On the gluon content of the η and η' mesons

Rafel Escribano
Grup de Física Teòrica & IFAE (UAB)

March 27, 2007
Laboratori Nazionali di Frascati

in collab. with Jordi Nadal, hep-ph/0703187

Work partly supported by the EU, MRTN-CT-2006-035482, “FLAVIAnet” network
Purpose: to perform a phenomenological analysis of radiative $V \rightarrow P \gamma$ and $P \rightarrow V \gamma$ decays, with $V=\rho, K^*, \omega, \phi$ and $P=\pi, K, \eta, \eta'$, aimed at determining the gluonic content of the η and η' wave functions.

Outline:

- Notation
- Motivation
- A model for $V P \gamma$ M1 transitions
- Data fitting
- Comparison with other approaches
- Summary and conclusions
• **Notation**

We work in a basis consisting of the states

\[
|\eta_q\rangle \equiv \frac{1}{\sqrt{2}} |u\bar{u} + d\bar{d}\rangle \quad |\eta_s\rangle = |s\bar{s}\rangle \quad |G\rangle \equiv |\text{gluonium}\rangle
\]

The physical states \(\eta\) and \(\eta'\) are assumed to be the linear combinations

\[
|\eta\rangle = X_\eta |\eta_q\rangle + Y_\eta |\eta_s\rangle + Z_\eta |G\rangle,
\]

\[
|\eta'\rangle = X_{\eta'} |\eta_q\rangle + Y_{\eta'} |\eta_s\rangle + Z_{\eta'} |G\rangle,
\]

with

\[
X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 + Z_{\eta(\eta')}^2 = 1 \quad \text{and thus} \quad X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 \leq 1
\]

A significant gluonic admixture in a state is possible only if

\[
Z_{\eta(\eta')}^2 = 1 - X_{\eta(\eta')}^2 - Y_{\eta(\eta')}^2 > 0
\]

Assumptions:
- no mixing with \(\pi^0\) (isospin symmetry)
- no mixing with \(\eta_c\) states
- no mixing with radial excitations
• **Notation**

In absence of gluonium

\[Z_{\eta(\eta')} \equiv 0 \]

\[|\eta\rangle = \cos \phi_P |\eta_q\rangle - \sin \phi_P |\eta_s\rangle \]
\[|\eta'\rangle = \sin \phi_P ||\eta_q\rangle + \cos \phi_P |\eta_s\rangle \]

with

\[X_\eta = Y_{\eta'} \equiv \cos \phi_P \]
\[X_{\eta'} = -Y_\eta \equiv \sin \phi_P \]

and

\[X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 = 1 \]

where \(\phi_P \) is the \(\eta-\eta' \) mixing angle in the quark-flavour basis related to its octet-singlet analog through

\[\theta_P = \phi_P - \arctan \sqrt{2} \simeq \phi_P - 54.7^\circ \]

Similarly, for the vector states \(\omega \) and \(\phi \) the mixing is given by

\[|\omega\rangle = \cos \phi_V |\omega_q\rangle - \sin \phi_V |\phi_s\rangle \]
\[|\phi\rangle = \sin \phi_V |\omega_q\rangle + \cos \phi_V |\phi_s\rangle \]

where \(\omega_q \) and \(\phi_s \) are the analog non-strange and strange states of \(\eta_q \) and \(\eta_s \), respectively.
• Motivation

KLOE Collaboration, hep-ex/0612029

\[\phi_P = (39.7 \pm 0.7)^\circ \]

\[Z_{\eta'}^2 = 0.14 \pm 0.04 \]

\[\begin{align*}
(1) \quad & \Gamma(\eta \rightarrow \gamma \gamma)/\Gamma(\omega \rightarrow \pi^0 \gamma) \\
(2) \quad & \Gamma(\eta \rightarrow \gamma \rho)/\Gamma(\pi^0 \gamma) \\
(3) \quad & \Gamma(\eta \rightarrow \omega \gamma)/\Gamma(\omega \rightarrow \pi^0 \gamma)
\end{align*} \]

