Review of KLOE results on CPT, kaon interferometry and perspectives

Antonio Di Domenico* on behalf of the KLOE Collaboration

*Università di Roma "La Sapienza" and INFN sezione di Roma, Italy

Mini-Workshop on Neutral Kaon Interferometry: from Quantum Mechanics to Quantum Gravity

Frascati - March 24th, 2006

The DAΦNE e⁺e⁻ collider

- e^+e^- collider @ $\sqrt{s} = 1019.4$ MeV
- separate e⁺, e⁻ rings to minimize beam-beam interactions
- crossing angle: 25 mrad
- time between collision 2.7 ns
- injection during data-taking

Mini-workshop on Neutral Kaon Interferometry: from Quantum Mechanics to Quantum Gravity - March 24th, 2006 Eptensetiental 2005 2

The KLOE detector

Lead/scintillating fiber 4880 PMTs 98% coverage of solid angle

- $\sigma_{\rm E}/{\rm E} \cong 5.7\% / \sqrt{{\rm E}({\rm GeV})}$
- $\sigma_{t} \cong 54 \text{ ps } / \sqrt{E(GeV)} \oplus 50 \text{ ps}$ (relative time between clusters)
 - ~ 2 cm (π^0 from K_L $\rightarrow \pi^+\pi^-\pi^0$)

4 m diameter × 3.3 m length 90% helium, 10% isobutane 12582/52140 sense/total wires All-stereo geometry

$$\begin{split} &\sigma_p/p \cong 0.4 \ \ \text{(tracks with } \theta > 45^\circ) \\ &\sigma_x^{\text{hit}} \cong 150 \ \mu\text{m} \text{(xy), } 2 \ \text{mm} \text{(z)} \\ &\sigma_x^{\text{vertex}} \sim 1 \ \text{mm} \end{split}$$

 $\sigma_{\gamma\gamma}$

•
$$e^+e^- \rightarrow \phi$$
 $\sigma_{\phi} \sim 3 \ \mu b$
 $W = m_{\phi} = 1019.4 \ \text{MeV}$
• $BR(\phi \rightarrow K^0 \overline{K}^0) \sim 34\%$
• $\sim 10^6$ neutral kaon pairs per
pb⁻¹ produced in an
antisymmetric quantum state
with $J^{PC} = 1^-$
 $N = 110 \ \text{MeV}/c$

 $\mathbf{p}_{\mathbf{K}} = \mathbf{110}$ MeV/C $\lambda_{\rm S} = 6 \, {\rm mm}$ $\lambda_{\rm L} = 3.5 \, {\rm m}$ $\Delta t = t_1 - t_2 \qquad \qquad \mathbf{K}_{\mathbf{L},\mathbf{S}} \qquad \qquad \mathbf{K}_{\mathbf{L},\mathbf{K}} \qquad \qquad \mathbf{K}_{\mathbf{L},\mathbf{K} \qquad \qquad \mathbf{K}_{\mathbf{L},\mathbf{K}} \qquad \qquad \mathbf{K}_{\mathbf{L},\mathbf{K}} \qquad \qquad \mathbf{K}_{\mathbf{L$

The detection of a kaon at large (small) times tags a $K_{S}(K_{L})$ \Rightarrow possibility to select a pure K_s beam (<u>unique</u> at a ϕ -factory, not possible at fixed target experiments)

K_S and **K**_L Tagging

 K_S tagged by K_L interaction in EmC Efficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 2 MeV

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) K_L angular resolution: ~ 1° K_L momentum resolution: ~ 2 MeV

$K_S \rightarrow \pi^0 \pi^0 \pi^0$: search for a CP violating decay

Observation of $K_S \rightarrow 3\pi^0$ signals CP violation in mixing and/or in decay: SM prediction: $\Gamma_S = \Gamma_L / \varepsilon + \varepsilon'_{000} /^2$, => BR($K_S \rightarrow 3\pi^0$) ~ 2×10⁻⁹ Present published results: BR($K_S \rightarrow 3\pi^0$) < 1.4×10⁻⁵ (direct search, SND, '99)

