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1 Experiment description

The experiment called SL COMB aims at the acceleration, manipulation and transport of high

brightness electron beams by resonant plasma wakefields 1). At this regard, a train of high

brightness bunches with THz repetition rate, so-called comb beam 2), is properly generated at the

cathode, and manipulated through the velocity bunching technique 3, 4), in order to be injected

in a H2-filled plasma discharge capillary 5) with proper distance and length. A train of driver
bunches separated by a plasma wavelength, λp, corresponding in our case to 1 ps, resonantly excites
a plasma wake, which accelerates a trailing witness bunch injected at the accelerating phase. Going
towards more compact facilities, also plasma-based focusing devices deserve deep investigation. In

this regard, in the framework of SL COMB we have performed at SPARC LAB 6) theoretical and

experimental studies on both active 7, 8) and passive 9) plasma lenses to understand their effect
on the beam quality and pave the way to their integration in conventional transport beam lines. For
this reason different capillaries, in terms of size and material, have been investigated with different

high voltage discharge circuits 10) to ionize the hydrogen gas filling the capillary. The discharge
phenomenon deserves deep investigation in particular in case of plasma-filled capillaries for plasma
lenses, setting the initial conditions and therefore the uniformity of the plasma density, which in
turn manifests itself in the linearity of the magnetic field. In addition, because of the nature of
the gas-guiding structures used, detrimental effects on the beam stability due to wakefields might
rise up requiring careful attention to minimize them.

2 Activity

The activity in 2018 was focused on the demonstration of the acceleration of high quality electron
bunches through particle driven plasma acceleration. Preparatory studies, both theoretical and
experimental, have been performed on beam dynamics and matching and transport by means of
permanent magnet quadrupoles (PMQ) and plasma devices. The preparatory beam dynamics
studies based on start-to-end simulations resulted also in the writing of the Conceptual Design
Report for the EuPRAXIA@SPARC LAB project. To optimize the final focus and extraction with
both PMQs and active plasma lenses, we have modified the plasma interaction chamber to gain
more flexibility of the final focus system, allowing a better adjustment with the beam energy. In
addition, we have performed a deep measurement campaign to optimize the alignment through
the PMQ triplets used for the injection and extraction, from the plasma accelerating module.
The impact of plasma jets, gas partial ionization and passive plasma lens has been extensively
studied both theoretically and experimentally to get rid of the preservation of the emittance in
plasma-based focusing devices. This study has also led to the first benchmark between codes and
experimental data. In this regard, we have demonstrated how to minimize the non-linearities in



the magnetic field, thus improving the lens effect and preserving the beam emittance (Fig. 1).
This achievement represents a major breakthrough toward the miniaturization of next-generation

Figure 1: Resulting emittance as a function of the beam spot size at capillary entrance. The black
(red) data points refer to the experimentally measured X(Y) emittances. The blue line reports the
expected emittance obtained with numerical simulations. The gray line shows the unperturbed
(X) beam emittance without active plasma lens.

focusing devices.
Finally, we have started an experimental campaign for the characterization of the interaction

of a single bunch beam, i.e. a driver-like (200 pC, 97 MeV, 50 µm (rms) bunch length, 0.5
MeV energy spread), with the plasma to maximize the energy loss in view of the two-beams
PWFA experiments. Preliminary measurements have been compared with simulations performed

with Architect 11) and reported in Fig. 2. The maximum decelerating field, i.e. 200 MV/m,
corresponds to a plasma density n0 '1.4 1015 cm−3; as a result, a witness bunch injected at the
proper phase would experience an accelerating field of 300 MV/m.

Beam-driven plasma wakefields can be also used to tune, in particular reduce, the beam
energy-chirp. Indeed, being the tail of the beam decelerated with respect to the head, several knobs
allow to adjust the energy-time correlation: for instance the plasma density, bunch charge/density,
bunch length, capillary length. In this regard, we have performed a deep experimental investigation,
which demonstrates how to remove such correlation and reduce the overall energy spread to its

uncorrelated term. The results reported in 12) are sketched in Fig. 3.
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Figure 3: Experimental setup. The electron beam is tightly focused by the PMQ triplet into a 3
cm-long plastic capillary (a) filled by H2 gas through two inlets (b) connected to an electrolytic
generator. Below the capillary and in correspondence of its entrance, a screen has been installed
to measure the beam transverse profile. At the capillary ends there are two copper electrodes
connected to a 20 kV power supply producing 230 A peak current (c). The whole system is
mounted on a movable actuator allowing to adjust its position with respect to the beam. The
exiting beam is then captured by a second PMQ triplet. The diagnostics of the experiment is
completed by a RF-deflector and two screens downstream the dipole spectrometer. The second
screen is located at 14 with respect to the initial beam path, allowing to measure the beam energy
spectrum without (d) and with (e) plasma.
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