Oscillazioni del mesone D^0

Gianluca Cavoto
INFN Roma La Sapienza
Seminario Laboratori Nazionali di Frascati
5 luglio 2007
Outline

• Neutral mesons flavor oscillation
• Charm meson mixing
• Evidence from B-factories
 – $D^0 \rightarrow K^-\pi^+$
 – $D^0 \rightarrow K^- l^+ \nu_l$, $D^0 \rightarrow K_s \pi^+\pi^-$, $D^0 \rightarrow K^+K^-/\pi^+\pi^-$
• Outlook
Neutral Mesons systems

- Two-level system \((M^0, \bar{M}^0)\)
 - Weak interactions remove degeneracy, make them unstable

Time evolution by Schrödinger eq.:
\[
\frac{i}{\partial t} \left(\begin{array}{c} M^0(t) \\ \bar{M}^0(t) \end{array} \right) = \left(\begin{array}{cc} M & \frac{i}{2} \Gamma \\ -\frac{i}{2} \Gamma & \bar{M} \end{array} \right) \left(\begin{array}{c} M^0(t) \\ \bar{M}^0(t) \end{array} \right)
\]

2x2 hermitian matrices

Mass eigenstates:
\[
|M_{1,2}\rangle = p|M^0\rangle \pm q|\bar{M}^0\rangle
\]

Propagate with separate mass \(m_{1,2}\) and width \(\Gamma_{1,2}\):
\[
|M_{1,2}(t)\rangle = e^{-i(m_{1,2} - i\Gamma_{1,2}/2)t} |M_{1,2}(t = 0)\rangle
\]
Neutral mesons oscillations

Time evolution for meson of **known flavor at** $t=0$

\[
x = \frac{m_2 - m_1}{\Gamma}, \quad \Gamma = \frac{\Gamma_2 + \Gamma_1}{2}
\]

\[
y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}
\]

\[
|M^0(t)\rangle = e^{-\tilde{\gamma}t/2} \left(\cosh(\Delta\gamma t/2)|M^0\rangle - \frac{q}{p} \sinh(\Delta\gamma t/2)|\bar{M}^0\rangle \right)
\]

Where

\[
\Delta\gamma = (y + ix)\Gamma \quad \tilde{\gamma} = (\Gamma_1 + \Gamma_2)/2 - i(m_1 + m_2)
\]

M^0 “oscillates” into \bar{M}^0!

(\textit{also dubbed “mixing”})

An opposite flavor component appears after a while!
Some visual examples

Probability to find a $M^0(\bar{M}^0)$ after a given time

Lifetime units
How to generate this??

Mixing through box diagram:

No tree level Flavor Changing Neutral Currents (FCNC) in SM

Glashow, Iliopoulos and Maiani (1970):
FCNC calculated from single quark loop still too large

Introduce additional loop with new c quark

GIM predicted charm quark 4 years before observation

Gianluca Cavoto
Can you see New Physics?

B^0 mixing was argued by UA1 and directly observed by ARGUS in 1987.

Large mixing frequency implied t quark was heavy ($m_t > 50$ GeV/c2)

And the top was discovered 8 years after!
Even more ambitious today!

$B_{d,s}$ (K) mixing on the punch line for virtual effects from NP

Not only x and y but also **phases** in the mixing **CP violation**

\[
C_{B_q} e^{2i\phi_{B_q}} = \frac{\langle B_q^0 | H_{eff}^{full} | B_q^0 \rangle}{\langle B_q^0 | H_{eff}^{SM} | B_q^0 \rangle}, \quad (q = d, s)
\]

\[
C_{\epsilon_K} = \frac{\Im \langle K^0 | H_{eff}^{full} | K^0 \rangle}{\Im \langle K^0 | H_{eff}^{SM} | K^0 \rangle}
\]

