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Outline

• Experimental conditions at a Super B Factory(ies)
• Detector requirements at a Super B Factory
• Summarize findings of BABAR Roadmap Committee:

– Up to what Luminosity will the current detector sub-systems
survive?

– What effects limit the detector lifetime?
– What upgrade options are possible?
– What is the amount of time required for R&D, Engineering,

Procurement, Fabrication and Installation?
• Method

– Extrapolate what we
know from current  PEP-II and
BABAR performance, making
reasonable assumption
about what can be improved

– Concrete approach moving from
existing detector technologies

Links
– Roadmap home page:
www.slac.stanford.edu/BFROOT/www/Organizat

ion/Roadmap/
– Belle workshops
belle.kek.jp/workshops
– Babar workshops
www.slac.stanford.edu/BFROOT/www/Organizat

ion/1036_Study_Group
– Hawaii joint workshop
www.phys.hawaii.edu/~superb04
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Experimental Conditions

• Machine background is the name
of the game
– Extrapolate from current conditions
– Parameterized by LER, HER current

and Luminosity terms

– Luminosity term dominates the extrapolations!
• In contrast Belle has no luminosity term

– The large Luminosity term is due to radiative Bhabhas and
might be a feature of head-on collisions.

• Look at detector survival based on extrapolations with 20%
and 100% of the measured Luminosity terms.

• There may be significant gains from improved shielding
against backgrounds.

• Much depends on the details of the interaction region
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Detector Requirements

• Physics at Super B Factory
covers the entire range of
current B Factory physics
– Requirements for current

detectors are all retained
• Hermeticity. As large as

possible angular coverage
• High efficiency and

precision charged particle
tracking and vertexing

• Good particle identification
(p, K, e, m) for event
selection and tagging

• Good energy and angle
resolution in the
reconstruction of gamma
and p0.

• But at Super B Factories
something more is needed
– Harsh environment

• Rate capability
• Radiation hardness

– More physics
• Very rare channels
• Physics on the recoil B
• Channels with large

missing energy

– ‡ more requirements
• Even more angular

coverage.
• Better vertexing to

increased  the background
rejection capability
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Backgrounds to fight

• Machine background ‡ affects basic detector
performance
– Reduce tracking efficiency

– Increase number of fake tracks
– Increase number of fake calorimetric clusters
– Deteriorates calorimeter energy resolution

– Deteriorates PID performance

• Physics background – main categories
– Continuum (udsc) events with same topology as channel

under study
• Eg: B‡ pp, b‡sg , b‡dg

– BB events with missed or misreconstructed particles
• Eg: B‡tn, B‡Knn, many rare decays

– BB events with same topology as channel under study
• Many high multiplicity channels (Eg. B‡DK)
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Experimental tools

• Masses: m(D), m(D*)-m(D), mES, DE
– Effectiveness depends critically on momentum resolution

• Event shape variables
– Fox-Wolfram moments, Thrust, Sphericity, etc.

• Angular distributions
– known angular momentum relations to select events or in the fits.

• Particle ID
– Different usage pattern depending on how delicate the analysis and on

how well the PID is understood:
• Use directly to select events with a given particle
• Use information in Maximum Likelihood fit

• Vertexing
– Crucial for time-dependent asymmetries

• But don’t need more resolution than we have for this

– Can use B-B separation along z for event selection
• Effective to reject udsc bkgnd if one B is reconstructed (semi)-exclusively

– Using the charm vertex separation would enormously improve event
selection and tagging capabilities, but requires significantly better
vertex resolution.

• Can only be achieved with very thin and small beam pipe: out of reach ?
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B-Beam technique

• Exclusively reconstruct one B in many hadronic modes
and use the other tracks (recoil B) for the analysis
– Eliminate almost completely

continuum background
– The exclusive reconstruction

of one B fully determines
• The flavor of the recoil B at Dt = 0.
• The four momentum of the recoil B

– The tracks belonging to the Breco are already assigned
• Great reduction in combinatorial background

• Selection efficiency is of the order of 4x10-3

– With 10ab-1 ‡ 40 million Breco ‡ access 10-6 BR
– Sacrifice statistics in exchange of

• Improved kinematics ‡ reduce model dependence  in
 |Vub| and |Vcb| studies

• Reduces background for rare decays, especially those involving
photons and neutrinos
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EMC
6580 CsI(Tl) crystals

Instrumented Flux Return
iron / RPCs  (muon / neutral hadrons)