BR(K_S \rightarrow 3 π^0) < 7.4×10⁻⁷ (interferometry, NA48, '04)

A. Di Domenico

Data sample: 410 pb⁻¹

Event selection:

- K_S tagged by K_L crash
- Two tracks from IP to EmC
- Kinematic cuts to reject background from $K_S \rightarrow \pi\pi$
- Track-cluster association required

e/π ID from TOF

Identifies charge of final state

Number of signal events obtained from a constrained likelihood fit of multiple data distributions

Normalization using $K_S \rightarrow \pi^+\pi^-(\gamma)$ **events in same data set** pure sample of ~ 13000 signal events

Branching ratios:

$$\begin{split} & \text{BR}(\text{K}_{\text{S}} \rightarrow \pi^- e^+ \nu) = (3.528 \pm 0.057 \pm 0.027) \times 10^{-4} \\ & \text{BR}(\text{K}_{\text{S}} \rightarrow \pi^+ e^- \bar{\nu}) = (3.517 \pm 0.051 \pm 0.029) \times 10^{-4} \\ & \text{BR}(\text{K}_{\text{S}} \rightarrow \pi e \nu) = (7.046 \pm 0.076 \pm 0.050) \times 10^{-4} \end{split}$$

BR($\pi e\nu$) [KLOE '02, 17 pb⁻¹]: (6.91 ± 0.34 ± 0.15) × 10⁻⁴

Charge asymmetry:

$$A_{S} = \frac{\Gamma(K_{S} \to \pi^{-}e^{+}\nu) - \Gamma(K_{S} \to \pi^{+}e^{-}\overline{\nu})}{\Gamma(K_{S} \to \pi^{-}e^{+}\nu) + \Gamma(K_{S} \to \pi^{+}e^{-}\overline{\nu})}$$

$$A_S = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3}$$

with 2.5 fb⁻¹: $\delta A_s \sim 3 \times 10^{-3} \sim 2 \text{ Re } \varepsilon$

Semileptonic decay amplitudes: definitions

$$\left\langle \pi^{-}\ell^{+}\nu \left| K^{0} \right\rangle = a + b \qquad \left\langle \pi^{+}\ell^{-}\overline{\nu} \left| K^{0} \right\rangle = c + d \right.$$
$$\left\langle \pi^{+}\ell^{-}\overline{\nu} \left| \overline{K}^{0} \right\rangle = a^{*} - b^{*} \qquad \left\langle \pi^{-}\ell^{+}\nu \left| \overline{K}^{0} \right\rangle = c^{*} - d^{*} \right.$$

	СР	Т	CPT	$\Delta S = \Delta Q$
a	3 =0	3 =0		
b	R=0	3 =0	=0	
С	3= 0	3 =0		=0
d	 	I =0	=0	=0

CPT violation:
$$y = -\frac{b}{a}$$

AS= ΔQ violation: $x_{+} = \frac{c^{*}}{a}$

CPT violation &

$$\Delta S = \Delta Q$$
 violation : $x_{-} = -\frac{d^{*}}{a}$

 $K_S \rightarrow \pi ev$: test of $\Delta S = \Delta Q$ rule

$$\Re x_{+} = \frac{1}{4} \left(\frac{BR(K_{S} \to \pi e \nu)}{BR(K_{L} \to \pi e \nu)} \frac{\tau_{L}}{\tau_{S}} - 1 \right) \qquad \begin{array}{c} \text{ratio of } \Delta S = \Delta Q \text{ violating and} \\ \text{conserving amplitudes (CPT \\ cons.) SM pred. $O(10^{-7}) \end{array} \right)$
$$\Re x_{+} = (-0.5 \pm 3.1 \pm 1.8) \times 10^{-3}$$

$$\pi(K_{S}) \qquad PDG \\ \pi(K_{L}) \qquad \text{KLOE '05 (avg.)} \\ BR(K_{L} \to \pi e \nu) \qquad \text{KLOE} \end{array}$$

$$\begin{array}{c} \text{Factor 2 improvement w.r.t. current} \\ \text{most precise measurement} \\ (CPLEAR, \sigma = 6.1 \times 10^{-3}) \end{array}$$$$