M. Bona et al. (UTfit Collaboration)

The missing tile

K^0 mixing

$x = 0.474$
$y = 0.997$

D^0 mixing

B^0 mixing

$x = 0.776$
$|y| < 0.1$

B_{s^0} mixing

$x = 24.8$
$y = 0.12$
Charm Meson Mixing
Short and **Long** distance

- Prediction x and y

$$
\left(M - \frac{i}{2} \Gamma \right)_{ij} = \frac{\langle D_i | H_{\text{eff}} | D_j \rangle}{2m_D} = m_D^{(0)} \delta_{ij} \quad \Downarrow \quad x \quad \text{VIRTUAL states}
$$

$$
+ \frac{\langle D_i | H_w | D_j \rangle}{2m_D} + \frac{1}{2m_D} \sum_n \frac{\langle D_i | H_w | n \rangle \langle n | H_w | D_j \rangle}{m_D^{(0)} - E_n + i\epsilon}.
$$

$$
\gamma_{ij} = \frac{1}{2m_D} \sum_n \langle D_i | H_w | n \rangle \langle n | H_w | D_j \rangle \delta(E_n - m_D) \quad \Uparrow \quad \text{Sum of intermediate REAL states}
$$

Makes it difficult to predict SM expectation
SM prediction for charm mixing

SM charm mixing box has down-type quarks in loop

\[
\begin{array}{c}
\bar{c} \rightarrow W \rightarrow \bar{d}, s, b \\
\end{array}
\]

Box diagram contribution

Effective GIM suppression:

\[
x \propto \frac{(m_s^2 - m_d^2)^2}{m_c^2}
\]

bottom quark ruled out by \(V_{CKM} \)

\[x \sim 10^{-5} \quad \text{Tiny!} \]

Naively

\[
x, \ y \sim \sin \theta_c^2 \times \left[\text{SU}(3) \text{ breaking} \right].
\]

Always hard to evaluate SU(3) breaking !!!

(HQET, propagation of common hadronic states, …)

SU(3) breaking effect more important for \(y \)

\[
x \lesssim 10^{-3}, \quad y \lesssim 10^{-2}.
\]

New Physics in Charm?

D^0-\bar{D}^0 Mixing Predictions

- △: Standard-model predictions for x
- □: Standard-model predictions for y
- ●: New-physics predictions for x

Hard to see a clear cut

Pushing the limit down excludes models

Try to separate x and y!
Experimental Searches
Charm physics with B-factory

BaBar is a B-factory: $e^+ e^- \rightarrow \Upsilon(4S) \rightarrow b \bar{b}$
$\sigma_{\text{eff}}(b \bar{b}) = 1.1 \text{ nb}$, but
$\sigma(c \bar{c}) = 1.3 \text{ nb}$

Millions of reconstructed charm hadrons

BaBar is also a charm factory

- Run1-5, more than 500M $c \bar{c}$ events
The technique

- Produce clean sample of D^0 and \bar{D}^0
- Identify flavor (D^0 or \bar{D}^0?) at decay time
- Measure rate of mixed decays as function of time

![Graph showing intensity vs. time normalized by τ. The graph includes two curves, one for unmixed decays $D^0 \rightarrow D^0$ and $D^0 \rightarrow \bar{D}^0$, and one for mixed decays $D^0 \rightarrow \bar{D}^0$ and $\bar{D}^0 \rightarrow D^0$. The ratio $x = \frac{\Delta m}{\Gamma} = 0.01$. The mixed decays constitute 0.005% of the total.](image-url)
Flavor tagging

Use D^0 from $D^{*+} \rightarrow D^0 \pi^+$ decays:

$D^{*+} \left\{ \begin{array}{c}
\frac{c}{d} \\
\frac{u}{d}
\end{array} \right\} D^0$

Flavor at production
Charge of pion "tags" initial flavor as D^0 or \bar{D}^0

$\bar{D}^0 \rightarrow K^+ \pi^-$

Flavor at decay

- Same flavour: Wrong-Sign (WS) mixing may have occured
- Opposite flavour: Right-Sign (RS) unmixed events

Charge of K identifies decay flavor

$\bar{A}_f \equiv \langle f | H | D^0 \rangle$

Gianluca Cavoto 17
Double-Cabibbo Suppressed Decays

Hadronic decays do not uniquely identify decay flavor. Get unmixed wrong-sign decays from DCS decays.