\[R_\phi \text{ with } Z^2=0 \]

\[Y_1 = \eta' \rightarrow \gamma \gamma/\pi^0 \rightarrow \gamma \gamma \]

\[Y_2 = \eta' \rightarrow \rho \gamma/\omega \rightarrow \pi^0 \gamma \]

\[Y_3 = \phi \rightarrow \eta' \gamma/\phi \rightarrow \eta \gamma \]

\[Y_4 = \eta' \rightarrow \omega \gamma/\omega \rightarrow \pi^0 \gamma \]
Motivation

KLOE Collaboration, PLB 541 (2002), 45

\[Z_{\eta'}^2 = 0.06^{+0.09}_{-0.06} \]

Gluonium fraction below 15%

What are the **differences** between the two analyses?

- **improvement** in the **precision** of the new measurements
- the **use** of the **overlapping parameters** relating the **pseudoscalar** and **vector wave functions**
A model for VP_γ M_1 transitions

We will work in a conventional quark model context: P and V are simple quark-antiquark S-wave bound states. All these hadrons are thus extended objects with characteristics spatial extensions fixed by their respective P and V wave functions.

- SU(2) limit: identical spatial extension within each isomultiplet
- SU(3) broken: constituent quark masses with $m_s > m$ and different spatial extensions for each isomultiplet

Ingredients of the model:

i) a VP_γ magnetic dipole transition proceeding via quark or antiquark spin flip amplitude $\propto \mu_q = e_q/2m_q$

ii) spin-flip $V \rightarrow P$ conversion amplitude corrected by the relative overlap between the P and V wave functions.

iii) OZI-rule reduces considerably the possible transitions and overlaps

$$C_\pi \equiv \langle \pi | \omega_q \rangle = \langle \pi | \rho \rangle \quad C_K \equiv \langle K | K^* \rangle$$

$$C_q \equiv \langle \eta_q | \omega_q \rangle = \langle \eta_q | \rho \rangle \quad C_s \equiv \langle \eta_s | \phi_s \rangle$$

$U(1)_A$ anomaly
• A model for $VP\gamma$ M1 transitions

Amplitudes:

\[
\begin{align*}
 g_{\rho^0\pi^0\gamma} &= g_{\rho^+\pi^+\gamma} = \frac{1}{3}g, &
 g_{\omega\pi\gamma} &= g \cos \phi_V, &
 g_{\phi\pi\gamma} &= g \sin \phi_V, \\
 g_{K^*0K^0\gamma} &= -\frac{1}{3}g z_K \left(1 + \frac{\bar{m}_s}{m_s}\right), &
 g_{K^*+K^+\gamma} &= \frac{1}{3}g z_K \left(2 - \frac{\bar{m}_s}{m_s}\right), \\
 g_{\rho\eta\gamma} &= g z_q X_\eta, &
 g_{\rho\eta'\gamma} &= g z_q X'_\eta, \\
 g_{\omega\eta\gamma} &= \frac{1}{3}g \left(z_q X_\eta \cos \phi_V + 2 \frac{\bar{m}}{m_s} z_s Y_\eta \sin \phi_V\right), \\
 g_{\omega\eta'\gamma} &= \frac{1}{3}g \left(z_q X'_\eta \cos \phi_V + 2 \frac{\bar{m}}{m_s} z_s Y'_\eta \sin \phi_V\right), \\
 g_{\phi\eta\gamma} &= \frac{1}{3}g \left(z_q X_\eta \sin \phi_V - 2 \frac{\bar{m}}{m_s} z_s Y_\eta \cos \phi_V\right), \\
 g_{\phi\eta'\gamma} &= \frac{1}{3}g \left(z_q X'_\eta \sin \phi_V - 2 \frac{\bar{m}}{m_s} z_s Y'_\eta \cos \phi_V\right),
\end{align*}
\]

with \(g_{\omega\pi\gamma} = g \cos \phi_V = e C_\pi \cos \phi_V / \bar{m} \)
and \(z_q \equiv C_q / C_\pi, \quad z_s \equiv C_s / C_\pi, \quad z_K \equiv C_K / C_\pi \)

\[
\Gamma(V \to P\gamma) = \frac{1}{3} \frac{g_{V\gamma}^2}{4\pi} |P\gamma|^3 = \frac{1}{3} \Gamma(P \to V\gamma)
\]
Data fitting

The overlapping parameters z_q, s and the mixing parameters $X_{\eta(\eta')}$ and $Y_{\eta(\eta')}$ cannot be determined independently.

