Rare Kaon Decays: Opportunities at CERN

Augusto Ceccucci/CERN

Laboratori Nazionali di Frascati March 23, 2005

LNF, March 23, 2005

1

Abstract

- We have studied the possibility to measure the very rare $K^+ \rightarrow \pi^+ v v$ decay at the CERN SPS
- The experiment will employ a high energy, unseparated kaon beam to better control backgrounds originating from $K^+ \rightarrow \pi^+ \pi^0$ decays
- The data taking may start before the end of this decade aiming to a ~10 % measurement of the CKM parameter $|V_{td}|$.

Physics Introduction: CKM matrix and CP-Violation

Quark mixing is described by the

Cabibbo-Kobayashi-Maskawa (CKM) matrix

KM mechanism: $N_g=2$ $N_{phase}=0 \Rightarrow$ No CP-Violation

 $N_g=3$ $N_{phase}=1 \Rightarrow$ CP-Violation Possible

e.g. Im
$$\lambda_t = Im V_{ts}^* V_{td} \neq 0 \rightarrow \mathcal{F}$$

KM mechanism appears to be the main source of CP-violation in quarks: •Direct-CP Violation exists: $\epsilon'/\epsilon \neq 0$ NA48, KTeV •CP violation in the B meson sector: $A_{CP}(J/\psi K_s)$, BaBar, Belle

Now look for <u>inconsistencies</u> in SM using independent observables affected by small theoretical uncertainties and different sensitivity to new physics

LNF, March 23, 2005

Kaon Rare Decays and the SM

$K \rightarrow \pi vv$: Theory in Standard Model

Predictions in SM

Error ~ 14% Mainly parametric Theory error due to charm (Buras04):

For long distance contribution see:"LIGHT-QUARK LOOPS IN K->PI NU NU" By G. Isidori, C.Smith, F.Mescia. e-Print Archive: hep-ph/0503107

----r/\/ -

Largest contribution from scale error. To be reduced by NNLO calculation

The error is almost purely parametric

Possibly the Cleanest SM test

- In The phase β derives from Z⁰ diagrams (Δ S=1) whereas in A(J/ ψ K_S) originates in the box diagram (Δ B=2)
- Any non-minimal contribution to Z⁰ diagrams would be signalled by a violation of the relation:

- A deviation from the predicted rates of SM would be a clear indication of new physics
- Complementary programme to the high energy frontier:
 - When new physics will appear at the LHC, the rare decays may help to understand the nature of it

Some BSM Predictions

Compiled by S. Kettel

SM	8.0 ± 1.1	3.0 ± 0.6
MFV hep-ph/0310208	19.1	9.9
EEWP NP B697 133	7.5 ± 2.1	31 ± 10
EDSQ hep-ph/0407021	15	10
MSSM hep-ph/0408142	40	50
s ν	$\begin{array}{c} \chi \\ \chi \\ \tilde{u} \\ \tilde{u} \\ \nu \end{array} \qquad \qquad$	$\begin{array}{c c} s & & \\ \chi & & \\ \hline \chi & & \\ \hline & \tilde{l} & \\ \nu & & \nu \end{array}$

 $\mathbf{\nabla}$

LNF, March 23, 2005

$K^0_L \rightarrow \pi^0 \nu \nu$: State of the Art

$K^+ \rightarrow \pi^+ vv$: State of the art

hep-ex/0403036 PRL93 (2004)

Compatible with SM within errors

LNF, March 23, 2005

Setting the bar for the next generation of $K^+ \rightarrow \pi^+ vv$ experiments

Prospects

• $K_L^0 \rightarrow \pi^0 v v$

- Large window of opportunity exists.
- Upper limit is 4 order of magnitude from the SM prediction
- Expect results from data collected by E391a (proposed SES~3 10⁻¹⁰)
- Next experiment KOPIO@ BNL
- $K_L^0 \rightarrow \pi^0 ee(\mu\mu)$
 - Long distance contributions under better control
 - Measurement of K_s modes by NA48/1 has allowed SM prediction
 - K_s rates to be better measured (KLOE?)
 - Background limited (study time dep. Interference?)
 - 100-fold increase in kaon flux to be envisaged
- $K^+ \rightarrow \pi^+ \nu \nu$
 - The situation is different: 3 clean events are published
 - Experiment in agreement with SM
 - Next round of exp. need to collect O(100) events to be useful
 - Move from stopped to in flight experiments