DCS decay:

\[D^0 \rightarrow K^+ \pi^- \]

Relative rate \(\sim 0.3\% \)

\[A_f \equiv \langle f \mid H \mid D^0 \rangle \]

Mixed decay:

\[\bar{D}^0 \rightarrow K^+ \pi^- \]

Relative rate: 0.005\% (for \(x=0.01 \))
Time evolution

Discriminate DCS and mixing by their different time evolution

Also have interference effect:

WS (relative to RS) time-dep. rate (small x and small y limit)

$$r(t) = \overline{r}(t) = e^{-t} \left(R_D \left(D^0 \right) + \sqrt{R_D} y' t + \frac{1}{2} R_M t^2 \right)$$

$$\frac{A_f}{A_f} = -\sqrt{R_D} e^{-i\delta}$$

δ is the (relative) strong phase

$$y' = y \cos \delta - x \sin \delta$$

$$x' = y \cos \delta + x \sin \delta$$
Event Selection

\[Q = m(D^{*+}) - m(D^0) - m(\pi^+) \approx 6 \text{ MeV/}c^2 \]

Excellent background suppression

\(D^0\) selection:
- Identified \(K\) and \(\pi\)
- \(p^*(D^0) > 2.5 \text{ GeV/c}\)
- \(1.81 < m(K\pi) < 1.92 \text{ GeV/c}^2\)

Slow \(\pi\) selection:
- \(p^*(\pi_s) < 0.45 \text{ GeV/c}\)
- \(p_{\text{lab}}(\pi_s) > 0.1 \text{ GeV/c}\)
- \(0.14 < \Delta m < 0.16 \text{ GeV/c}^2\)

\[\Delta m = m(K\pi\pi_s) - m(K\pi) \]
RS and WS data set

1,229,000 RS events

64,000 WS events

RS data sample

WS data sample

Fit to $m(K\pi)$ and Δm distribution:
- RS and WS samples fit simultaneously
- Signal and some background parameters shared
- All parameters determined in fit to data, not MC

Gianluca Cavoto
Decay time analysis

- D^0 and π_s constrained to luminous region
- Fit probability > 0.1
- Reconstructed decay time, t: $-2 < t < 4$ ps
- Estimated decay time error, $\delta t < 0.5$ ps

Resolution function from RS sample

Gianluca Cavoto
Random π_S:
- Correct D^0, wrong π_S
- Peaks in $m(K\pi)$, not Δm

Misreconstructed D^0:
- Partially reco. D^0,
 $D^0\rightarrow K^-\mu^+\nu$
- Double misid $D^0\rightarrow K^-\pi^+$
 (WS events only)
- Peaks in Δm, not $m(K\pi)$

Combinatorially:
- Random tracks

Discrimination power from $m(K\pi)$ and Δm
Signal extraction

384 fb$^{-1}$

RS signal: $1,141,500 \pm 1200$ combinations

WS signal: $4,030 \pm 90$ combinations
RS decay time analysis

D^0 lifetime and time resolution function from RS sample

$\tau = (410.3\pm0.6{\text{(stat.)}})\text{ fs}$

Consistent with PDG $(410.1\pm1.5\text{ fs})$

Systematics dominated by resolution function
WS decay time with mixing

384 fb⁻¹

Fit results allowing mixing:
\[R_p: (3.03\pm0.16\pm0.10) \times 10^{-3} \]
\[x'^2: (-0.22\pm0.30\pm0.21) \times 10^{-3} \]
\[y': (9.7\pm4.4\pm3.1) \times 10^{-3} \]
\[x'^2, y' \text{ correlation: } -0.94 \]

\[\chi^2/bin = 31/28 \]

nluca Cavoto
Evidence for D^0 mixing!

Best fit solution in unphysical region ($x'^2<0$)

Best fit

$-2 \Delta \ln L = 23.9$
Corresponds to 4.5σ
(with 2 parameters)

No mixing

Physical solution ($y'=6.4\times10^{-3}$)

$2 \Delta \ln L = 0.7$

Including systematics decreases signal significance 3.9 σ
Validation: $m(K\pi)$ and Δm fit in t bins

- No assumptions made on time-evolution of background
- Each time bin is fit independently

Relative rate of WS events clearly increases with time
Validation: fit RS for mixing

Fit RS data with PDF allowing mixing

\[x': (-0.01 \pm 0.01) \times 10^{-3} \]
\[y': (0.26 \pm 0.24) \times 10^{-3} \]
\[-2 \Delta \ln \mathcal{L} = 1.4 \quad (w.r.t. \text{ no mixing}) \]

\(D^0 \) decay time distribution is described properly.
Systematics uncertainty

Two types of systematic uncertainties considered:

Fit model variations:
- Change signal and background models used in fit, to test assumptions made