Thus we start assuming $C_q = C_s = C_K = C_\pi = 1$, $z_q = z_s = z_K = 1$.

χ^2/d.o.f. = 28.3/7 \to 16.6/5

Then we leave the overlapping parameters free.

$g = 0.72 \pm 0.01$ GeV$^{-1}$, $\phi_V = (3.2 \pm 0.1)^\circ$,

$\frac{m_s}{m} = 1.24 \pm 0.07$, $z_K = 0.89 \pm 0.03$,

$z_q X_\eta = 0.65 \pm 0.02$, $z_q X_{\eta'} = 0.56 \pm 0.04$,

$z_s Y_\eta = -0.52 \pm 0.03$, $z_s Y_{\eta'} = 0.58 \pm 0.05$.

Then we fix the mixing parameters to the standard picture (no gluonium).

$g = 0.72 \pm 0.01$ GeV$^{-1}$, $\phi_P = (41.5 \pm 1.2)^\circ$, $\phi_V = (3.2 \pm 0.1)^\circ$,

$\frac{m_s}{m} = 1.24 \pm 0.07$, $z_K = 0.89 \pm 0.03$, $z_q = 0.86 \pm 0.03$, $z_s = 0.78 \pm 0.05$.

χ^2/d.o.f. = 4.2/4

For comparison, if $z_q = z_s = z_K = 1$ then χ^2/d.o.f. = 45.9/8.
Data fitting

Fixing the overlapping parameters to the values obtained under the hypothesis of no gluonium we get

\[g = 0.72 \pm 0.01 \text{ GeV}^{-1}, \quad \phi_V = (3.2 \pm 0.1)\circ, \]
\[\frac{m_\pi}{m} = 1.24 \pm 0.07, \quad \zeta_K = 0.89 \pm 0.03, \]
\[X_\eta = 0.75 \pm 0.03, \quad X_{\eta'} = 0.65 \pm 0.04, \]
\[Y_\eta = -0.66 \pm 0.04, \quad Y_{\eta'} = 0.74 \pm 0.06, \]

\[Z^2_\eta = 0.00 \pm 0.07 \quad \text{and} \quad Z^2_{\eta'} = 0.04 \pm 0.10 \]

\[|Z_{\eta,(\eta')}| = \sqrt{1 - X^2_{\eta,(\eta')} - Y^2_{\eta,(\eta')}} \]
\[Y_\eta = -\frac{X_\eta X_{\eta'} Y_\eta' + \sqrt{(1 - X^2_{\eta'} - Y^2_{\eta'})(1 - X^2_\eta - X^2_{\eta'})}}{1 - X^2_{\eta'}} \]

\[\chi^2/\text{d.o.f.} = 4.2/5 \]

The current experimental data on VP\eta transitions indicate within our model a negligible gluonic content for the \eta and \eta' mesons.
• **Data fitting**

Assuming $Z_\eta=0$ from the beginning, we get

$$g = 0.72 \pm 0.01 \text{ GeV}^{-1}, \quad \frac{m_s}{\bar{m}} = 1.24 \pm 0.07, \quad \phi_V = (3.2 \pm 0.1)^\circ,$$

$$\phi_P = (41.4 \pm 1.3)^\circ, \quad |\phi_{\eta'G}| = (12 \pm 13)^\circ,$$

$$z_K = 0.89 \pm 0.03, \quad z_q = 0.86 \pm 0.03, \quad z_s = 0.79 \pm 0.05,$$

\[\chi^2/\text{d.o.f.}=4.2/4\]

Accepting the absence of gluonium for the η meson, the gluonic content of the η' wave function amounts to $|\phi_{\eta'G}|=(12\pm13)^\circ$ or $(Z_\eta')^2=0.04\pm0.09$ and the η-η' mixing angle is found to be $\phi_P=(41.4\pm1.3)^\circ$.