Prospects on $K^+ \rightarrow \pi^+ \nu \nu$

- Decays at rest:
 - Window of opportunity to accumulate more data at BNL until 2010 (before KOPIO data taking starts)
 - Ideas to pursue stopped kaon decays in Japan
 - Established technique...
 - ...but hard to extrapolate to O(100) events
- Decays in flight
 - Large acceptances, good photon rejection
 - Separated beam: FNAL CKM (Approved but Not Ratified)
 - Limited to about P_{K} <30 GeV/c
 - Un-separated beam: CERN-NA48/3, FNAL-P940
 - Limited by rate in beam trackers

Opportunity: NA48/3 $K^+ \rightarrow \pi^+ \nu \nu$ at the CERN-SPS

SPSC-2004-029 SPSC-I229 Cambridge, CERN, Dubna, Ferrara, Firenze, Mainz, UC Merced, Perugia, Pisa, Saclay, Sofia, Torino, + ?? Work inspired by: •High Quality NA48/2 charged Kaon beams

and Beam Spectrometers
Outstanding Progress by BNL E787/E949
In flight technique with separated beam proposed at FNAL

Since LOI: •Cambridge dropped off •Roma I, Naples and Protvino joined the working groups

Message from the CERN Director General to the staff (Jan 05)

- The top priority is to maintain the goal of starting up the Large Hadron Collider (LHC) in 2007
- "...Meanwhile, the natural break we have in the fixed-target programme in 2005 is already allowing the community to develop a wellfocused programme for the future"

The possible Non-LHC Future Programme was reviewed by the SPSC in Villars (September 22-27, 2004)

John Dainton Villars 2004 October 7th 2004 CERN seminar

SPSC@Villars

new rare decay frontier in K physics at CERN new experiments planned for $K \rightarrow \pi$ important support R&D now for $K^+ \rightarrow \pi^+$ results ≤ 2010

From the Villars Report... CERN-SPSC-2005-010 SPSC-M-730 Febbruary 28, 2005

3.3 Flavour Physics

There is a strong physics case for pursuing an ambitious program of kaon physics at CERN, exploiting the high-energy proton beams available at the SPS for rare *K*-decay in-flight measurements. Building on its expertise in high-intensity neutral and charged kaon beams and on the outstanding physics achievements of the NA48, NA48/1 and NA48/2 experiments in the last decade, CERN should remain in the future a major laboratory for kaon physics at the sensitivity frontier.

The possibility of a precise measurement of the $K^{\dagger} \rightarrow \pi^{+} \nu \nu$ transition is exciting. The goal is to detect more than 100 signal events over two years starting in 2009. The challenge is for experimental sensitivity to a *K*-decay BR of order 10⁻¹¹. A major upgrade of the present NA48/2 set-up would be necessary and the required R&D and detector developments should be supported. According to present studies this measurement appears globally competitive.

NA48/3: SPSC-I229

New high-intens	n for NA48/3	Already Available	
	Present K12	New HI K⁺	Factor
Beam:	(NA48/2)	2006	2 O
SPS protons per pulse on 110	1 x 10 ¹²	3 x 10 ¹²	5.0
Duty cycle (s./s.)	4.8 / 16.8		1.0
Solid angle (µsterad)	≈ 0.40	~ 16	40
Av. K⁺momentum <p<sub>K> (GeV/c)</p<sub>	60	75	Total : 1.35
Mom. band RMS: (△p/p in %)	≈ 4	≈ 1	~0.25
Area at Gigatracker (cm²)	≈ 7.0	≈ 20	≈ 2.8
Total beam per pulse (x 10 ⁷)	5.5	250	~45 (~27)
per Effective spill length MHz	18	800	~45 (~27)
MHz/cm ² (ajaatracker)	2 5	40	
Eff. running time / yr (pulses)	3* × 10 ⁵	3.1 * 105	1.0
K⁺ decays per year	1.0×10 ¹¹	4.0×10 ¹²) ≈ 40

SPS Protonomics

(Latest) NA48/3 Detector Layout

Acceptance

K⁺ momentum: (75.0 ± 0.8) GeV/c

	Region I	Region II
P = [15- 35] GeV/c	2.8 _ 10 ⁻²	14.8 _ 10 ⁻²
P ≟[₽ 6] 40] GeV/c	3.9 <u>10-</u> 2	21.7 <u>10-2</u>
4 1012 1 /		