Selection criteria:
- Mainly decay time (error) ranges used in fit

<table>
<thead>
<tr>
<th>Systematic:</th>
<th>(R_D)</th>
<th>(\chi^2)</th>
<th>(y')</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fit Model</td>
<td>0.59(\sigma)</td>
<td>0.40(\sigma)</td>
<td>0.45(\sigma)</td>
</tr>
<tr>
<td>Selection Criteria</td>
<td>0.24(\sigma)</td>
<td>0.57(\sigma)</td>
<td>0.55(\sigma)</td>
</tr>
<tr>
<td>Total</td>
<td>0.63(\sigma)</td>
<td>0.70(\sigma)</td>
<td>0.71(\sigma)</td>
</tr>
</tbody>
</table>

Fraction of statistical uncertainty

Gianluca Cavoto
Systematics on Decay time

Decay time resolution function in data has non-zero mean

Core Gaussian shifted \(3.6 \pm 0.6\text{fs}\)

Effect is not seen in MC
- probably due to misalignment

For systematics set mean to 0:

Variation: \(y' = 0.3\sigma\)

No reason why resolution should be different for RS and WS decays
Allowing for CP violation

Results of fitting D^0 and \bar{D}^0 separately:

$x^{'+2}$: $(-0.24\pm0.43\pm0.30)\times10^{-3}$
$y^{'+}$: $(9.8\pm6.4\pm4.5)\times10^{-3}$

x^{-2}: $(-0.20\pm0.41\pm0.29)\times10^{-3}$
y^{-}: $(9.6\pm6.1\pm4.3)\times10^{-3}$

$A_D=(-2.1\pm5.2\pm1.5)\%$ CP asymmetry in DCSD !

No evidence for CP violation found

Gianluca Cavoto
$K\pi$ analysis from Belle

Results consistent within 2σ:
More evidence...!
Belle evidence on y_{CP}

“Apparent” lifetime difference between $D^0 \rightarrow K^-\pi^+$ and K^+K^-, $\pi^+\pi^-$

$$y_{CP} = \frac{\tau(K^-\pi^+)}{\tau(K^+K^-)} - 1$$

$$y_{CP} = y \cos 2\phi_D - A_m x \sin 2\phi_D$$

$$A_m = 1 - |q/p|$$

$$A_\Gamma = A_m y \cos 2\phi_D - x \sin 2\phi_D$$

$$\phi_D = \text{mixing phase}$$

Stable $\tau_{K\pi}$ over different run periods

Gianluca Cavoto 35
Results on y_{CP}

Belle hep-ex/0703036

540 fb$^{-1}$

$y_{CP} = (1.31 \pm 0.32 \text{(stat.)} \pm 0.25 \text{(syst.)})\%$

- $>3\sigma$ effect
 (4.1 stat only)

$A_{\Gamma} = (0.01 \pm 0.30 \text{(stat.)} \pm 0.15 \text{(syst.)})\%$

No evidence of CP violation
Separating x and y

- $K\pi$ only cannot separate x and y

Need info on **strong phases**
 - Multibody decays: Dalitz models

$$D^0 \to K^-\pi^+\pi^0$$

DCS decays proceed primarily through $K^{*-}\pi^-$ while CF through $K^-\rho^+$
$D^0 \rightarrow K^+\pi^0, K^-\pi^+\pi^0$

Select special region of Dalitz plot

$$\frac{dN}{dt} \propto [\tilde{R}_D + \alpha \gamma' \sqrt{\tilde{R}_D} (\Gamma t) + \frac{\tilde{x}r^2 + \tilde{y}r^2}{4} (\Gamma t)^2]e^{-\Gamma t} , \quad 0 \leq \alpha \leq 1$$

Mixing rate

$$R_M = \frac{\frac{\tilde{x}r^2 + \tilde{y}r^2}{2}}{2} = \frac{x^2 + y^2}{2}$$

Effective phase

Results

- Assuming CP conservation
- Upper limits (95% C.L.)

$$K\pi\pi^0 \quad R_M < 0.054\%$$
$$K3\pi \quad R_M < 0.048\%$$

Combined result

$$R_M < 0.42 \times 10^{-3} \quad @ \ 95\% \ C.L.$$

(BaBar, 230 fb⁻¹)
Both flavor \((K^*\pi^+/K^{*+}\pi^-)\) final states in the same Dalitz plot! CP-eigenstate \((\rho K_S)\) and flavor states \((K^*\pi^+)\) in the same Dalitz plot!
\[D^0 \rightarrow K_S \pi^+ \pi^- \] Dalitz model

