

Progress on \mathbf{F}_{π} with the KLOE experiment (untagged)

Stefan Müller-Federico Nguyen LNF Frascati-Università Roma TRE *February 27th 2006*

(For the KLOE collaboration)

Available KLOE data sets

in 2001, the veto of cosmic events (hardware) caused non-negligible inefficiency in $\pi\pi\gamma$ events and made the measurement of $\mu\mu\gamma$ events not feasible, from 2002 on, this effect is taken out

KLOE: performances for the $\pi\pi\gamma$ analysis

Electromagnetic Calorimeter Pb / Scintillating Fibres Endcap + Barrel = $98\% (4\pi)$

Drift Chamber

4 m Ø, *3.3 m* length 90% He, *10*% i-C₄H₁₀

Normalization to $\mu\mu\gamma$ events

benefits from normalizing to $\mu\mu\gamma$ events, in the limit of neglecting FSR effects:

$$\sigma_{\pi\pi}^{Born}(s') \approx \frac{d\sigma_{\pi\pi\gamma}^{obs} / ds'}{d\sigma_{\mu\mu\gamma}^{obs} / ds'} \sigma_{\mu\mu}^{Born}(s')$$

Luminosity: 0.5% theory
$$\oplus$$
 0.3% exp., Bhabha

Luminosity	-06%
	0.0 %
Vacuum Polarization	0.2~%
FSR resummation	0.3~%
Radiation function $(H(s_{\pi}))$	-0.5~%
Total theory systematics	0.9~%

- $\boldsymbol{\cdot}$ most of the theoretical systematic effects cancel out
- also improvements in experimental systematics to be expected

compared to the luminosity normalization with Bhabhas, statistical error becomes larger using muons, however it is a good cross check of the intriguing region because of the difference with τ data

estimate performed with PHOKHARA-4

H. Czyz et al., Eur.Phys.J.C39 (2005) 411 $\theta_{\pi\pi} < 15^{\circ}, 50^{\circ} < \theta_{\pi}, < 130^{\circ}, \Delta M_{\pi\pi}^{2} = 0.01 \text{ GeV}^{2}$ L = 240 pb⁻¹, $\varepsilon = 50\%$ flat in s', in both channels

Statistical error

Improvements wrt the published result

improved selection

 \cdot enlarged m_{trk} acceptance, from 90 MeV to 80 MeV in order to accept muons

- improved offline background filter:
 eff. from 95% to 98.5% AND syst. error
 considerably lower
- events with m_{miss} > 120 MeV are downscaled with a factor 1/1000

 \mathbf{m}_{trk} , defined by 4-momentum

conservation under the hypothesis of 2 equal mass tracks and one γ

$$\left(\sqrt{s} - \sqrt{p_1^2 + m_{trk}^2} - \sqrt{p_2^2 + m_{trk}^2}\right)^2 - (p_1 + p_2)^2 = 0$$

 m_{miss} , defined by the 4-momentum conservation under the hypothesis of $e^+e^- \rightarrow \pi^+\pi^- X$

$$m_{\rm miss} = \sqrt{E_{\rm X}^2 - p_{\rm X}^2}$$

Discrimination π vs. e: time and energy

Discrimination efficiencies for $\pi\pi\gamma$ and $\mu\mu\gamma$

the procedure is tested
 the event is selected if <u>at</u>
 <u>least one</u> of the 2 tracks is <u>not</u>
 identified to be an electron

it leads to a rejection power ~ 97% for $e^+ e^- \rightarrow e^+ e^-$ events while keeping a selection efficiency > 99.8% for $e^+ e^- \rightarrow \pi^+ \pi^- \gamma, \ \mu^+ \mu^- \gamma$ events

Definition of $\pi\pi\gamma$ and $\mu\mu\gamma$ events (I)

 $M_{\pi\pi}^2 \in [0.37, 0.42] \text{ GeV}^2$

HIGH HIGH

Tracking efficiencies for $\pi\pi\gamma$ events

evaluated from data samples of $\pi^+\pi^-$ and $\pi^+\pi^-\pi^0$ events, and from a MC sample of $\pi^+\pi^-\gamma$ events, and compared

the agreement between data and MC is on the level of 0.5-0.6%

Background for the $\pi\pi\gamma$ selection

background yields are estimated using MC distributions after the whole selection, normalized to the luminosity of the selected data sample

for data and 2 background sources:

$$\frac{\mathrm{d}\,\sigma_{\mathrm{vis}}}{\mathrm{d}\mathrm{M}^2} = \frac{1}{L}\frac{\mathrm{N}_{Bin}}{\Delta\,\mathrm{M}^2}$$

The "raw" ππγ spectrum

Background for the $\mu\mu\gamma$ selection

background yields are estimated using MC distributions after the whole selection, normalized to the luminosity of the selected data sample

for data and 2 background sources:

$$\frac{\mathrm{d}\,\sigma_{\mathrm{vis}}}{\mathrm{d}\mathrm{M}^2} = \frac{1}{L}\frac{\mathrm{N}_{Bin}}{\Delta\mathrm{M}^2}$$

The "raw" µµy spectrum

Conclusions and perspectives

- > the extraction of \mathbf{F}_{π} , from both the absolute measurement of $\pi\pi\gamma$ events and from the ratio of $\pi\pi\gamma$ to $\mu\mu\gamma$ events, is in an advanced state,
- > these methods allow to cross check systematics,
- > we are finalizing the estimate of the corrections and of the systematic uncertainties,
- > good control of $\pi/\mu/e$ discrimination,
- even on the theory side some improvements are expected Results will come soon... Please, stay tuned

