm)	3.8	3.8	2.3	3.4	2.2	2.6	2.8	2.4	2.3
λ_{nuclear} (cm)	37	37	22	30	22	26			
$LY (\gamma/MeV)$	56000,	2500	8200	1400f,	100	3500	16200	12500,	27000
	64:36%			9950s				1250	
λ peak (nm)	550	315	480	220f	420-500	310 - 340	390	440	420
				310s					
Rad Hard (Mrad)	.01	.011	.1-1	1	100	1	10	100	100
$\rho (g/cm3)$	4.51	4.51	7.13	4.89	8.28	6.16	5.35	6.70	7.40
n_0	1.79	1.95	2.15	1.56	2.20	1.68	1.94	1.85	1.82
Cost $(\$ /cc)$	3.2	4	4	5	8	3	?	> 15	> 7

October 5, 2004

Pure Csl crystals

.

- Fast component has decay time 28ns which is x30 faster than CsI(TI). Solves occupancy problem.
- Light yield is lower than CsI(TI) by x20 (and shifted from 565nm to 320nm)
 - Readout has been demonstrated using APDs
 - Resolution could be comparable to CsI(TI)
- We think there is a gain of at least x2 in radiation hardness (based on one set of measurements and vague claims from manufacturers!)
- No change to geometry of calorimeter
- Cost is ~\$4/cc which is x2 more than CsI(TI)

Ok for Luminosity of 2x10³⁵. Need to measure radiation damage to see if ok at higher luminosities

LSO (or LYSO) Crystals Lutetium (+Yttrium) OxyOrthosilicate

- Fast light output in 40ns. Solves occupancy problem.
- Smaller radiation length 1.15cm (Csl 1.86cm) and Moliere radius 2.3 cm (Csl 3.8cm)
- Believed to be radiation hard to 100MRad!
- Light output is 50% (60%) of CsI(TI), but shifted to 420nm from 550nm.
- Again use APDs to read them out.
- LYSO has slightly more light output than LSO, and may be easier to obtain commercially (3-4 suppliers instead of only one)
- Currently the cost is ~\$50/cc!!

Is an L(Y)SO calorimeter affordable?

	Csl Barrel	L(Y)SO Barrel	CsI Endcap	L(Y)SO Endcap
Radius	905-1300mm	705-1000mm	500-900mm	400-700mm
Z position	Rear -1178mm Front 1801mm	Rear -900mm Front 1400mm	Inner 1968mm Outer 1801mm	Inner 1530mm Outer 1400mm
Crystal Size	4.8cm x 4.8cm x 30/32cm	3.0cm x 3.0cm x 18.5/20cm	4.0cm x 4.7cm x 32cm	3.0cm x 3.0cm x 20cm
# in θ/φ	48/120	60/150	8/80-120	8/90-150
Total # Xtal	5760	9000	820	990
Volume	4.5 m ³	1.6 m ³	0.5 m ³	0.2 m ³
Cost/cc	~\$4	~\$50	~\$4	~\$50
Total Cost	\$18M	\$80 M	\$2M	\$10M

The LXe Calorimeter concept

- Hexagonal cells of ~ 1 Molière radius in transverse dimension are formed from thin quadraphenyl butadiene (TPB)coated eptfe sheets
 - Cells are not load-bearing, thus thin
- Longitudinal segmentation is provided by TPB-coated optical separators, with WLS fibers sensitive only in a particular segment
 - Three segments is probably optimal
 - 1. Massless gap ascertain whether there was an interaction in material in front of the EMC
 - 2, Two larger segments, with division near shower max
- Fibers are read out by a pixelized APD, located in the LXe volume
 - Clear fibers between coil segment and APD
 - Redundant readout is simple and inexpensive
 - All readout at rear, minimizing nuclear counter effect

Xenon calorimeter

- Light output is within ~20ns.
- Radiation length is 2.9cm
 - Need all of radial space between 700 and 1350mm for cryostat, Liquid Xe and readout.
- Moliere radius 5.7cm.
 - Need sampling along shower depth to separate overlaps.
- Light yield is similar to CsI(TI) but at 175nm.
 - Use wavelength shifters and readout by APDs
- Radiation hardness is not an issue
- Cost of Liquid Xe is \$2.5/cc
 - Total cost \$20M + readout and mechanics?

Calorimeter R&D

- CsI(TI) and pure CsI radiation damage tests at SLAC by Schindler/Hry'nova
- LYSO crystal has been acquired by CalTech (Ren Yuan Zhu)

- Will test readout with 1-4 APDs (from CMS)

- Liquid Xe design studies are ongoing
 - Cryostat available at CalTech
 - Possible Liquid Xe beam test in 2005

Instrumented Flux Return -

IFR upgrades

- Forward endcap RPCs will not survive 2x10³⁵
 - Outer layers see large LER background (part of which will be shielded after summer 2004)
 - Inner layers see large Lumi background at small radii
- In principle one could replace the forward endcap with LSTs (in avalanche mode)
 - Scintillator also possible, although not really studied.
- Barrel LSTs should be ok for all scenarios
- Not clear if there is interest in replacing backward endcap RPCs
- Does not seem to be a critical issue.