A. Di Domenico

τ(

τ(

Mini-workshop on Neutral Kaon Interferometry: from Quantum Mechanics to Quantum Gravity - March 24th, 2006 - Frascati, Italy 11

• $\Re x_{-}$: CPT viol., $\Delta S = \Delta Q$ viol.

 $\mathbf{A}_{\mathbf{S}} - \mathbf{A}_{\mathbf{L}} = 4 \left(\Re x_{-} + \Re \delta \right)$

 A_L KTeV $\sigma=0.75\times10^{-4}$ $\Re\delta$ CPLEAR $\sigma=3.4\times10^{-4}$

$$\Re x_{-} = (-0.8 \pm 2.4 \pm 0.7) \times 10^{-3}$$

Factor 5 improvement w.r.t. current most precise measurement (CPLEAR, σ = 1.3× 10⁻²)

• $\Re y$: CPT viol., $\Delta S = \Delta Q$ cons.

 $A_{S}+A_{L}=4 (\Re \mathcal{E}-\Re y)$

 $\Re \varepsilon$ from PDG not assuming CPT

 $\Re y = (0.4 \pm 2.4 \pm 0.7) \times 10^{-3}$ Comparable with best result (CPLEAR from unitarity, $\sigma = 3.1 \times 10^{-3}$)

A. Di Domenico

CPT test: the Bell-Steinberger relation

Measurements of $K_S K_L$ observables can be used for the CPT test from unitarity :

$$(1 + i \tan \phi_{SW}) [\operatorname{Re} \varepsilon - i \operatorname{Im} \delta] = \frac{1}{\Gamma_S} \sum_f A^*(K_S \to f) A(K_L \to f) = \sum_f \alpha_f$$

$$\alpha_{+-} = \eta_{+-} B(K_{S} \rightarrow \pi^{0} \pi^{0})$$

$$\alpha_{00} = \eta_{00} B(K_{S} \rightarrow \pi^{0} \pi^{0})$$

$$[Re \epsilon - Re y - i(Im \delta + Im x_{+})]$$

$$\alpha_{+-\gamma} = \eta_{+-} B(K_{S} \rightarrow \pi^{+} \pi^{-} \gamma)$$

$$[(A_{S} + A_{L})/4 - i(Im \delta + Im x_{+})]$$

 $\alpha_{+-0} = \tau_{S}^{\prime} \tau_{L} \eta_{+-0}^{*} B(K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0})$

(-+-)

D/IZ

$$\alpha_{000} = \tau_{\rm S} / \tau_{\rm L} \eta_{000}^{*} B(K_{\rm L} \to \pi^0 \pi^0 \pi^0)$$

$$\begin{array}{lll} B(K_{S} \rightarrow \pi^{+}\pi^{-})/B(K_{S} \rightarrow \pi^{0}\pi^{0}) = 2.2549 \pm 0.0059 \\ B(K_{S} \rightarrow \pi^{+}\pi^{-}\gamma) < 9 \times 10^{-5} \\ B(K_{L} \rightarrow \pi^{+}\pi^{-}\gamma) = (29\pm1) \times 10^{-6} \\ T_{L} = 50 \\ B(K_{L} \rightarrow \pi l\nu) = 0.6705 \pm 0.0022 \\ B(K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (3.2\pm1.2) \times 10^{-7} \\ B(K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = 0.1263 \pm 0.0012 \\ B(K_{S} \rightarrow \pi^{0}\pi^{0}\pi^{0}) < 1.2 \times 10^{-7} \\ B(K_{S} \rightarrow \pi^{0}\pi^{0}\pi^{0}) < 1.2 \times 10^{-7} \\ \phi^{SW} = (0.759 \pm 0.001) \\ \phi^{000} = \phi^{+-0} = \phi^{+-\gamma} = [0,2\pi] \\ \end{array}$$