4_10¹² decays/year @ BR = 10⁻¹⁰

Kinematical rejection

Backgrounds to $K^+ \rightarrow \pi^+ \nu \nu$

$\mu^+ u \ \pi^+ \pi^0 \ \pi^+ \pi^+ \pi^- \ \pi^+ \pi^0 \pi^0$	63 % 21 % 6 % 2 %	Veto 5.10 ⁻⁶ 3.10 ⁻⁷ 10 ⁻⁶ <10 ⁻⁸	kinem. 2.10 ⁻⁶ 2.10 ⁻⁵ 2.10 ⁻⁵ 2.10 ⁻⁵	acc.% 30 20 20 ⁵ 15	% bck. 8(<1*) ∼1 ~1 <<1
$\pi^0 \mu^+ \nu$ $\pi^0 \mathbf{e}^+ \nu$	3 % 5 %	e i c	No proble $\frac{1}{2}\pi < 10^{-3}$	em	<<1 <<1

* RICH

Hermetic photon vetoes

... Design simplified by high energy K ...

Detectors

- CEDAR
 - Differential Cherenkov counter for positive kaon identification
- **GIGATRACKER**
 - To Track the beam before it enters the decay region
- ANTI
 - Photon vetoes surrounding the decay tank
- WC
 - Straw chambers to track the kaon decay products
- RICH
 - For redundant muon/pion separation
- CHOD
 - Fast hodoscope to make a tight kaon-pion time coincidence
- LKR
 - Forward photon veto and e.m. calorimeter
- MAMUD
 - Hadron calorimeter, muon veto and sweeping magnet
- SAC and CHV
 - Small angle photon and charged particle vetoes

GIGATRACKER

- Specifications:
 - Momentum resolution to ~ 0.5 %
 - Angular resolution ~ 10 μ rad
 - Time resolution ~ 100 ps
 - Minimal material budget
 - Perform all of the above in
 - 800 MHz hadron beam, 40 MHz / cm²
- Hybrid Detector:
 - SPIBES (Fast Si micro-pixels)
 - Momentum measurement
 - Facilitate pattern recognition in subsequent FTPC
 - Time coincidence with CHOD
 - FTPC (NA48/2 KABES technology with FADC r/o)
 - Track direction

GIGATRACKER

<u>momentum</u>: use SP1 and SP2 to measure y = 40mm displacement. Assuming _p~50µm from pixel and 350µm thick Si (0.37% X₀)

✓ _=(_ $_{p}\sqrt{2} \ddagger _{MS})/40 \text{ mm} = 0.25\%$

<u>direction</u>: use SP2 and FTPC. Assuming $_p \sim 100 \mu m$ from pixel and similar from FTPC and no MS from FTPC (from SP2 no influence)

✓ $\Delta_{_=_p} \sqrt{2} / 12.4 \text{m} = 11 \mu \text{rad}$

time resolution: essential to obtain a low background due to accidental hits and to allow the pattern recognition (see result from test beam). For a pixel C \approx 100 fF a risetime ~ 2 ns should be achievable for 130 nm technology and a good S/N.

Single Chip Alice Assembly tested in NA48/2

Assembly 7:

V_{fd}=15V

 $V_{op}=50V$

- •150µm thick ALICE chip
- •200µm thick sensor
- 1.1 % X_0 all together

Mounted on a thin test-PCB

Sensor

8192 pixels Produced 2003, tested in ALICE p-TB 2003

Chip

MULTIPLICITY (200 ns gate)

MULTIPLICITY (200 nsec gate)

for r/o window of 10 ns:

1GHz x 10 ns x 1.1 ~ 10 hits/ trig

for _ = 100ps we expect in a ±2.5_: 0.5 accident hits/trig

Active Feedback Preamp in 0.13µm CMOS

SPIBES ASIC

- Two options have been considered:
 - Minimum pixel-level processing with global time-stamp generator
 - Pixel level timing (e.g. 1 TDC/pixel)
- In option 1 the clock is not distributed to the pixels.
- Option 1 requires more area at the chip periphery.
- Option 2 increases the dead time of the pixel and may require high precision analogue components.
- Option 2 requires more area at the pixel level

FTPC (KABES+FADC)

