

M.Antonelli (INFN/Frascati) for the KLOE collaboration

ICHEP 2004

Beijing, 15-23 August

*DA*Φ*NE*: *the Frascati φ factory*

The ϕ decay at rest provides monochromatic and pure kaon beams

• The KK pairs in the final state have the same quantum numbers as the ϕ ,

i.e. they are produced in a pure $J^{PC} = 1^{--}$ state $\mathbf{K}_{\mathbf{S}} (\mathbf{K}^{+}) \longrightarrow \mathbf{K}_{\mathbf{L}} (\mathbf{K}^{-})$ Contamination $\approx 10^{-10}$ $|i\rangle \propto \frac{1}{\sqrt{2}} (|K_{L}, \mathbf{p}\rangle | K_{S}, -\mathbf{p}\rangle - |K_{L}, -\mathbf{p}\rangle | K_{S}, \mathbf{p}\rangle)$

• **Tagging:** observation of $K_{S,L}$ signals presence of $K_{L,S}$

- precision measurement of absolute BR's

• Interference measurements of $K_S K_L$ system

K⁺**K**⁻ **1.5**× 10⁶/pb⁻¹ $p^* = 127$ MeV/c $\lambda_{\pm} = 95$ cm $K_L K_S$ $10^6/pb^{-1}$; $p^* = 110$ MeV/c $\lambda_s = 6$ mm K_s decays near interaction point $\lambda_L = 3.4$ mLarge detector to keep reasonableacceptance for K_L decays (~0.5 λ_L)

The KLOE experiment

Be beam pipe (0.5 mm thick) Instrumented permanent magnet quadrupoles (32 PMT⁹s)

Drift chamber $(4 \text{ m} \varnothing \times 3.3 \text{ m})$ 90% He + 10% IsoB, CF frame 12582 stereo sense wires

Electromagnetic calorimeter Lead/scintillating fibers 4880 PMT⁹s

Superconducting coil (5 m bore) $B = 0.52 \text{ T} (\int B \, dl = 2 \text{ T} \cdot \text{m})$

KLOE detector specifications

 $\sigma_{E}/E \qquad 5.7\% / \sqrt{E(\text{GeV})}$ $\sigma_{t} \qquad 54 \text{ ps } / \sqrt{E(\text{GeV}) \oplus 50 \text{ ps}}$ (relative time between clusters) $\sigma_{L}(\gamma\gamma) \qquad \sim 2 \text{ cm } (\pi^{0} \text{ from } K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0})$

 σ_p/p 0.4 % (tracks with $\theta > 45^\circ$)

 σ_x^{hit} 150 μm (xy), 2 mm (z)

 σ_x^{vertex} ~1 mm

 $\sigma(M_{\pi\pi})$ ~1 MeV

Kaon physics at KLOE

\Rightarrow	$K_S \rightarrow \pi^0 \pi^0 \pi^0$	Preliminary results	
⇒	$K_{S} \rightarrow \pi^{+}\pi^{-}(\gamma)$	Phys. Lett. B538 21 (2002)	
	$K_{s} \rightarrow \pi^{0}\pi^{0}$	Update with ⁹ 01- ⁹ 02 data in progress	
	$K_s \rightarrow \pi e \nu$	Phys. Lett. B535 37 (2002)	
		Preliminary update with '01-'02 data	
	K ⁰ mass	KLOE Note 181 (http://www.lnf.infn.it/kloe)	
	$K_L \rightarrow \gamma \gamma / K_L \rightarrow 3 \pi^0$	Phys. Lett. B566 61 (2003)	
\Rightarrow	$K_L \rightarrow \pi \mu \nu, \pi e \nu, \pi^+ \pi^- \pi^\theta 3 \pi^\theta$	Preliminary results	
\Rightarrow	<i>K_L</i> mean life	Preliminary results	
\Rightarrow	V_{us} from K_L and K_S	Preliminary results	
	<i>CP</i> violation & interference	In progress	
	<i>V_{us}</i> from <i>K</i> ^{+/-}	In progress	
	$K^{\scriptscriptstyle +} \! ightarrow \! \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0}$	hep-ex/0307054 accepted by Phys. Lett. B	

Tagged K_L and K_S "beams"

K_L tagged by *K_s* → $\pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) *K_L* angular resolution: ~ 1° *K_L* momentum resolution: ~ 1 MeV 4 · 10⁵ tags/pb⁻¹

 K_S tagged by K_L interaction in EmCEfficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 1 MeV $3 \cdot 10^5$ tags/pb⁻¹

$$K_s \rightarrow \pi^0 \pi^0 \pi^0 - tests \ of \ CP \ and \ CPT$$

JOLY KLOE

Observation of $K_s \rightarrow 3\pi^0$ signals CP violation in mixing and/or decay:If CPT conserved: $\Gamma_s = \Gamma_L |\varepsilon + \varepsilon'_{000}|^2$ $BR(K_s \rightarrow 3\pi^0) \sim 2 \times 10^{-9}$ Best results: $BR < 1.4 \times 10^{-5}$ 90% CLSND '99 $BR < 1.4 \times 10^{-6}$ 90% CLNA48 '03 preliminary