$$\begin{split} \tau_{S} &= 0.08958 \pm 0.00006 \text{ ns} \\ \tau_{L} &= 50.84 \pm 0.23 \text{ ns} \\ A_{L} &= (3.32 \pm 0.06) \times 10^{-3} \\ A_{S} &= (1.5 \pm 10.0) \times 10^{-3} \\ B(K_{L} \rightarrow \pi^{+}\pi^{-}) &= (1.963 \pm 0.021) \times 10^{-3} \\ B(K_{L} \rightarrow \pi^{0}\pi^{0}) &= (8.65 \pm 0.10) \times 10^{-4} \\ \varphi^{+-} &= 0.757 \pm 0.012 \\ \varphi^{00} &= 0.763 \pm 0.014 \\ Im x_{\perp} &= (0.8 \pm 0.7) \times 10^{-2} \end{split}$$

KLOE measurements

Im x_{\perp} from a combined fit of KLOE + CPLEAR data

CPT test: accuracy on α_i

We get the following results on each term of the sum

CPT test: KLOE result

RIOE KLOE

Double differential time distribution:

$$I(f_{1},t_{1};f_{2},t_{2}) = C_{12} \left\{ \eta_{1} \right|^{2} e^{-\Gamma_{L}t_{1}-\Gamma_{S}t_{2}} + \left| \eta_{2} \right|^{2} e^{-\Gamma_{S}t_{1}-\Gamma_{L}t_{2}} \\ -2 \left| \eta_{1} \right| \left| \eta_{2} \right| e^{-(\Gamma_{S}+\Gamma_{L})(t_{1}+t_{2})/2} \cos \left[\Delta m(t_{2}-t_{1}) + \phi_{1} - \phi_{2} \right] \right\}$$

where $t_1(t_2)$ is the proper time of one (the other) kaon decay into $f_1(f_2)$ final state and:

$$\eta_{i} = \left| \eta_{i} \right| e^{i\phi_{i}} = \left\langle f_{i} \right| K_{L} \right\rangle / \left\langle f_{i} \right| K_{S} \right\rangle$$
$$C_{12} = \frac{\left| N \right|^{2}}{2} \left| \left\langle f_{1} \right| K_{S} \right\rangle \left\langle f_{2} \right| K_{S} \right\rangle \right|^{2}$$

characteristic interference term at a φ-factory => interferometry

$$f_i = \pi^+ \pi^-, \pi^0 \pi^0, \pi^1 \nu, \pi^+ \pi^- \pi^0, 3\pi^0, \pi^+ \pi^- \gamma$$
 ... etc

Integrating in (t_1+t_2) we get the time difference $(\Delta t=t_1-t_2)$ distribution (1-dim plot simpler to manipulate than 2-dim plot):

$$I(f_1, f_2; \Delta t \ge 0) = \frac{C_{12}}{\Gamma_S + \Gamma_L} \left\{ \eta_1 \right|^2 e^{-\Gamma_L \Delta t} + \left| \eta_2 \right|^2 e^{-\Gamma_S \Delta t}$$
$$\underbrace{-2 \left| \eta_1 \right| \left| \eta_2 \right| e^{-(\Gamma_S + \Gamma_L) \Delta t/2} \cos(\Delta m \Delta t + \phi_2 - \phi_1) \right\}}_{\text{for } \Delta t < 0} \quad \Delta t \rightarrow \left| \Delta t \right| \text{ and } 1 \leftrightarrow 2$$