Drift Chamber
40 stereo layers

1.5 T solenoid

Silicon Vertex Tracker
5 layers, double sided strips

DIRC (PID)
144 quartz bars

11000 PMs

e+ (3.1 GeV)

e- (9 GeV)

SVT:         97% efficiency, 15 mm z hit resolution (inner layers, perp. tracks)
SVT+DCH:s(pT)/pT = 0.13 % ¥ pT  +  0.45 %, s(z0) = 65 @ 1 GeV/c
DIRC:       K-p separation 4.2 s @ 3.0 GeV/c ‡ 2.5 s @ 4.0 GeV/c
EMC:        sE/E = 2.3 %⋅E-1/4 ⊕ 1.9 %

The BABA R Detector
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Detector Upgrades / New Detectors

• Current detectors (Babar, Belle) will not
work at a high luminosity machine.

• Detector complexity undergoes a “phase
transition” around few x 1035

– Requires significant R&D to go beyond
• Belle approach is to stay below the phase

transition
• Babar is trying to define an “upgradeable

platform” where the detector can be
upgraded in due time up to 1036.
– This may require an almost new detector.



Vertexing
and Tracking

Drift
Chamber

SVT

Babar ™ and © L. de Brunhoff
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Occupancy extrapolations

• Both SVT and DCH are unusable at
very high lumi

Drift ChamberSVT
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Vertexing and Tracking at 1036

• The tracking system could be made of
– One or two layers of pixel detectors near beam pipe

• Pixel required mainly because of high occupancy

• Beam pipe radius is a big issue, depends on machine details:
– KEK-B plans on 1cm ‡ more performing

– PEP-II plans on 1.5-2 cm ‡ safer

– A few layers of silicon strip detectors at intermediate radii
• Vertexing, impact parameter resolution, low P tracking

– For the main tracker two possible solutions:
• Small cell/fast gas drift chamber, combined with normal DCH
• All silicon tracker

• Main issues
– Radiation hardness: possible using LHC technology
– Material budget: current hybrid pixel layers are thick;

the all silicon solution can get pretty heavy
– Rate capability: effects on silicon segmentation and drift

chamber cell size
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Belle approach to tracking

Pixel

Silicon striplets
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Babar approach to tracking

• All silicon tracker
– Two inner layers of pixel detectors (or striplets for initial luminosity)
– Three intermediate layers of strips as with current SVT

– Replace DCH with 4-layer silicon tracker with lampshade modules.
Remove support tube

– Radii of pixel modules: 3.3, 4.0

– Radii of barrel part of SVT modules : 5.9, 12.2, 14.0 cm
– Radii of barrel part of CST modules: 25,35,45,60 cm

Electronics & cooling outside of
the tracking volume.

Current detector. CST 300 um.

60 cm

Babar ™ and © L. de Brunhoff

MATERIAL !
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Pixels

• Hybrid pixels
In hybrid pixel systems the readout chip is connected
to the sensor through solder or Indium bumps

+ Separate development of readout electronics and
sensors

+ Use best available
technology for each
component

- Complexity and reliability
issues in assembly

- Material budget is high due
to overlap of Sensor and
readout chip + services.

• At least 1-2% X0 per layer (current Babar Si is around 0.4%
X0)

Front-End Chip

Sensor
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Monolithic Active Pixels

• MAPS = Monolithic Active Pixels = sensor and electronics
on the same substrate.

• R&D on monolithic pixels has started in several places.
• Possible approaches:

– Integrate electronics on the high resistivity substrate usually
employed for sensors

• Active components are not of the best quality
• The fabrication process is highly non-standard with large feature

size (>1-2mm)
• Signal is high quality, and large

– Use the low resistivity substrate of standard CMOS process
as sensor

• Can use standard sub-micron process with state-of-the-art
electronics

• Proven by the success of CMOS video cameras, replacing CCDs.
• Signal is louzy, and very small
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Pixel R&D
• Two possible R&D directions
• Reduce thickness of conventional hybrid pixels

– It doesn’t seem possible to go too far

• Develop large area MAPS
– Development on-going in several places:

• LEPSI, LBNL, Japan, Perugia
– Proposal by Pisa-Pavia-Bergamo-

Trento-Trieste-Modena approved
by the Italian Ministry for Education
and Scientific Research

• Main goal is to develop a submicron
CMOS MAPS that can be used on large
area systems

• Time frame is 2-3 years (at least)
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Momentum resolution

90º incidence
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Delta E impact

CST 300 um option.
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Central Silicon Tracker

• The Central Silicon Tracker seems to be the only
solution for high luminosity, but:
– Need to evaluate consequence of degraded momentum

resolution on Physics
– It is quite a bit of silicon: 13m2

– Requires significant engineering
• Mechanics, support and service distribution
• Electronics to readout very long modules
• Trigger

– Cost: in the range of 12 M$ M&S
• The CDF Run2B upgrade project has

about 8M$ M&S for 8m2 of silicon.