<table>
<thead>
<tr>
<th>Transition</th>
<th>$g_{VP\gamma}^{\text{exp}}$(PDG)</th>
<th>$g_{VP\gamma}^{\text{th}}$(Fit 1)</th>
<th>$g_{VP\gamma}^{\text{th}}$(Fit 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^0 \rightarrow \eta\gamma$</td>
<td>0.475 ± 0.024</td>
<td>0.461 ± 0.019</td>
<td>0.464 ± 0.030</td>
</tr>
<tr>
<td>$\eta' \rightarrow \rho^0\gamma$</td>
<td>0.41 ± 0.03</td>
<td>0.41 ± 0.02</td>
<td>0.40 ± 0.04</td>
</tr>
<tr>
<td>$\omega \rightarrow \eta\gamma$</td>
<td>0.140 ± 0.007</td>
<td>0.142 ± 0.007</td>
<td>0.143 ± 0.010</td>
</tr>
<tr>
<td>$\eta' \rightarrow \omega\gamma$</td>
<td>0.139 ± 0.015</td>
<td>0.149 ± 0.006</td>
<td>0.146 ± 0.014</td>
</tr>
<tr>
<td>$\phi \rightarrow \eta\gamma$</td>
<td>0.209 ± 0.002</td>
<td>0.209 ± 0.018</td>
<td>0.209 ± 0.013</td>
</tr>
<tr>
<td>$\phi \rightarrow \eta'\gamma$</td>
<td>0.22 ± 0.01</td>
<td>0.22 ± 0.02</td>
<td>0.22 ± 0.02</td>
</tr>
</tbody>
</table>
Euler angles

In presence of gluonium,

\[
|\eta\rangle = X_\eta |\eta_q\rangle + Y_\eta |\eta_s\rangle + Z_\eta |G\rangle
\]

\[
|\eta'\rangle = X_{\eta'} |\eta_q\rangle + Y_{\eta'} |\eta_s\rangle + Z_{\eta'} |G\rangle
\]

\[
|\iota\rangle = X_\iota |\eta_q\rangle + Y_\iota |\eta_s\rangle + Z_\iota |G\rangle
\]

Glueball-like state \(\eta(1440)\)

Normalization:

\[
X_\eta^2 + Y_\eta^2 + Z_\eta^2 = 1
\]

\[
X_{\eta'}^2 + Y_{\eta'}^2 + Z_{\eta'}^2 = 1
\]

\[
X_\iota^2 + Y_\iota^2 + Z_\iota^2 = 1
\]

Orthogonality:

\[
X_\eta X_{\eta'} + Y_\eta Y_{\eta'} + Z_\eta Z_{\eta'} = 0
\]

\[
X_\eta X_\iota + Y_\eta Y_\iota + Z_\eta Z_\iota = 0
\]

\[
X_{\eta'} X_\iota + Y_{\eta'} Y_\iota + Z_{\eta'} Z_\iota = 0
\]

