The perfectly fluid Quark-Gluon Plasma

> Alberto Accardi (Iowa State U.)

Laboratori Nazionali di Frascati May 11th, 2006

Introduction

- Deconfinement and the Quark Gluon Plasma (QGP)
- The Quantum Chromo Dynamics (QCD) phase diagram
- Heavy Ion collisions
- Hunting the QGP
- The "perfect fluid" created at RHIC
 - Review of the experimental evidence
- Probing the perfect liquid
 - Jet tomography
- The future
- Summary

Introduction

Quarks, gluons and the Strong Interaction

The proton is a composite object made of quarks and gluons.

Quarks & gluons carry a "color charge" Protons and hadrons are color neutral No one has ever seen a free quark. QCD is a "confining" gauge theory, with an effective potential:

Alberto Accardi

Asymptotic freedom in QCD

D.Gross, F.Wilczek, Phys.Rev.Lett 30, (1973) H.Politzer, Phys.Rev.Lett. 30, (1973)

The strong coupling constant
 decreases with momentum transfer

 $\alpha_s \xrightarrow[Q \to \infty]{} 0$

 "if all fundamental constituents carry sufficient momentum ordinary hadronic matter will melt down into a deconfined state of quarks and gluons" Collins, Perry, PRL 34 (1975)

Quark-Gluon Plasma = a new state of matter made of non-confined quarks and gluons (more generally: colored degrees of freedom)

How? heating matter in Heavy Ion collisions

Alberto Accardi

Melting the hadrons

- At what T_c can we liberate the quark and gluon degrees of freedom?
- Energy density of "g" massless degrees of freedom in thermal equilibrium at zero baryon density:

$$\varepsilon = g \frac{\pi^2}{30} T^4$$

Below T_c: ultrarelativistic hadron gas – mostly π^+ , π^- , π^0

 $g_{HG}=3$

 \Rightarrow Above T_c: Quark-Gluon ideal gas (wQGP = weakly coupled QGP)

$$g_{QGP} = 2_{hel} \cdot 8_{color} + \frac{7}{8} \cdot 2_{spin} \cdot 2_{q\bar{q}} \cdot 3_{flavor} \cdot 3_{color} \approx 50$$

gluons quarks

Melting the hadrons – bag model

◆ The vacuum exerts a pressure $B \approx 200 \text{ MeV}^4$ on colored particles – quarks and gluons

→ in the QGP phase (perfect Q&G gas)
 $p_{QGP} = \frac{1}{3} \varepsilon_{QGP} - B$ → in the HG phase, no vacuum pressure

7

♦ Phase transition when $p_{HG} = p_{QGP} \Rightarrow T_c \approx 150 \text{ MeV}$

Melting the hadrons – lattice QCD

Lattice QCD predicts a rapid cross-over to a QGP:

 $\frac{\varepsilon}{T^4} \propto g =$ no. of degrees of freedom

Transition temperature: $T_c \sim 170 \text{ MeV}$ $\epsilon_c \sim 1 \text{ GeV/fm}^3$

(remember: normal nuclear matter has $\varepsilon \sim 0.16$ GeV/fm³)

The QCD phase diagram

Let's add an axis: µ_B = baryochemical potential ~ n_B-n_B
 At high net baryon density, pressure from Pauli exclusion principle
 quark-quark interactions allow for Cooper pairs to form
 QGP becomes a color superconductor (Wilczek, Rajagopal, Son).

Why studying QGP & phase transition?

- Particle physics and quantum field theory
 - "primordial" form of QCD matter at high-T, high baryon density
 - insight into quark and gluon confinement, origin of mass
 - example of phase transition in strong self-interacting field theory

Why studying QGP & phase transition?

- Cosmology and astrophyisics:
 - QGP present in the very early universe (t < 10 μ s)
 - Phase transition in the early universe, analyzable in the lab
 - -> may occur in supernovae, γ-ray burst, neutron stars

11

Heavy Ion Collisions

Heavy ion collisions

Lot of energy in a small volume V \Rightarrow large $\varepsilon = E/V \Rightarrow$ high T

Heavy ion colliders

Facility	Location	System	Energy (CMS)	
AGS	BNL, New York	Au+Au	2.6-4.3 GeV	
SPS	CERN, Geneva	Pb+Pb	8.6-17.2 GeV	& In+In, S+U, p+Pb
RHIC	BNL , New York	Au+Au	200 GeV	& d+Au, p+p, Cu+Cu
LHC	CERN, Geneva	Pb+Pb	5.5 TeV	& p+Pb, p+p

by 2008, 3 orders of magnitude in 30 years!