• The inner layers are crucial
– Silicon striplets are viable only up to few x 1035.
– To go beyond significant R&D on thin pixels is required

Layer Area (cm2)
1 311
2 460
3 993
4 2382
5 3155
6 9975
7 19723
8 32487
9 57606

Total 127092
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Particle Identification

• Complicated business. Current solution:
–  K identification

• low p:  dE/dx (both Babar and Belle) + TOF (Belle only)
• high p: dedicated Cherenkov detector

– DIRC (Babar) – ring imaging cherenkov counter
– ACC(Belle) – aerogel threshold cherenkov counter

–  e identification
• Mainly E(Calorimeter)/p(tracking)=1 for electrons

–  m identification
• Absorption length in iron yoke. Effective only at high

momentum.

• Current PID detectors will not survive the 1036

environment.
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Babar PID: DIRC
• Light transmitted through length of radiator

bar preserving angle information
• Rings projected in water-filled stand-off box

to PM tubes
• Fused silica bars are OK, but backgrounds

too high in Stand off box

Babar ™ and © L. de Brunhoff
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Babar approach:
 A different kind of DIRC

• Barrel
– New non-SOB focussing DIRC is under development in SLAC

Group B
• Quartz is sufficiently radiation hard
• Need pixellated readout that works inside the magnetic field

– APDs, HPDs, MAPMTs, ‡ Need R&D

• Endcap
– Requires single photoelectron readout in a magnetic field
– An aerogel threshold counter would work, as would a RICH with an

aerogel radiator

Babar ™ and © L. de Brunhoff
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Belle PID

• Aerogel Cherenkov Counters
• Time of Flight
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Belle approach: TOP + A-RICH
• Time of propagation counter

– Use internally reflected light,
but measure time instead of the
y coordinate. Needs < 100ps
time resolution

Achieves some p/m separation at low p

Cherenkov angle
distrbution for
0.55 GeV/c beam
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Calorimetry
• Requirements

– Speed
– Good energy resolution
– Radiation hardness
– Excellent energy and

position resolution
– Large dynamic range
– Uniformity and stability

• Desirable attributes
– Longitudinal

segmentation for best
possible p/e separation

– Minimal interruption in
barrel/endcap region

• Options
– CsI with no doping – light

yield is small
– New crystals – LSO, GSO,

…, which are expensive
– Scintillating liquid Xe

concept
Babar ™ and © L. de Brunhoff
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• Just on the base of occupancy, the calorimeters are not
usuable at 1036.

• Radiation damage is also important

Calorimetry limitations

Occupancy for
>1MeV
deposits

Number of
clusters
>10 Mev
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Radiation Dose

30-250kRad50-400 kRad100 ab-1

15-120kRad25-200 kRad50 ab-1

6-50 kRad10-80 kRad20 ab-1

5-35 kRad7-50 kRad10 ab-1

2-15 kRad3-24 kRad3 ab-1

1-5 kRad2-8 kRad1 ab-1

0.8-2 kRad1.5-3 kRad500 fb-1

0.6 kRad1.0 kRad250 fb-1

BarrelEndcapIntegral Lumi

        ENDCAP
needs Upgrade
         BARREL 
needs Upgrade

Lowest Scenario = 
20% Lumi term
Highest Scenario =
100% Lumi term

                       Need 10x 
               more radiation
     hardness than CsI(Tl) Light output drops by ~0.7 after 10-20 kRad 
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Crystal options

• Finding the right compromise between speed, light yield and cost
is not straightforward.

• Belle is proposing to keep the CsI(Tl) in the barrel EMC and
replacing the encaps with pure CsI ‡ R&D on readout.
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Pure CsI crystals

• Fast component has decay time 28ns which is x30 faster
than CsI(Tl). Solves occupancy problem.

• Light yield is lower than CsI(Tl) by x20 (and shifted from
565nm to 320nm)
– Readout has been demonstrated using APDs
– Resolution could be comparable to CsI(Tl)

• We think there is a gain of at least x2 in radiation hardness
(based on one set of measurements and vague claims from
manufacturers!)