From these distributions for various final states f_i one can measure the following quantities: Phases (difference of) from the

$$\Gamma_{S}, \Gamma_{L}, \Delta m, |\eta_{i}|, \phi_{i} \equiv \arg(\eta_{i})$$

Phases (difference of) from the interference term => **interferometry**

Neutral kaon interferometry

$$\label{eq:pK} \begin{split} p_K &= 110 \ MeV/c \\ \lambda_S &= 6 \ mm \quad \lambda_L = 3.5 \ m \end{split}$$

Interference term: $\propto e^{-(\Gamma_S + \Gamma_L)\Delta t/2} \cos(\Delta m \Delta t + \phi_2 - \phi_1)$ Oscillation period: T=h/ Δm ~13 τ_S Exponential damping: ~2 τ_S

For interferometry a quite good K decay vertex reconstruction capability is required: $\delta(\Delta t) \le 1 \tau_S$

Neutral kaon interferometry: main observables

A. Di Domenico

Neutral kaon interferometry: main observables

21

A. Di Domenico

 $\phi \rightarrow K_{S}K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{+}\pi^{-}$

A kinematic fit is performed to improve the vertex and Δt resolution:

 $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$

- Fit including Δt resolution and efficiency effects + regeneration
- Γ_S , Γ_L fixed from PDG

KLOE PRELIMINARY

 $\Delta m = (5.34 \pm 0.34) \times 10^9 \text{ s}^{-1}$ At 2.5 fb⁻¹ $\Delta m \pm 0.14 \times 10^9 \text{ s}^{-1}$

PDG '04: (5.290 \pm 0.016) ×10⁹ s⁻¹ 0 $_{0}^{0}$ Best (Ktev'03)(5.288 \pm 0.043) ×10⁹ s⁻¹

$\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: test of quantum coherence

$$I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};|\Delta t|) \propto \left\{ e^{-\Gamma_{L}|\Delta t|} + e^{-\Gamma_{S}|\Delta t|} - 2 \cdot (1 - \zeta_{SL}) \cdot e^{-(\Gamma_{S} + \Gamma_{L})|\Delta t|/2} \cos(\Delta m |\Delta t|) \right\}$$

- Fit including Δt resolution and efficiency effects + regeneration
- Γ_S , $\Gamma_L \Delta m$ fixed from PDG

Decoherence parameter:

$$\zeta_{SL} = 0 \rightarrow QM$$

 $\zeta_{SL} = 1 \rightarrow \text{total decoherence}$

KLOE preliminary result:

$$\zeta_{SL} = 0.043 \pm 0.037_{\text{STAT}} \pm 0.008_{\text{SYST}}$$

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain : $\zeta_{SL} = 0.13 \pm 0.16$

$\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: test of quantum coherence

$$I\left(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t\right) = \frac{N}{2} \left[\left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| K^{0}\overline{K}^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2} + \left| \left\langle \pi^{+}\pi^{-},\pi^{+}\pi^{-} \right| \overline{K}^{0}K^{0}(\Delta t) \right\rangle \right|^{2}$$

- Fit including Δt resolution and efficiency effects + regeneration
- Γ_S , $\Gamma_L \Delta m$ fixed from PDG

KLOE preliminary result:

$$\zeta_{0\overline{0}} = (2.4 \pm 2.0_{\text{STAT}} \pm 0.2_{\text{SYST}}) \times 10^{-6}$$

From CPLEAR data, Bertlmann et al. (PR D60 (1999) 114032) obtain:

$$\zeta_{0\bar{0}}=0.4\pm0.7$$

Decoherence parameter: \mathcal{F}

$$\zeta_{0\overline{0}} = 0 \rightarrow QM$$

 $\zeta_{0\overline{0}} = 1 \rightarrow \text{total decoherence}$

with 2.5 fb⁻¹:

$$\pm 0.8_{\text{STAT}} \times 10^{-6}$$

as CP viol. $O(|\eta_{+-}|^2) \sim 10^{-6}$ => high sensitivity to ζ

$\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: decoherence & CPTV by QG