Belle, 540 \(fb^{-1} \)

Very pure sample (95%)

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Amplitude</th>
<th>Phase (deg)</th>
<th>Fit fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K^*(892)^-)</td>
<td>1.629 ± 0.005</td>
<td>134.3 ± 0.3</td>
<td>0.6227</td>
</tr>
<tr>
<td>(K_0(1430)^-)</td>
<td>2.12 ± 0.02</td>
<td>-0.9 ± 0.5</td>
<td>0.0724</td>
</tr>
<tr>
<td>(K_0(1430)^+)</td>
<td>0.87 ± 0.01</td>
<td>-47.3 ± 0.7</td>
<td>0.0133</td>
</tr>
<tr>
<td>(K^*(1410)^-)</td>
<td>0.65 ± 0.02</td>
<td>111 ± 2</td>
<td>0.0048</td>
</tr>
<tr>
<td>(K^*(1680)^-)</td>
<td>0.60 ± 0.05</td>
<td>147 ± 5</td>
<td>0.0002</td>
</tr>
<tr>
<td>(K^*(892)^+)</td>
<td>0.152 ± 0.003</td>
<td>-37.5 ± 1.1</td>
<td>0.0054</td>
</tr>
<tr>
<td>(K_0(1430)^+)</td>
<td>0.541 ± 0.013</td>
<td>91.8 ± 1.5</td>
<td>0.0047</td>
</tr>
<tr>
<td>(K_0(1430)^+)</td>
<td>0.276 ± 0.010</td>
<td>-106 ± 3</td>
<td>0.0013</td>
</tr>
<tr>
<td>(K^*(1410)^+)</td>
<td>0.333 ± 0.016</td>
<td>-102 ± 2</td>
<td>0.0013</td>
</tr>
<tr>
<td>(K^*(1680)^+)</td>
<td>0.73 ± 0.10</td>
<td>103 ± 6</td>
<td>0.0004</td>
</tr>
<tr>
<td>(\rho(770))</td>
<td>1 (fixed)</td>
<td>0 (fixed)</td>
<td>0.2111</td>
</tr>
<tr>
<td>(\omega(782))</td>
<td>0.0380 ± 0.0006</td>
<td>115.1 ± 0.9</td>
<td>0.0003</td>
</tr>
<tr>
<td>(f_0(980))</td>
<td>0.380 ± 0.002</td>
<td>-147.1 ± 0.9</td>
<td>0.0452</td>
</tr>
<tr>
<td>(f_0(1370))</td>
<td>1.46 ± 0.04</td>
<td>98.6 ± 1.4</td>
<td>0.0162</td>
</tr>
<tr>
<td>(f_2(1270))</td>
<td>1.43 ± 0.02</td>
<td>-13.6 ± 1.1</td>
<td>0.0180</td>
</tr>
<tr>
<td>(\rho(1450))</td>
<td>0.72 ± 0.02</td>
<td>40.9 ± 1.9</td>
<td>0.0024</td>
</tr>
<tr>
<td>(\sigma_1)</td>
<td>1.387 ± 0.018</td>
<td>-147 ± 1</td>
<td>0.0914</td>
</tr>
<tr>
<td>(\sigma_2)</td>
<td>0.267 ± 0.009</td>
<td>-157 ± 3</td>
<td>0.0088</td>
</tr>
<tr>
<td>NR</td>
<td>2.36 ± 0.05</td>
<td>155 ± 2</td>
<td>0.0615</td>
</tr>
</tbody>
</table>

- Dalitz model: 13 different (BW) resonances and a non-resonant contribution
- Results with this refined model consistent with the analysis performed for the Belle \(\phi_3 \) measurement, PRD73, 112009 (2006)
- To test the scalar \(\pi \pi \) contributions, K-matrix formalism is also used
Sensitivity regions

\[|M|^2 \approx |A(m_-^2, m_+^2)|^2 \left\{ 1 + [\text{Im}(\chi) x - \text{Re}(\chi) y] t + |\chi|^2 \left(\frac{x^2 + y^2}{4} \right) t^2 \right\} e^{-\Gamma t} \]

⇒ much of sensitivity comes from the \(K^*(890)^+ \) region and interference region between \(\rho(770) \) and \(\omega \).
Belle $D^0 \rightarrow K_S \pi^+ \pi^-$ results