• No change to geometry of calorimeter
• Cost is ~$4/cc which is x2 more than CsI(Tl)

Ok for Luminosity of 2x1035.  Need to measure 
radiation damage to see if ok at higher luminosities
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LSO (or LYSO) Crystals
Lutetium (+Yttrium) OxyOrthosilicate

• Fast light output in 40ns. Solves occupancy
problem.

• Smaller radiation length 1.15cm (CsI 1.86cm)
and Moliere radius 2.3 cm (CsI 3.8cm)

• Believed to be radiation hard to 100MRad!
• Light output is 50% (60%) of CsI(Tl), but shifted to

420nm from 550nm.
• Again use APDs to read them out.
• LYSO has slightly more light output than LSO,

and may be easier to obtain commercially (3-4
suppliers instead of only one)

• Currently the cost is ~$50/cc!!
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Is an L(Y)SO calorimeter affordable?

$10M$2M$80M$18MTotal Cost

~$50~$4~$50~$4Cost/cc

0.2 m30.5 m31.6 m34.5 m3Volume

99082090005760Total # Xtal

8/90-1508/80-12060/15048/120# in q/f

3.0cm x 3.0cm x
20cm

4.0cm x 4.7cm
x 32cm

3.0cm x 3.0cm x
18.5/20cm

4.8cm x 4.8cm
x 30/32cm

Crystal Size

Inner 1530mm
Outer 1400mm

Inner 1968mm
Outer 1801mm

Rear -900mm
Front 1400mm

Rear -1178mm
Front 1801mm

Z position

400-700mm500-900mm705-1000mm905-1300mmRadius

L(Y)SO
Endcap

CsI EndcapL(Y)SO
Barrel

CsI  Barrel
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The LXe Calorimeter concept
• Hexagonal cells of ~ 1 Molière radius in

transverse dimension are formed from
thin quadraphenyl butadiene (TPB)-
coated eptfe sheets

– Cells are not load-bearing, thus thin

• Longitudinal segmentation is provided by
TPB-coated optical separators, with
WLS fibers sensitive only in a particular
segment

– Three segments is probably optimal
1. Massless gap – ascertain whether

there was an interaction in material
in front of the EMC

2,     Two larger segments, with division
near shower max

• Fibers are read out by a pixelized APD,
located in the LXe volume

– Clear fibers between coil segment and
APD

– Redundant readout is simple and
inexpensive

– All readout at rear, minimizing nuclear
counter effect



October 5, 2004 F.Forti 36

Xenon calorimeter

• Light output is within ~20ns.
• Radiation length is 2.9cm

– Need all of radial space between 700 and 1350mm for
cryostat, Liquid Xe and readout.

• Moliere radius 5.7cm.
– Need sampling along shower depth to separate

overlaps.

• Light yield is similar to CsI(Tl) but at 175nm.
– Use wavelength shifters and readout by APDs

• Radiation hardness is not an issue
• Cost of Liquid Xe is $2.5/cc

– Total cost $20M + readout and mechanics?
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Calorimeter R&D

• CsI(Tl) and pure CsI radiation damage
tests at SLAC by Schindler/Hry’nova

• LYSO crystal has been acquired by
CalTech (Ren Yuan Zhu)
– Will test readout with 1-4 APDs (from CMS)

• Liquid Xe design studies are ongoing
– Cryostat available at CalTech
– Possible Liquid Xe beam test in 2005



Instrumented
Flux Return

• Babar: RPCs+LSTs
• Belle: RPCs

Babar ™ and © L. de Brunhoff
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IFR upgrades

• Forward endcap RPCs will not survive 2x1035

– Outer layers see large LER background (part of which
will be shielded after summer 2004)

– Inner layers see large Lumi background at small radii

• In principle one could replace the forward
endcap with LSTs (in avalanche mode)
– Scintillator also possible, although not really studied.

• Barrel LSTs should be ok for all scenarios
• Not clear if there is interest in replacing

backward endcap RPCs
• Does not seem to be a critical issue.
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Trigger, DAQ, Computing

• The 1036 environment will be quite challenging
for trigger, DAQ and Computing
– 10-100kHz Trigger rate
– Assume 50 kB event size ‡ roughly 5GB/s dataflow
– Data logging at about 330MB/s (6kHz x 55kB/ev)

• It seems to be a solvable problem, through:
– Moore’s law
– Draw extensively on LHC experiments experience

• This applies to front end electronics as well

• Needs to be revisited when detector technology
choices are clearer.
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R&D

• Several detector elements require significant R&D activity
before a complete design can be formulated
– Thin silicon pixel and strip detectors (including mounting and

cooling)
– Small cell drift chamber under high radiation
– Focussed DIRC, TOP detector
– Crystals for EMC, Liquid Xe calorimeter, pure CsI readout
– Technology for muon ID.