Decoherence and CPT violation parameters α, β, γ due to QG At most one expects: $\alpha, \beta, \gamma = O\left(M_{K}^{2}/M_{PLANCK}\right) \approx 2 \times 10^{-20} \text{ GeV}$

The fit with
$$I(\pi^{+}\pi^{-},\pi^{+}\pi^{-};\Delta t,\alpha,\beta,\gamma)$$
 gives:
KLOE preliminary
 $\alpha = (-10^{+41}_{-31STAT} \pm 9_{SYST}) \times 10^{-17} \text{ GeV}$
 $\beta = (3.7^{+6.9}_{-9.2STAT} \pm 1.8_{SYST}) \times 10^{-19} \text{ GeV}$
 $\gamma = (-0.4^{+5.8}_{-5.1STAT} \pm 1.2_{SYST}) \times 10^{-21} \text{ GeV}$
 $\psi = (2.2^{+5.8}_{STAT}) \times 10^{-21} \text{ GeV}$

CPLEAR

$$\alpha = (-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$$

 $\beta = (2.5 \pm 2.3) \times 10^{-19} \text{ GeV}$
 $\gamma = (1.1 \pm 2.5) \times 10^{-21} \text{ GeV}$

In the complete positivity hypothesis $\alpha = \gamma, \beta = 0 \implies$ only one independent parameter: γ

RIOE KLOE

CPT and Lorentz invariance violation

Spontaneous breaking of CPT and Lorentz symmetry [Kostelecky PRD61 (1999) 016002].

For a fixed target experiment δ_{K} depends on sidereal time t since laboratory frame rotates with Earth.

For a ϕ -factory there is an additional dependence on the polar and azimuthal angle θ , ϕ of the kaon momentum in the detector frame:

$$\overline{\delta}_{K}(|\vec{p}|,\theta,t) = \frac{1}{2\pi} \int_{0}^{2\pi} \delta_{K}(\vec{p},t) d\phi$$

$$= \frac{i \sin \phi_{SW} e^{i\phi_{SW}}}{\Delta m} \gamma_{K} [\Delta a_{0} + \beta_{K} \Delta a_{Z} \cos \chi \cos \theta]$$

$$+ \beta_{K} \Delta a_{Y} \sin \chi \cos \theta \sin \Omega t$$

$$\chi : ang$$

 $+ \beta_{K} \Delta a_{Y} \sin \chi \cos \theta \sin \Omega t \\+ \beta_{K} \Delta a_{X} \sin \chi \cos \theta \cos \Omega t \right]$

 Ω : Earth's sidereal frequency

 χ : angle between the z lab. axis and the Earth's rotation axis

$\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi e \nu$: CPT and Lorentz violation

KLOE with 340 pb⁻¹ reach a statistical sensitivity on

 $A_{L} \cong 2 \Re \varepsilon_{\kappa} - 2 \Re \delta_{\kappa}$

of ~ $3 \div 4 \times 10^{-4}$ (very preliminary)

forward-backward asymmetry of A_L => limit on Δa_Z at a level:

 $\delta(\Delta a_Z) = O(1 \times 10^{-17}) \text{ GeV}$

KTev measured the sidereal time variation of ϕ_{+-} ; limits at 90% C.L. on:

