

New Physics with the Crystal Ball

J. R. Comfort Arizona State University

Participating Institutions

Abilene Christian University Argonne National Laboratory Arizona State University **Brookhaven National Laboratory** George Washington University Karlsruhe University Kent State University Petersburg Nuclear Physics Institute Rudjer Bo kovi Institute, Aagreb, Croatia University of California, Los Angeles University of Colorado University of Maryland University of Regina Valpariso University

Outline

- _ Goals of the Crystal Ball Program
- Baryon Spectroscopy Program
- _ Special Interests
- ___Meson Decays
- _ Summary and Conclusions

Issues

- 1. What are the *effective* low-energy degrees of freedom?
- 2. What are the symmetries?
 - * C, P, T
 - * Chiral Symmetry
 - * Geometrical
- 3. What are the most effective models?
 - * 3 quarks in a "bag" confined by a potential
 - * Rotating or vibrating flux tubes
 - * Quark-diquark models

Need precision tests of models of QCD at low energies.

Impact Issues

CKM quark-mixing matrix

QCD has unitarity constraints. There is some evidence of failure.

Value of $__s$, and energy dependence The precision in determining $__s$ is limited by hadronic (non-perturbative) and quark-mass corrections.

Energy scale dependence of ___e The theoretical understanding of __e is limited by non-perturbative QCD contributions to vacuum polarization.

Publications

Physical Review Letters	5
Physical Review	10

Physics I	Letters	2
-----------	---------	---

- Nuclear Instruments Methods 1
- Other 2

More to come

BNL Accelerator Complex

Crystal Ball Multi-photon Spectrometer

672 separate NaI(Tl) crystals 94% solid angle; with endcaps ~98% $\sigma/E = 2.7\% \times E^{-1/4}$ (E in GeV) $\emptyset_{ext} = 1.32 \text{ m}, \ \emptyset_{cavity} = 0.50 \text{ m}, \ \sigma_{\theta} \approx 2^{\circ} - 3^{\circ}, \ \sigma_{\phi} = 2^{\circ}/\sin\theta, \ t = 16X_{0}$

Reaction List

$$\Sigma^0 \gamma \longrightarrow \Lambda \gamma \gamma \longrightarrow n 4\gamma$$
 etc.

Invariant Mass

π -N Physics of Special Interest

Pion Single Charge Exchange (E958) (Darko Mekterovic Dissertation, RBI Zagreb)

 $\begin{array}{l} 2 \ \pi^0 \ Production \\ \text{Kelly Craig Ph.D. Dissertation, ASU} \end{array}$

Differences $\leq 7\%$ in S waves, below 100 MeV. Excellent and improving π^{\pm} data. Limited and poor SCX data.

Existing π -N Data Base

Process	Δ Region	Low Energy
π^{\pm} Elastic $d\sigma/d\Omega$	Excellent	Very Good
π^{\pm} Elastic A_y	Excellent	Very Good
SCX $d\sigma/d\Omega$	Excellent	Poor
SCX A_y	Excellent	None

$$egin{aligned} \Delta \mathcal{L} &= -(m_u ar{u} u + m_d ar{d} d) \ &= -\left[rac{1}{2}(m_u + m_d)(ar{u} u + ar{d} d) + rac{1}{2}(m_u - m_d)(ar{u} u - ar{d} d)
ight] \ & ext{``Sigma'' Term} & ext{Isospin Violation} \end{aligned}$$

Quark-Mass Term:

$$\mathcal{L}^{(1)}_{qm} = -rac{\delta m_N}{2} igg(N^\dagger au_3 N - rac{1}{2D f_\pi^2} N^\dagger \pi_3 \, \pi \cdot au N igg)$$

Hard-Photon Exchange:

$$\mathcal{L}_{hp}^{(-1)}=-rac{\overline{\delta}m_N}{2}igg(N^\dagger au_3N+rac{1}{2Df_\pi^2}N^\dagger(\pi_3\,\pi\cdot au-\pi^2 au_3)Nigg)$$

Sum:

$$\delta m_N + \overline{\delta} m_N = m_p - m_n = -1.3 \; {
m MeV}$$

Difference:

$$rac{\delta m_N - \overline{\delta} m_N}{2m_\pi} \simeq 2 rac{T_+ - T_- - \sqrt{2}T_0}{T_+ - T_- + \sqrt{2}T_0}$$

 $[\ T_+ = T(\pi^+ p
ightarrow \pi^+ p), ext{ etc. }]$

van Kolck, Niskanen & Miller, Phys. Lett. B493, 65 (2000)

SCX Cross Sections, _ Resonance

Total Charge Exchange Cross Section (mb)

50 MeV

100 MeV

E913

 $\pi^{-}p \ _ \ \pi^{0} \ \pi^{0} \ n$

Dalitz Distributions

Data Distributions

Center-of-Mass Energy

Amplitude

$$A = \sum \limits_{\ell=0}^{\infty} \ \sum \limits_{m=-\ell}^{\ell} \ lpha_{\ell m} \, Y_{\ell}^m(heta, \phi)$$