• Try to draw as much as possible from LHC developments
and experience
– Low energy environment is somewhat different

• The time frame for this R&D is
NOW

and the next 3 years
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The international scene

• KEK-B/Belle: A  letter of intent has been put forward in February
2004 for a Super KEK-B machine and a Super Belle detector.
– Luminosity ranges from 1x1035 to 5x1035

– Detector upgrades include:

• PEP-II/Babar: A “Roadmap committee” has prepared a report
summarizing discussions and studies done over the past couple of
years.
– Current direction is to propose a “upgradable platform”:

• Start with 2-5x1035 machine and detector, but already include an upgrade
path to 7-8x1035 for the 10ab-1/year goal.

– Detector upgrades include

– Base detector possible with current technology, while full upgrade will
require significant R&D

•Silicon striplets
•Small cell drift chamber
•Pure CsI calorimeter endcap

•Silicon striplets ‡ thin pixels
•Small cell drift chamber ‡ all silicon tracker
•Pure CsI calorimeter endcap ‡ Liquid

Xenon or LSO xtals
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Conclusions and outlook
• A detector for a Super B Factory may be possible

– It will be challenging and not cheap
– Relatively small parts of the existing detectors will be reusable

• Magnets and iron, quartz bars, LSTs, little more.
– R&D required to reach full luminosity (to start now)

• The OSBF Principle
– a.k.a. “One Super B Factory”
– It is unlikely that the HEP community has enough resources to build

more than one Super B  Factory
– Encourage collaboration between Babar, Belle and other

communities to join efforts
• Joint workshop in Jan 2004 (Hawaii), second of a series, more to come
• Already a concrete collaboration is active on backgrounds

• Approval process lengthy
– Connected to global funding political decisions:

• ITER, ILC, …
– Unlikely to have serious funds before  2008
– Successful only if there is overall community agreement and support

• Why not in Europe ?



October 5, 2004 F.Forti 44

-------BACKUP SLIDES------
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DIRC

BABAR

SuperBABAR

Babar upgrade path

• IFR upgraded
(ongoing)

• Remove SVT,DCH,
EMC, DIRC

• New EMC – liquid Xe
• New tracker

- Two inner pixel
layers
- Seven(?) thin
double-sided Si-strip
arch layers

• New DIRC(s) with
compact readout
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Belle upgrade path
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Timescale for BABAR upgrade

• Research & Development
– SVT Pixels: 3 years, Si tracker: 2 years?, DRC: 2 years,

EMC Barrel: 2-3 years, IFR Endcap: 1 year?
– EMC R&D is longer for LSO, and LXe options
– This phase overlaps funding approval (3-4 years?)

• Engineering, Procurement and Assembly
– SVT Pixels: 2.5 years, Si tracker: 3.5 years, DRC:2 years,

EMC Barrel: 2.5-3.5 years, IFR Endcap: 2 years
– Longest item is Si tracker readout electronics
– EMC procurement CsI: 2 years, LSO: 3 years, LXe: 2 years

• Installation in 2011/2 if all goes well
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Material

• Material comparison
– Silicon tracker has less total material (well,

optimistically) because of removal of Support Tube

Current detector.

% Rad length
CST 300 um.

Inactive material

Total material

Inactive material

Total material
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Small cell drift chamber

• To reduce occupancy
– Smaller cell drift chamber
– New gas with faster drift velocity ‡ CH4
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Crystals or Lxe ?

-1000.01Radiation hardness (Mrad)

1.571.821.8Refractive index

2.5>7 (50 ???)3.2Cost/cc

165Boiling point at 1 atmosphere (°K)

519Liquid/gas density ratio

75,00027,00056,000  (64:36)Light yield (photons/MeV)

4.2,
22, 45

47680, 3340t scint (ns)

175420550l scint (nm)

5.712.33.8Molière radius (cm)

2.871.141.85Radiation length (cm)

2.9537.404.53Density (g/cc)

131Atomic weight A

5465 effective54 effectiveAtomic number Z

LXeLSOCsI(Tl)