However, RHIC data only makes sense in context:

Facility	Location	System	Energy (CMS)
ISR	CERN	р+р	24-63 GeV
SPS	CERN	p+A	20 GeV
Tevatron	FNAL	p+A	13-38 GeV
LEP/LEP2	CERN	e+ + e-	91-210 GeV
UA1/UA5	CERN	pbar+p	200-900 GeV
Tevatron	FNAL	pbar+p	630-1800 GeV

Goal is to understand strong interactions in all forms

RHIC experiments @ BNL (USA)

Where is the QGP?

Alberto Accardi

Hunting the QGP

Evolution of the collision

Experimental handles

Variables: A, b, \sqrt{s} , $\eta = 0.5 \ln(\tan(\theta/2))$, p_T , ϕ

Alberto Accardi

How to probe the created matter?

freeze-out

hadronization

7

equilibration

formation

B

The perfect fluid observed at RHIC

The top physics story for 2005 according to the American Physical Society

Particle ratios

$$N_{i} \propto g_{i} V \int \frac{d^{3} p}{(2\pi)^{3}} \frac{1}{e^{(\sqrt{p^{2} + m^{2}} - \mu_{B})/T} \pm 1} \qquad T = \text{freeze-out temperature}} \\ \mu_{B} = \text{baryochemical potential} \\ i = \pi^{\pm}, K^{\pm}, p, \overline{p}, \Lambda, \overline{\Lambda}, \Sigma, \Xi, \Omega, \dots \qquad \text{at freeze-out}}$$

Alberto Accardi

Particle ratios

Braun-Munzinger et al., PLB 518 (2001) 41

Alberto Accardi

Transverse energy density

→ Phenix $dE_T/d\eta = 600 \text{ GeV} \implies \epsilon_{Bj} \tau = 5.4 \pm 0.6 \text{ GeV/fm}^2$ (central coll.)

→ formation time: $\tau_0 \sim \hbar / < m_T > \le 0.35$ fm

(final state hadrons $\langle m_T \rangle$ from PHENIX)

Alberto Accardi

Conclusion 1

The initial temperature of the fireball is well above the critical temperature Tc~170 MeV for the QGP phase transition.

Questions

Does this system equilibrate before cooling below T_c?

Does it show collective behaviour?

What are its constituents?

Non-central collisions

Produced system is no more azimuthally symmetric
 Initial state geometry maps into final state angular distribution
 Nature of this mapping carries info on initial state properties

Alberto Accardi

Elliptic flow

→ Strong scatterings \Rightarrow local thermal equilibrium \Rightarrow pressure gradients

◆ Self-quenching effect – stops on short time scales
 ◆ strong flow ⇒ rapid equilibration

Alberto Accardi

Elliptic flow – experimental data

Strong flow \Rightarrow rapid equilibration

▶ Rapid equilibration + high T >> T_c ⇒ QGP formation?
 ➡ still we don't know the nature of the system's constituents

Alberto Accardi

Elliptic flow - valence quark scaling

Elliptic flow - valence quark scaling

Perfect scaling for all hadrons – some deviation for pions (from ρ decays)
 The constituents of the flowing system are partons!

High temperature T >> T_c
Rapid equilibration
Parton degrees of freedom

Alberto Accardi

LNF, May 11th, 2006

Quark-Gluon Plasma!

Elliptic flow – hydrodynamics

Hydro with QGP EoS describes flow over a range of masses

Thermalization time $t_0=0.6-1$ fm/c and $\epsilon=20$ GeV/fm³

Hydro = small mean free path = strongly interacting system!
 not a weakly coupled gas of quark and gluons...

Alberto Accardi

The atomic connection

Heavy ion collisions similar to system of ultracold ⁷Li atoms

Kinast et al., PRL 92 (2004) 150402 Bartenstein et al., PRL 92 (2004) 203201

Atoms trapped in magnetic fields
Tunable strength of interaction
\clubsuit Open the trap \Rightarrow elliptic flow!
In this experiment
very strong interactions
🗢 hydrodynamic behaviour

Conclusion 2

Rapid equilibration with QGP EoS, large energy density partonic d.o.f. with strong interactions

> We have a <u>sQGP</u>! (strongly interacting QGP) with hydro behaviour

Like a perfect fluid?

First time that hydro describes data without any viscosity*!
 Not true at SPS, not true in peripheral collisions at RHIC

*viscosity = resistance of liquid to shear forces (and hence to flow)

Hydro equations + viscosity fit data with η/s ~ 0.5 (similar from lattice): 400 times less viscous than water, 10 times less than superfluid helium !
 Lower bound on viscosity from string theory (!!): η/s > 1/4π

the QGP is (nearly) a perfect fluid!