Intensity

A measure of multipole strength:

$$S_L = (2L+1) \sum\limits_{M=-L}^{L} \, \left(rac{a_{LM}}{a_{00}}
ight)^2$$

Meson Decays

Symmetry Operators

Operator Charge Conju	$rac{\eta}{1}rac{\pi^0}{1}rac{\gamma}{1}$	$_$ $_$ 4 π^0
Parity	-1 -1 -1	$_$ $3 \pi^0$
		π^0
$\eta o n \ \pi^0$		
$n = ext{even:}$ $n = ext{odd:}$	No (P and CP) Violates G (=CR) parity	Antonio Ramirez Ph.D. Dissertation, ASU

 $\eta
ightarrow n\,\gamma$

 $n = ext{even:}$ OK $n = ext{odd:}$ No (C)

(Note: $n = ext{odd}$ includes $\eta o m \pi^0 \gamma$)

- Violates *CP*.
- Measure $\mathcal{B} \leq 6.9 \times 10^{-7}$ ($\Gamma \leq 8.3 \times 10^{-4} \text{ eV}$).
- Use a model for phase-space corrections, involving $2\pi^0$ and $4\pi^0$ decays of $f_0(1500)$.
- Estimate < 2% violation in quark-family-conserving interactions.

- \bullet Violates G parity.
- Decay amplitude depends on $m_u m_d$.
- Parameterize M.E. $|M|^2 \propto 1 + 2\alpha z$, $z = \rho^2 / \rho_{\text{max}}^2$. (ρ is dist. from center of Dalitz plot.)
- \bullet Theory —

 α term arises at $\mathcal{O}(p^6)$ Kambor *et al.*, (1996); dispersive $\alpha = -0.014$ to -0.007

• Prior Experiment —

 -0.022 ± 0.023 GAMS 2000 (1984) -0.052 ± 0.02 Crystal Barrel (1998)

• Our Result —

 $\alpha = -0.031 \pm 0.004$

Regina Analysis Criteria

Channels Considered

<u>Cuts</u>

 $\pi^{-}p_n=\pi^{0}$ n $\pi^{-}p_n=3\pi^{0}n$

 $\pi^{-} p _ \pi^{0} \pi^{0} n$

4 clusters 4 connected regions Exclude events with cluster center on a guard crystal Miss. Mass: $0.88 < m_n < 0.98$ GeV Inv. Mass > 0.5 GeV $0.62 < E_{thresh} < 0.80$ GeV One and only one π^0 m > 0.19 GeV Non-peak energy ratio > 0.05 for each of 4 clusters

MC/Data Comparison

Likelihood Variables

Invariant Mass Missing Mass CM angle of combined 4-photon system Non-peak energy ratio for each of 4 clusters Fractional 2-pion mass difference Transverse Momentum Peak crystal energy in each of 4 clusters

5

(b) MC – $\pi^- p \rightarrow \pi^0 \pi^0 n$

Data

(b) Data-MC($\pi^-p \to \pi^0\pi^0n)$

(c) Data-MC($\eta \rightarrow 3\pi^0$)

(d) Data - MC($\pi^- p \rightarrow \pi^0 \pi^0 n + \eta \rightarrow 3\pi^0)$

Similar channels to Regina analysis Added _ 2_ (with double splitoffs)

Kinematic fit analysis Target Z position is fitting variable

Better beam treatment; many more events

Good MC reproduction of various reaction data

Cluster radius is a cut parameter

Subtract MC from data

Regina

BR =
$$(2.7 \pm 0.7_{\text{stat.}} \pm 0.8_{\text{syst.}}) \ge 10^{-4}$$

= $0.32 \pm 0.14 \text{ eV}$

<u>UCLA</u>

BR =
$$(3.5 \pm 0.7_{stat.} \pm 0.6_{syst.}) \times 10^{-4}$$

= $0.41 \pm 0.08 \text{ eV}$

Analysis and Reactions	Cuts
Neural Network	Neutral Trigger
$2\pi^0$ n	Beam tracking cut
	Target cut
2_X	Veto counter cut
$3\pi^0$ n	Worm cuts
π^0 n	Near-edge cuts
	Event has 3 clusters
$\pi^0 n$	CB thresthold cut
	Joint cut on Miss. Mass and Inv. Mass
	No electronics error flags; ADC overflows

_ _ 3 _ Results

- 'Traditional' $(2.26 \pm 0.21) \times 10^{-2}$
- ANN (all) $(6.23 \pm 0.37) \ge 10^{-3}$
- ANN (> 0) $(5.61 \pm 0.31) \ge 10^{-3}$
- GAMS $< 5 \ge 10^{-4}$
- UCLA 4 x 10⁻⁵

Summary and Conclusions

The Crystal Ball Program has been successful.

- Fundamental physics has been probed with precision experiments.
- High-quality data are being provided for pion SCX. Possible sensitivity to $m_u - m_d$.
- $2\pi^0$ data has little evidence for f_0 (_) production.
- Several decay modes are providing new lower limits on P, C, and CP.