- NA48/2
 - KABES has achieved very good performance
 - Position resolution ~ 70 micron
 - Time resolution ~ 0.6 ns
 - Rate per micro-strip ~ 2 MHz
- NA48/3
 - Intensity ~ 10 higher per unit area
 - 600 ns drift
 - The long drift (600 ns) makes a standalone pattern recognition very difficult or just impossible (That's why we plan to have SPIBES in front)
 - To reduce double pulse resolution and improve the time resolution one has to reduce the pulse duration and possibly read-out every micro-strip with 1 GHz FADC

KABES 25 micron amplification gap

improvement of occupancy observed with 25µm amplification gap

LNF, March 23, 2005

480 MHz FADC

LNF, March 23, 2005

A. Ceccucci, CERN

40

Straw Tracker

LNF, March 23, 2005

COMPASS TRACKER

TRT ATLAS

Straw diameter -6 and 10 mm, length up to 3.8 m

Straw diameter – 4 mm, length – 40 and 150 cm

Straw tracker operated in vacuum: COSY-TOF, Juelich,IKP Straw tracker, 3100 straws, evacuated –

10⁻³ mbar (P.Wintz)

The second se

MECO, BNL (W.Molzon)

Etc.

LNF, March 23, 2005

Octagonal Configuration

- Similar design as current drift chambers.
- Small regions with only 1 or 2 views.
- **But:** 4 double layers $\implies \sim 0.8\% X_0$ per station.

Rainer Wanke, NA48 Analysis Meeting, CERN, February 11, 2005 - p.9/17

LNF, March 23, 2005

ANTI

- Set of ring-shaped photon vetoes surrounding the decay tank
- Specification: inefficiency to detect photons above 100 MeV < 10⁻⁴
- The NA48 ANTI's (AKL) need to be replaced
- Extensive R&D performed by American and Japanese groups
- Claims that inefficiency as low as 10⁻⁵ can be achieved
- Baseline solution: Lead/ Plastic scintillator sandwich (1-2 mm lead / 5 mm plastic scintillator)
- SPACAL and TILECAL options also being studied

NA48 Vacuum Tank

LKR

- The NA48 Liquid Krypton Calorimeter
- Must achieve inefficiency < 10⁻⁵ to detect photons above 1 GeV
- Advantages:
 - It exists
 - Homogeneous (not sampling) ionization calorimeter
 - Very good granularity (~2 ×2 cm²)
 - Fast read-out (Initial current, FWHM~70 ns)
 - Very good energy (~1%, time ~ 300ps and position (~1 mm) resolution
- Disadvantages
 - 0.5 X₀ of passive material in front of active LKR
 - The cryogenic control system needs to be updated

LKr Geant4 simulation

Two samples of $\pi^+\pi^0$ events (F. Marchetto):

- single photon in LKR → deposited energy below 400 MeV :
 < 1.4 × 10⁻⁶ (0/1.75×10⁶ events generated)
- pairs of photon in LKR \rightarrow deposited energy below 400 MeV :

low energy photon $1.1 \times 10^{-6} (2/1.75 \times 10^{6} \text{ events})$ high energy photon $3.4 \times 10^{-6} (0/0.7 \times 10^{6} \text{ events})$

How to measure $\pi^+\pi^0$ Rejection

LNF, March 23, 2005

MAMUD

Magnetic field on iron surface

Pole gap is 2 x 11 cm V x 30 cm H

Coils cross section 10 cm x 20cm

•To provide pion/muon separation and beam sweeping.

–Iron is subdivided in 150 2 cm thick plates ($260 \times 260 \text{ cm}^2$)

•Four coils magnetise the iron plates to provide a

0.9 T dipole field in the beam region

•Active detector:

-Strips of extruded polystyrene scintillator

(1 x 4 x130 cm³)

-Light is collected by WLS fibres with 1.2 mm diameter

Time Schedule

• **2005**

- Launch R&D
- Vacuum tests
- Evaluate straw tracker
- Start realistic cost estimation
- Complete analysis of beam-test data
- Submit proposal to SPSC
- **2006-2008**
 - Costruction, Installation and beam-tests
- 2009-2010
 - Data Taking

Conclusions

- We have found a fortunate combination where a compelling physics case can be addressed with an existing accelerator, employing the infrastructure (i.e. civil engineering, hardware, some sub-systems) of an existing experiment
- We stress that this initiative in not a mere continuation of NA48
- We are seeking new Collaborators!