Alberto Accardi

Surprise: RHIC → sQGP shows η/s close to 1/4π lattice QCD → sQGP has $S/S_0 \approx 0.8$

Alberto Accardi
Conclusion 3

The sQGP is a nearly perfect liquid!

Probing the perfect fluid

Hard probes

- → Hard probes created at t \sim 0.1-0.2 fm travel through the medium
- This allows to study:
 - Response of the probe to the medium (e.g. jet tomography)
 - Response of the medium to the hard probes

Jet tomography

Review: Gyulassy, Vitev, Wang, Zhang, nucl-th/0302077 Baier, Dokshitzer, Mueller, Peigne, Schiff, Zakharov, Wiedemann, ...

The QCD analog of Computed Axial Tomography (CAT)

Computed Axial Tomography

Calibrated x-ray sourcex-ray absorption

properties of the mediumAlberto AccardiL

Single hadron tomography

- Calibrated hard partons source
- energy loss (gluon bremsstrahlung) computed in pQCD
- properties of the medium

Calibrated source - pQCD

Perturbative QCD (pQCD) successful in computing hard probes
 hard probe = observable with large momentum scale Q > 1-2 GeV

Example: hadron production at large p_T in p+p collisions

Calibrated source - pQCD

Perturbative QCD (pQCD) successful in computing hard probes
 hard probe = observable with large momentum scale Q > 1-2 GeV

Example: hadron production at large p_T in p+p collisions

Nuclear effects – QGP or inital state

by comparison with suitably scaled p+p baseline

Alberto Accardi

d+Au: Cronin effect

No medium produced ⇒ Initial state nuclear effect
 Usually interpreted as multiple parton scatterings
 [review: Accardi, hep-ph/0212148]

Alberto Accardi

h

♦ Energy loss computation requires gluon density $dN^g/dy = 800 - 1000 \implies ε ~ 14 - 20 \text{ GeV/fm}^3$

Alberto Accardi

Dihadron tomography

- Disappearance of the back-to-back jet
 fireball has a very opaque core
 a large color density
 - if parton traverses the core, it loses all its energy
 - "Surface emission"

Where does all this energy go?

The lost energy excites collective modes of the plasma
 → Mach cones
 trigger (Δφ ~ 0)

We see the response of the medium to the hard probe

The HERMES connection

Untested assumption in jet tomography:

"the partons hadronize well outside the medium" – is it true?

test it in nuclear Deep Inelastic Scattering (nDIS) [HERMES, JLAB]

Alberto Accardi

The HERMES connection

Energy loss vs. absorption

How to distinguish energy loss from nuclear absorption?
 Hence, in-medium vs. out-of-medium hadron formation

 ◆ Conventional thinking: A-dependence – wrong!
 ◆ both give R_M ∝ A^{2/3} [Accardi et al., NPA 761 (05); Accardi, Acta Phys. Hung. in press]

Proposal: study scaling of R_M data [Accardi, nucl-th/0604041]

 $R_M = R_M[\tau(z,v)]$ with $\tau = C z^{\lambda} (1-z) v$

- $\stackrel{\bullet}{\rightarrow} \underline{absorption \ models}: \quad \lambda > 0 \\ [finite formation time]$
- <u>energy loss models</u>: $\lambda \leq 0$ [from energy conservation]

LHC – stepping up in energy

b=0 y=0	SPS	RHIC	LHC
√s [GeV]	17	200	5500
dN _{ch} /dy	430	700	3000
dN _{net-B} /dy	30	5	0
T [GeV]	250	400	800
$\epsilon_0 [\text{GeV/fm}^3]$	2.5	15	240
τ ₀ [fm/c]	0.8	0.6	0.2
τ_{QGP} [fm/c]	< 2	7	20
dN _{glue} /dy	~300	~1000	~3000

◆ a factor 30 in √s compared to RHIC
◆ QGP: hotter, denser, longer... & weaker?

Alberto Accardi

LHC – the hard probe machine

Hard probes copiously produced
 orders of magnitude increase in cross-section

Jet physics in full glory

1 month at nominal luminosity

- Full reconstruction of jets with 50 GeV $< E_T < 275$ GeV

Alberto Accardi

Where do we go from here?

- deeply bound kaonic nuclei (ppnK)
- → shrink nucleus size \Rightarrow 4-10 fold increase in μ_B at T=0
- color superconductivity in the lab ??