\[
\begin{pmatrix}
\eta \\
\eta' \\
\iota
\end{pmatrix}
=
\begin{pmatrix}
c\phi_{\eta \eta'} c\phi_{\eta G} \\
sc\phi_{\eta \eta'} c\phi_{\eta' G} - c\phi_{\eta \eta'} s\phi_{\eta' G} s\phi_{\eta G} \\
s\phi_{\eta \eta'} s\phi_{\eta' G} + c\phi_{\eta \eta'} c\phi_{\eta' G} s\phi_{\eta G}
\end{pmatrix}
\begin{pmatrix}
- s\phi_{\eta \eta'} c\phi_{\eta G} \\
c\phi_{\eta \eta'} c\phi_{\eta' G} + s\phi_{\eta \eta'} s\phi_{\eta' G} s\phi_{\eta G} \\
c\phi_{\eta \eta'} s\phi_{\eta' G} - s\phi_{\eta \eta'} c\phi_{\eta' G} s\phi_{\eta G}
\end{pmatrix}
\begin{pmatrix}
- s\phi_{\eta G} \\
sc\phi_{\eta' G} c\phi_{\eta G} \\
sc\phi_{\eta' G} c\phi_{\eta G}
\end{pmatrix}
\begin{pmatrix}
\eta_q \\
\eta_s \\
G
\end{pmatrix}
\]

3 independent parameters: \(\phi_{\eta}, \phi_{\eta G}, \text{ and } \phi_{\eta' G}\)
• **Euler angles**

In the limit $\phi_{\eta G} = 0$:

$$
X_{\eta} = \cos \phi_P, \quad Y_{\eta} = -\sin \phi_P, \quad Z_{\eta} = 0,
$$

$$
X_{\eta'} = \sin \phi_P \cos \phi_{\eta' G}, \quad Y_{\eta'} = \cos \phi_P \cos \phi_{\eta' G}, \quad Z_{\eta'} = -\sin \phi_{\eta' G}.
$$
Data fitting

Using the latest experimental data on $(\rho, \omega, \phi) \to \eta \gamma$ (SND) and $\phi \to \eta' \gamma$ (KLOE), we get

- $\phi_P = (42.7 \pm 0.7) ^\circ$, $z_q = 0.83 \pm 0.03$, $z_s = 0.79 \pm 0.05$, χ^2/d.o.f. = 4.0/5
- $\phi_P = (42.6 \pm 1.1) ^\circ$, $|\phi_{\eta'G}| = (5 \pm 21) ^\circ$, $z_q = 0.83 \pm 0.03$, $z_s = 0.79 \pm 0.05$, χ^2/d.o.f. = 4.0/4

confirmation of the null gluonic content of the η and η' wave functions

<table>
<thead>
<tr>
<th>Transition</th>
<th>$g_{VP\gamma}^{exp}$ (latest)</th>
<th>$g_{VP\gamma}^{th}$ (Fit 3)</th>
<th>$g_{VP\gamma}^{th}$ (Fit 4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\rho^0 \to \eta \gamma$</td>
<td>0.429 \pm 0.023</td>
<td>0.436 \pm 0.017</td>
<td>0.437 \pm 0.028</td>
</tr>
<tr>
<td>$\eta' \to \rho^0 \gamma$</td>
<td>0.41 \pm 0.03 (PDG)</td>
<td>0.40 \pm 0.02</td>
<td>0.40 \pm 0.04</td>
</tr>
<tr>
<td>$\omega \to \eta \gamma$</td>
<td>0.136 \pm 0.007</td>
<td>0.134 \pm 0.006</td>
<td>0.134 \pm 0.009</td>
</tr>
<tr>
<td>$\eta' \to \omega \gamma$</td>
<td>0.139 \pm 0.015 (PDG)</td>
<td>0.146 \pm 0.006</td>
<td>0.146 \pm 0.013</td>
</tr>
<tr>
<td>$\phi \to \eta \gamma$</td>
<td>0.214 \pm 0.003</td>
<td>0.214 \pm 0.017</td>
<td>0.214 \pm 0.012</td>
</tr>
<tr>
<td>$\phi \to \eta' \gamma$</td>
<td>0.216 \pm 0.005</td>
<td>0.216 \pm 0.019</td>
<td>0.216 \pm 0.018</td>
</tr>
</tbody>
</table>

no gluonium

gluonium
• **Comparison with other approaches**

\[
X_\eta = -\frac{1}{\sqrt{2}} \quad Y_\eta = \frac{1}{\sqrt{3}} \quad \eta = \eta_8
\]