$$\Delta a_X, \Delta a_Y < 9.2 \times 10^{-22} \text{ GeV}$$

Mode	Test of	Param.	Present best measurement	KLOE-2
				L=50 fb ⁻¹
$K_s \rightarrow \pi e \nu$	CP, CPT	A _s	$(1.5 \pm 11) \times 10^{-3}$	\pm 1 × 10 ⁻³
π ⁺π− πeν	CP, CPT	A _L	$(3322 \pm 58 \pm 47) \times 10^{-6}$	\pm 25 $ imes$ 10 ⁻⁶
$\pi^+\pi^ \pi^0\pi^0$	СР	Re (ε'/ε)	$(1.67 \pm 0.26) \times 10^{-3}$	\pm 0.2 × 10 ⁻³
$\pi^+\pi^ \pi^0\pi^0$	CP, CPT	$\operatorname{Im}(\varepsilon'/\varepsilon)$	$(1.2 \pm 2.3) \times 10^{-3}$	\pm 3 × 10 ⁻³
πεν πεν	СРТ	$\mathbf{Re}(\delta_{\mathbf{K}}) + \mathbf{Re}(\mathbf{x})$	$\text{Re}(\delta_{\text{K}}) = (0.29 \pm 0.27) \times 10^{-3}$	\pm 0.2 × 10 ⁻³
πεν πεν	СРТ	$Im(\delta_K)+Im(x_+)$	$Im(\delta_{K}) = (2.4 \pm 5.0) \times 10^{-5}$	\pm 3 × 10 ⁻³
$\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$		Δm	$(5.288 \pm 0.043) \times 10^9 \text{ s}^{-1}$	\pm 0.03 × 10 ⁹ s ⁻¹

Mode	Test of	Param.	Present best	KLOE-2
			measurement	L=50 fb ⁻¹
$\pi^+\pi^ \pi^+\pi^-$	QM	ζ ₀₀	$(2.4 \pm 2.0) \times 10^{-6}$	\pm 0.1 $ imes$ 10 ⁻⁶
$\pi^+\pi^ \pi^+\pi^-$	QM	$\zeta_{ m SL}$	$(4.3 \pm 3.8) \times 10^{-2}$	$\pm 0.2 imes 10^{-2}$
$\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$	CPT & QM	α	$(-0.5 \pm 2.8) \times 10^{-17} \text{ GeV}$	± 2 × 10 ⁻¹⁷ GeV
π+π- π+π-	CPT & QM	β	$(2.5 \pm 2.3) \times 10^{-19} \text{ GeV}$	± 0.1 × 10 ⁻¹⁹ GeV
$\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$	CPT & QM	γ	$(1.1 \pm 2.5) \times 10^{-21} \text{ GeV}$	\pm 0.2 × 10 ⁻²¹ GeV
$\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$	CPT & EPR corr.	Re (ω)	-	$\pm 2 imes 10^{-5}$
$\pi^{+}\pi^{-}$ $\pi^{+}\pi^{-}$	CPT & EPR corr.	Im(ω)	-	$\pm 2 imes 10^{-5}$
$\pi^+\pi^ \pi ev$	CPT & Lorentz	Δa_{Z}	-	0(10 ⁻¹⁸ GeV)
$\pi^+\pi^ \pi ev$	CPT & Lorentz	$\Delta \mathbf{a}_{\mathbf{X},\mathbf{Y}}$	<10 ⁻²¹ GeV	<i>O</i> (10 ⁻¹⁸ GeV)

Bell-type inequality test with neutral kaons

Bell-type inequality test with neutral kaons

Bell-type inequality test with neutral kaons

Measurement of the number of $K_L K_L$ pairs in the four experimental set-ups

Detection of $K_L K_L$ pairs by K_L interaction in the calorimeter and/or decay in the DC

Bell's – type mequality					
P_{LL}^{BOTH}	$\leq P_{LL}^{LEFT}$	$+P_{LL}^{RIGHT}$	$+P_{LL}^{0}$		

true a in a arr a 1:4--

violated by QM predictions!

proposed by Eberhard (NP B398 (1993) 155)

D - 117 ~

- •Several parameters related to CPT and QM tests are (will be) measured at KLOE, some of them for the first time.
- •In the future KLOE-2 will improve the existing limits on them.
- •The ω and γ parameters related to possible CPT violation induced by QG can be measured with a precision that goes inside the Planck's scale region.
- •A Bell's inequality (BI) test with neutral kaons might be feasible at KLOE-2 (with some additional assumptions, i.e. loopholes)
- •Also other interesting tests of QM might be possible.
- •These tests require thin regenerators close to the IP =>
- 1) modify the beam pipe
- 2) dedicated run