The quest for the QGP is over:
 a perfectly fluid QGP has been seen at RHIC

We are beginning to study it and marvel at its unexpected properties

New theoretical and experimental challenges are in front of us!

References

- RHIC collaborations "white papers": Nucl. Phys. A 757(2005)
 - → BRAHMS page 1 PHOBOS page 28 STAR page 102 PHENIX, page 184

Reviews:

- Gyulassy, McLerran, "New forms of matter discovered at RHIC", NPA 750(2005)30
- Boyanowski et al., "Phase transitions in the early and the present universe", hep-ph/0602002
- Starinets, "Transport coefficients of strongly coupled gauge theories: insights from string theory", nucl-th/0511073
- Entry points:
 - Proceedings of "Quark Matter 2005", Budapest (HUN)
 - Thoma, "Complex plasmas as a model for the quark-gluon-plasma liquid", hep-ph/0509154
 - B.Gelman et al. "Cold Strongly Coupled Atoms Make a Near-perfect Liquid", nucl-th/0410067

Credits

 For help and inspiration, direct or indirect, for this seminar: M.Gyulassy, J.Nagle, M.Rosati, P.Steinberg, I.Vitev
 Alberto Accardi
 LNF, May 11th, 2006

p_T Distribution of Charged Particles

Phobos Preliminary

G.Roland

CIPANP '03

Alberto Accardi

Ratio of Measured/Expected

Suppression seems to scale with Npart and not L!

N. Grau ISU Seminar 08/31/05

1

Comparison to SPS

J/ψ nuclear modification factor R_{AA}

A similar suppression pattern as seen by NA50!?!

Scaling with Npart?

Difference in energy and rapidity coverage.

Need MUCH more statistics at RHIC?

More on energy loss

Problems with energy loss theory

◆ Heavy flavour puzzle at RHIC [QM2005, STAR, PHENIX, Djordjevic, Armesto]
 ◆ single non-photonic e- as much suppressed as p
 ◆ e- comes from D and B mesons ⇒ c and b-quarks
 ◆ NLO pQCD rates for c and b + heavy quark energy loss theory ⇒ theory gives half of the observed suppression!

"If STAR R_{AA}(e⁻) is confirmed, it will be a theoretical challenge to devise novel energy loss mechanisms able to explain these data." M.Djordjevic, QM2005

When does quenching start?

Third act: A+A collision

minimal extension of GE model:

 $\frac{d\sigma_{AB}^{h}}{d^{2}bd^{2}p_{t}} = \sum_{i} f_{i/A} \otimes \frac{d\sigma^{iB}}{d^{2}bd^{2}p_{t}} \otimes D_{i \to h} + \sum_{i} f_{j/B} \otimes \frac{d\sigma^{jA}}{d^{2}bd^{2}p_{t}} \otimes D_{j \to h}$

1) Phenix π^0 - $\sqrt{s=200 \text{ GeV}}$ (p₀ = 1.0 GeV ± 10%)

67

2) Phenix π^0 - $\sqrt{s=62.4 \text{ GeV}}$ (p₀ = 0.82 GeV ± 10%)

At 62 GeV we do not have data on d+Au \Rightarrow theory is needed

* As expected, less suppression in peripheral collisions.

* Where does quenching begin? theory vs. data is needed

 \Rightarrow let's look at PHOBOS h[±] data

Alberto Accardi

Alberto Accardi

The color glass condensate

Color Glass Condensate

A new form of QCD matter – the long wavelength fabric of hadrons
 At low energy hadron (nucleus) = valence quarks + few gluons
 At high energy: gluon density grows ⇒ recombination & saturation

From first-principles QCD – Young theory, semi-quantitative control

Can be made and probed in high-energy heavy-ion collisions

Alberto Accardi

Color Glass Condensate

- Color gluons have "color" in QCD.
- Glass gluons at small-x:
 - generated by large-x slowly moving valence-like partons, randomly distributed in transverse plane
 - → renormalization group equation: integrate out fast gluon d.o.f. ⇒ <u>universality</u>: independent of initial hadron
 - almost frozen over the natural time scale of scattering
 analog to spin glasses
- Condensate gluons saturate below a momentum Q_s

$$Q_s^2 \simeq \alpha_s \frac{A x G(x, Q_s)}{\pi R_A^2} \propto A^{1/3}$$

- <u>Coherent state</u> with high occupancy $\sim 1/\alpha_s(Q_s)$
- Can be better described as a <u>field</u> rather than point particle