Trigger, DAQ, Computing

- The 10³⁶ environment will be quite challenging for trigger, DAQ and Computing
 - 10-100kHz Trigger rate
 - Assume 50 kB event size \rightarrow roughly 5GB/s dataflow
 - Data logging at about 330MB/s (6kHz x 55kB/ev)
- It seems to be a solvable problem, through:
 - Moore's law
 - Draw extensively on LHC experiments experience
 - This applies to front end electronics as well
- Needs to be revisited when detector technology choices are clearer.

- Several detector elements require significant R&D activity before a complete design can be formulated
 - Thin silicon pixel and strip detectors (including mounting and cooling)
 - Small cell drift chamber under high radiation
 - Focussed DIRC, TOP detector
 - Crystals for EMC, Liquid Xe calorimeter, pure Csl readout
 - Technology for muon ID.
- Try to draw as much as possible from LHC developments and experience
 - Low energy environment is somewhat different
- The time frame for this R&D is

NOW and the next 3 years

The international scene

.

- KEK-B/Belle: A letter of intent has been put forward in February 2004 for a Super KEK-B machine and a Super Belle detector.
 - Luminosity ranges from 1x10³⁵ to 5x10³⁵
 - Detector upgrades include:

Silicon striplets
Small cell drift chamber
Pure Csl calorimeter endcap

- PEP-II/Babar: A "Roadmap committee" has prepared a report summarizing discussions and studies done over the past couple of years.
 - Current direction is to propose a "upgradable platform":
 - Start with 2-5x10³⁵ machine and detector, but already include an upgrade path to 7-8x10³⁵ for the 10ab⁻¹/year goal Silicon Striplets → thin pixels
 Small cell drift chamber → all silicon tracker
 Pure Csl calorimeter endcap → Liquid
 - Xenon or LSO xtals
 - Base detector possible with current technology, while full upgrade will require significant R&D

October 5, 2004

Conclusions and outlook

- A detector for a Super B Factory may be possible
 - It will be challenging and not cheap
 - Relatively small parts of the existing detectors will be reusable
 - Magnets and iron, quartz bars, LSTs, little more.
 - R&D required to reach full luminosity (to start now)
- The OSBF Principle
 - a.k.a. "One Super B Factory"
 - It is unlikely that the HEP community has enough resources to build more than one Super B Factory
 - Encourage collaboration between Babar, Belle and other communities to join efforts
 - Joint workshop in Jan 2004 (Hawaii), second of a series, more to come
 - Already a concrete collaboration is active on backgrounds
- Approval process lengthy
 - Connected to global funding political decisions:
 - ITER, ILC, ...
 - Unlikely to have serious funds before 2008
 - Successful only if there is overall community agreement and support
- Why not in Europe ?

-----BACKUP SLIDES-----

.

October 5, 2004

Babar upgrade path

Belle upgrade path

Timescale for BABAR upgrade

Research & Development

- SVT Pixels: 3 years, Si tracker: 2 years?, DRC: 2 years, EMC Barrel: 2-3 years, IFR Endcap: 1 year?
- EMC R&D is longer for LSO, and LXe options
- This phase overlaps funding approval (3-4 years?)
- Engineering, Procurement and Assembly
 - SVT Pixels: 2.5 years, Si tracker: 3.5 years, DRC:2 years, EMC Barrel: 2.5-3.5 years, IFR Endcap: 2 years
 - Longest item is Si tracker readout electronics
 - EMC procurement CsI: 2 years, LSO: 3 years, LXe: 2 years
- Installation in 2011/2 if all goes well

Material

Material comparison

Silicon tracker has less total material (well, optimistically) because of removal of Support Tube

Small cell drift chamber

- To reduce occupancy
 - Smaller cell drift chamber
 - New gas with faster drift velocity \rightarrow CH4

XT curve for small cell

October 5, 2004

F.Forti

Crystals or Lxe ?

	CsI(Tl)	LSO	LXe
Atomic number Z	54 effective	65 effective	54
Atomic weight A			131
Density (g/cc)	4.53	7.40	2.953
Radiation length (cm)	1.85	1.14	2.87
Molière radius (cm)	3.8	2.3	5.71
λ scint (nm)	550	420	175
τ scint (ns)	680, 3340	47	4.2,
			22, 45
Light yield (photons/MeV)	56,000 (64:36)	27,000	75,000
Refractive index	1.8	1.82	1.57
Liquid/gas density ratio			519
Boiling point at 1 atmosphere (K)			165
Radiation hardness (Mrad)	0.01	100	-
Cost/cc	3.2	>7 (50 ???)	2.5

October 5, 2004