Time fit (in projection):

$x = (0.80 \pm 0.29)\%$

$y = (0.33 \pm 0.24)\%$

$t_D = (409.9 \pm 0.9) \text{ fs}$

consistent with PDG

(in fact better precision)

Largest systematic errors:

<table>
<thead>
<tr>
<th></th>
<th>$\Delta x \times 10^{-2}$</th>
<th>$\Delta y \times 10^{-2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p(D^*)$ cut</td>
<td>$+0.076$</td>
<td>-0.078</td>
</tr>
<tr>
<td>t dependence of Dalitz background</td>
<td>-0.056</td>
<td>-0.057</td>
</tr>
<tr>
<td>background timing parameters</td>
<td>± 0.037</td>
<td>± 0.063</td>
</tr>
<tr>
<td>decay model (form factors, variation of fixed masses & widths, K-matrix, no non-resonant comp., others)</td>
<td>$+0.13$</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>-0.11</td>
<td>-0.066</td>
</tr>
<tr>
<td>TOTAL</td>
<td>$(+0.17, -0.15)$</td>
<td>$(+0.10, -0.15)$</td>
</tr>
</tbody>
</table>

Gianluca Cavoto
Allowing for CP violation

\[x = (0.80 \pm 0.29 \pm 0.17)\% \]
\[y = (0.33 \pm 0.24 \pm 0.15)\% \]

\[-2\Delta \ln L = 7.33 \Rightarrow \text{CL= only 2.6\%} \]

Allow for CPV:

\[e_{(1,2)} = e^{-i(m_{(1,2)} - i\Gamma_{(1,2)}/2)t} \]

\[\mathcal{M}(m_-, m_+, t) = \mathcal{A}(m_-, m_+) \frac{e_1(t) + e_2(t)}{2} + \left(\frac{q}{p} \right) \overline{\mathcal{A}}(m_-, m_+) \frac{e_1(t) - e_2(t)}{2} \]

\[\overline{\mathcal{M}}(m_-, m_+, t) = \mathcal{A}(m_-, m_+) \frac{e_1(t) + e_2(t)}{2} + \left(\frac{p}{q} \right) \overline{\mathcal{A}}(m_-, m_+) \frac{e_1(t) - e_2(t)}{2} \]

CPV result:

\[x = (0.81 \pm 0.30 \pm 0.17)\% \]
\[y = (0.37 \pm 0.25 \pm 0.15)\% \]

\[lq/pl = 0.86^{+0.30}_{-0.29} \]
\[\arg(q/p) = -14^{+16}_{-18} \]

\[lq/pl = 0.95^{+0.22}_{-0.20} \]
\[\arg(q/p) = -2^{+10}_{-11} \]
D-mixing with Semileptonic decay

\[D^0 \rightarrow K^- l^+ \nu_l \]

No DCS sl. ! \[A_f = \bar{A}_{\bar{f}} = 0 \]

\[r(t) = \frac{e^{-t}}{4} \left(x^2 + y^2 \right) t^2 \left| \frac{q}{p} \right|^2 \]

Double tag

\[D^{*+} \rightarrow D^0 \pi^+ , \text{ semil. and hadronic (fully rec.)} \]

Several hadronic tagging modes

\[\Delta M \text{ RS events} \]

\[\Delta M \text{ WS events} \]

\[-1.3 \times 10^{-3} < R_M < 1.2 \times 10^{-3} \text{ @ 90\% C.L.} \]

BaBar, 344 fb\(^{-1}\)
Summary and Outlook
Summary

BaBar studied $D^0 \rightarrow K\pi$ decay
- Evidence for mixing (3.9σ)
- No sign of CP violation
- Consistent with other measurements and SM

New results from Belle
- Evidence for mixing (3.2σ)
- Measures x and y directly
- No sign of CP violation

$x = 0.80 \pm 0.29 \pm 0.17 \% \ (2.4\sigma)$

$y_{CP}(WA) = 1.12 \pm 0.32 \%$

» BaBar updating multibody decays analysis, y_{CP} measurements
» BaBar $K_S\pi\pi$ on-going
Interpreting the results