Alberto Accardi
Color Glass Condensate

CGC "phase diagram" - sketch

Parton transverse momentum, GeV/c

LNF, May 11th, 2006

CGC phase diagram

Parton transverse momentum, GeV/c

→ Bulk of parton production ($p_T < Q_s \sim 1-2 \text{ GeV}$) from CGC melting

Theoretical control over initial condition for QGP evolution

Alberto Accardi

LNF, May 11th, 2006

Alberto Accardi

LNF, May 11th, 2006

75

Lessons from QED plasmas

(transparencies adapted from M.Thoma's QM2005 talk)

1. Strongly Coupled Plasmas

Plasma = ionized gas, 99% of visible matter in Universe

Plasmas generated by high temperatures, electric fields, or radiation

Classifications:

- 2. Non-relativistic relativistic plasmas (pair plasmas, QGP)
- 3. Classical quantum plasmas (white dwarfs, QGP)
- 4. Ideal strongly coupled plasmas (complex plasmas, QGP)

Coulomb coupling parameter

$$\Gamma = \frac{Q^2}{dT}$$

Q: charge of plasma particles*d*: inter particle distance*T*: plasma temperature

```
Ideal plasmas: \Gamma \ll 1 (most plasmas: \Gamma < 10^{-3})
```

```
Strongly coupled plasmas: \Gamma > O(1)
```

Examples: ion component in white dwarfs, high-density plasmas at GSI

Non-perturbative description, e.g., molecular dynamics

2. Complex Plasmas

Dusty or complex plasmas = multi component plasmas with ions, electrons, neutral gas, and microparticles (dust)

E.g.: low temperature neon plasma in a dc- or rf discharge

Injection of microparticles with diameter 1 – 10 μm

- Microparticles collect electrons on surface \Rightarrow large negative charge: $Q = 10^3 10^5 e$
- Inter particle distance about 200 μm
- \Rightarrow plasma crystal (predicted 1986, discovered 1994 at MPE)

Observation: illumination by laser sheet and recorded by CCD camera

3. Phases of the plasmas

Melting of plasma crystal by pressure reduction; less neutral gas friction; temperature increase; decrease of Coulomb coupling parameter $\Gamma = Q^2/(dT)$

long range ordershort range orderdisordered phase(crystalline phase)(liquid phase)(gas)

Quantitive analysis of equation of state and determination of Γ : pair correlation function

4. Collective phenomena

Mach cones induced by a laser beam have been observed

5. The fun part of this business

Gravity has strong influence on microparticles microgravity experiments

6. Applications to the Quark-Gluon Plasma

Estimate of interaction parameter

$$\Gamma \simeq 2 \frac{C \alpha_s}{dT}$$

C = 4/3 (quarks), C = 3 (gluons) T = 200 MeV $\alpha_s = 0.3 - 0.5$ d = 0.5 fm

Ultrarelativistic plasma: magnetic interaction as important as electric

 $\Gamma = 1.5 - 6 \gamma \text{ QGP Liquid}?$

RHIC data (hydrodynamical description with small viscosity, fast thermalization) indicate QGP Liquid

Attractive and repulsive interaction gas-liquid transition at a temperature of a few hundred MeV

Deeply bound kaonic nuclei

³He ---> ³HeK⁻ shrinkage !!

K-p interaction is strongly attractive 2002 DEAR results

-> PRL 94, 212302 (2005)

 $\rho_c \sim 4 - 10 \rho_0$

⇒ Explore cold and dense nuclear matter

FIG. 1: Calculated density contours of ppnK⁻. Comparison between (a) usual ⁵He and (b) ²HeK⁻ is shown in the size of 7.5 by 7.5 fm. Individual contributions of (c) proton, (d) neutron and (e) K⁻ are given in the size of 4.5 by 4.5 fm.

C.Curceanu ,JZ / Nov. 29, 2005

Production mechanisms of DBKNS:

1) **Stopped K⁻ reactions on light nuclei**, with ejection of a proton or a neutron as spectators

2) In-flight K⁻ reactions:

- Knock-out reactions (K⁻, N) where one nucleon is knocked out in the formation stage;
- (K⁻, π^-) reactions in proton-rich systems to produce exotic bound nuclear states on unbound systems.

3) Protons (3.5 – 4.5 GeV) on a deuteron target for the production of K-pp detected in a 4π detector.

4) The identification of clusters as residual fragments ("K fragments") in heavy ion collisions via the invariant mass of their decay products.

Identification and study of DBKNS:

- Formation -> missing mass
- Decay -> invariant mass
 - -> Spectroscopy!