68% CL bands

\[
X_\eta^2 + Y_\eta^2 \leq 1
\]

democratic solution

✓ importance of $\phi \rightarrow \eta \gamma$

✓ importance of the slopes (ϕ_ν)
• Comparison with other approaches

\[X_{\eta'} = \sqrt{2}Y_{\eta'} = \frac{1}{\sqrt{3}} \]

\(\eta = \eta_0 \)

\(\checkmark \) Importance of constraining even more \(\phi \rightarrow \eta'\gamma \)

More refined data for this channel will contribute decisively to clarify this issue.
• *Comparison with other approaches*

PDG’06 data

\[(\phi_P, Z_{\eta'}^2) = (42.6^\circ, 0.01) \]

Latest data

\[(\phi_P, Z_{\eta'}^2) = (41.4^\circ, 0.04) \]
• *Comparison with other approaches*

\[|Z_\eta| < 0.4 \]
Comparison with other approaches

\[R = \frac{Z_{\eta'}}{X_{\eta'} + Y_{\eta'} + Z_{\eta'}} = 26\% \]

\[R = \frac{Z_{\eta'}}{X_{\eta'} + Y_{\eta'} + Z_{\eta'}} = (13 \pm 13)\% \]
Comparison with other approaches

\[
R_\phi \equiv \frac{\Gamma(\phi \to \eta'\gamma)}{\Gamma(\phi \to \eta\gamma)} = \cot^2 \phi_P \cos^2 \phi_{\eta'} G \left(1 - \frac{m_s}{m} \frac{z_q}{z_s} \tan \phi_V \sin 2\phi_P \right)^2 \left(\frac{p_{\eta'}}{p_\eta}\right)^3
= (4.7 \pm 0.6) \times 10^{-3}
\]

in agreement with \((4.8 \pm 0.5) \times 10^{-3}\) (PDG'06) and \((4.77 \pm 0.09 \pm 0.19) \times 10^{-3}\) (KLOE) ✔
Comparison with other approaches

KLOE Collaboration, hep-ex/0612029

\[\phi_P = (39.7 \pm 0.7)^\circ \]

\[Z_{\eta'}^2 = 0.14 \pm 0.04 \]
• **Summary**

We have performed a phenomenological analysis of radiative \(V \to P \gamma \) and \(P \to V \gamma \) decays with the purpose of determining the gluon content of the \(\eta \) and \(\eta' \) mesons.

The present approach is based on a conventional SU(3) quark model supplemented with two sources of SU(3) breaking, the use of constituent quark masses with \(m_s > m \) and the different overlaps between the \(P \) and \(V \) wave functions.

The use of these different overlapping parameters (a specific feature of our analysis) is shown to be of primary importance in order to reach a good agreement.

• **Conclusions**

1) The current experimental data on \(VP\gamma \) transitions indicate within our model a negligible gluonic content for the \(\eta \) and \(\eta' \) mesons,

\[
Z_{\eta}^2 = 0.00 \pm 0.07 \quad \text{and} \quad Z_{\eta'}^2 = 0.04 \pm 0.10
\]

2) Accepting the absence of gluonium for the \(\eta \) meson, the gluonic content of the \(\eta' \) wave function amounts to \(|\Phi_{\eta'G}| = (12 \pm 13) \) or \((Z_{\eta'})^2 = 0.04 \pm 0.09 \) and the \(\eta-\eta' \) mixing angle is found to be \(\phi_P = (41.4 \pm 1.3) \)°.
Conclusions

3) **Imposing** the absence of gluonium for both mesons one finds $\phi_P=(41.4\pm1.3)^\circ$, in agreement with the former result.

4) The latest experimental data on $(\rho,\omega,\phi)\rightarrow\eta\gamma$ and $\phi\rightarrow\eta'\gamma$ decays confirm the null gluonic content of the η and η' wave functions.

5) More refined experimental data, particularly for the $\phi\rightarrow\eta'\gamma$ channel, will contribute decisively to clarify this issue.