D^0 and \bar{D}^0 weak phase $2\phi_D$ of the mixing amplitude

\[
y'_{\pm} = (1 \pm A_m)(y' \cos 2\phi_D \mp x' \sin 2\phi_D),
\]
\[
x'^2_{\pm} = (1 \pm 2A_m)(x' \cos 2\phi_D \pm y' \sin 2\phi_D)^2,
\]
\[
y_{CP} = y \cos 2\phi_D - A_m x \sin 2\phi_D,
\]
\[
A_{\Gamma} = A_m y \cos 2\phi_D - x \sin 2\phi_D,
\]

\[
A_m = 1 - \frac{|q/p|}{1}
\]

\[
x = (0.87^{+0.30}_{-0.34})\%
\]
(2.6σ above zero)

\[
y = (0.66 \pm 0.21)\%
\]
(3.2σ above zero)

\[
\delta = (19^{+15}_{-17})^\circ
\]
(consistent w/zero)
Measuring δ

To beat down the model systematics measure phases directly

- Correlated D production - $DD \rightarrow f_1 f_2$

$$\left|\psi(3770)\right\rangle \rightarrow \left|DD\right\rangle_L = \frac{1}{\sqrt{2}} \left[D^0(k_1)\overline{D}^0(k_2) + (-1)^L D(k_2)\overline{D}^0(k_1) \right]$$

- For $L=1$ DCS contribution to $f_1=f_2=K\cdot\pi^+$ cancels

- Of course no DCS semileptonic amplitude

$$R_M \approx \frac{(K^-\pi^+)^2}{(K^-\pi^+)(K^+\pi^-)} \quad R_M = \frac{(K^-\ell^+\nu)^2}{(K^-\ell^+\nu)(K^+\ell^-\bar{\nu})}$$

- $0.75 \text{ fb}^{-1} \sim 1.6K K\cdot\pi^+, \sim 6.5K K\cdot\ell^+\nu$ double tags

$$\Rightarrow \sqrt{2R_M} < 4\% @ 95\% C.L.$$

- Note CF vs CF indistinguishable from DCS vs DCS
 - Amplitudes interfere
 - correction factor
 $$\left(1 + 2\sqrt{R_D} \cos\delta + R_D \right) \sim 1 + 0.12 + 0.0036$$

Gianluca Cavoto
Double tag at $\psi(3770)$ [CLEO-c]

- Reconstruct Double Tags: CP vs K\pi
- Asymmetry in CP$^+$ vs CP$^-$ related to $\cos\delta$

\[
A \equiv \frac{B(D_{CP^+} \to K^-\pi^+) - B(D_{CP^-} \to K^-\pi^+)}{B(D_{CP^+} \to K^-\pi^+) + B(D_{CP^-} \to K^-\pi^+)}
\]

- R_D is ratio of DCS to Cabibbo favored rates

\[
\cos\delta = \frac{A}{2\sqrt{R_D}}
\]

- Input $R_D = (3.60\pm0.08)\%$ from PDG2006+CDF $\sim\pm2\%$

- Updated results with 281 pb$^{-1}$ at Winter Conferences
 - Expect $\sigma(y)\sim\pm1.5\%$ and $\sigma(\cos\delta_{K\pi})\sim\pm0.3$
 - Including systematic uncertainties
- Full CLEO-c dataset ~750 pb$^{-1}$
 - Expect $\sigma(y)\sim\pm1.0\%$ and $\sigma(\cos\delta_{K\pi})\sim\pm0.1-0.2$
And CP violation?

In the standard model, $\phi \sim 2 A^2 \lambda^4 \eta \lesssim 10^{-3}$

In general NP weakly constrained if SM not known

Nevertheless SUSY coupling can be constrained

hints on squark and gluino masses!

Neutral meson mixing always a window into unknown (virtual) states!

Ciuchini et al.
hep-ph/0703294
Back up slides
Performing extensive checks of mixing signal:
- Could something fake signal?
- Is significance estimated correctly?
- Are mixing parameters unbiased?

No signal found in MC:
- $x'': (-0.02\pm0.18) \times 10^{-3}$
- $y': (-2.2\pm3.0) \times 10^{-3}$

In MC with signal, fit reproduces signal
- No intrinsic bias

Fit to MC with no mixing

Gianluca Cavoto
Coverage test

Significance of signal is calculated as change in log likelihood with respect to no-mixing hypothesis

Generated >10000 toys without mixing to test $-2\Delta \ln \mathcal{L}$ gives correct frequentist coverage

$-2\Delta \ln \mathcal{L} = 23.9$

#toys to the right of line
#toys expected

observed in data