Uncertainty on $K_s \rightarrow 3\pi^0$ amplitude currently limits precision on Im δ From unitarity: $(1 + i \tan \phi_{sw}) [\operatorname{Re} \varepsilon - i \operatorname{Im} \delta] = \frac{1}{\Gamma_s} \sum_f A^*(K_s \rightarrow f) A(K_L \rightarrow f)$ Best results: $\operatorname{Im} \delta = (2.4 \pm 5.0) \times 10^{-5}$ CPLEAR '99 $\operatorname{Im} \delta = (-1.2 \pm 3.0) \times 10^{-5}$ NA48 '03 preliminary

A limit on BR($K_S \rightarrow 3\pi^0$) at 10⁻⁷ level would limit: $|\text{Im }\delta| < \sim 2 \times 10^{-5} \Rightarrow \frac{m_{K^0} - m_{\overline{K}^0}}{\langle m_K \rangle} < \sim 8 \times 10^{-19} \qquad \begin{array}{c} Compare: \\ m_K/m_{\text{Planck}} = 4 \times 10^{-20} \end{array}$

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$

Preselection:

- K_s tagged by K_L crash
- 6 photon clusters, no tracks from IP
- Kinematic fit to refine cluster parameters

<u>Rejection of background:</u>

 $K_s \rightarrow \pi^0 \pi^0 + 2$ split/accidental clusters

• Define signal box in $\chi^2_{3\pi}$ vs. $\chi^2_{2\pi}$ plane:

 $\chi^2_{3\pi}$ 3 cluster pairs with best π^0 mass estimates

 $\chi^2_{2\pi}$ pair 4 clusters using π^0 masses, $E(K_s)$, $\mathbf{p}(K_s)$, angle between π^{0} 's

• Final cut on residual K_s energy: $E(K_s) - \sum E_{\pi}$

V_{us} from K₀ semileptonic decays at KLOE- M. Antonelli – ICHEP04 Beijing 15-23 August 2004

$\chi^2_{2\pi}$

Search for $K_S \rightarrow \pi^0 \pi^0 \pi^0$

analysis optimization: minimization of expected upper limit

$$\varepsilon_{3\pi} = 22.6\%$$

(events with K_L crash)

 $N_{\rm bkg}({
m MC}) = 3.2 \pm 1.4 \pm 0.5$

$$N_{\rm obs} = 4$$

KLOE preliminary 450 pb⁻¹ '01+'02 data

BR($K_S \rightarrow \pi^0 \pi^0 \pi^0$) ≤ 2.1 × 10⁻⁷ 90% CL

Using the PDG values and our limit we have:

$$|\eta^{000}| = \frac{A(K_{\rm S} \to 3\pi^{0})}{A(K_{\rm L} \to 3\pi^{0})} \sqrt{\frac{\tau_{\rm L}}{\tau_{\rm S}}} \frac{B(K_{\rm S} \to 3\pi^{0})}{B(K_{\rm L} \to 3\pi^{0})}$$

Analysis of $K_S \rightarrow \pi ev$ decays • K_{crash} tag + 2 tracks from IP with $M_{\pi\pi} < 490$ MeV (reject $K_S \rightarrow \pi \pi(\gamma)$)

• TOF identification: compare π -e expected flight times, reject $\pi\pi,\pi\mu$ bkg

 $K_{S} \rightarrow \pi^{-}e^{+}\nu, \pi^{+}e^{-}\nu$

 $K_{s} \rightarrow \pi^{-}e^{+}\nu, \pi^{+}e^{-}\nu$

Result sensitivity to fit interval well below present statistical uncertainty

Normalize signal counts to $K_s \rightarrow \pi \pi(\gamma)$ counts in the same data set

(use PDG03 for BR(K_s $\rightarrow \pi\pi(\gamma)$), dominated by KLOE measurement)

 $K_{s} \rightarrow \pi^{-}e^{+}\nu, \pi^{+}e^{-}\nu$

Selection efficiency (given the tag) is evaluated by charge, using data control sample of $K_{I} \rightarrow \pi ev$ decaying close to IP: $\varepsilon (\pi^{-}e^{+}) = (24.1 \pm 0.1 \pm 0.2)\%$; $\varepsilon (\pi^{+}e^{-}) = (23.6 \pm 0.1 \pm 0.2)\%$ $BR(K_{\rm S} \to \pi^- e^+ \nu) = (3.54 \pm 0.05_{\rm stat} \pm 0.05_{\rm syst}) \ 10^{-4}$ $BR(K_s \rightarrow \pi^+ e^- \nu) = (3.54 \pm 0.05_{stat} \pm 0.04_{syst}) \ 10^{-4}$ **preliminary** evaluation of the $BR(K_{s} \rightarrow \pi ev) = (7.09 \pm 0.07_{stat} \pm 0.08_{syst}) \ 10^{-4}$ systematics near (Published result: $(6.91 \pm 0.34_{stat} \pm 0.15_{syst})$ 10⁻⁴ Phys.Lett.B535:3742,2002) completion $A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ \nu) - \Gamma(K_{S,L} \to \pi^+ e^- \nu)}{\Gamma(K_{S,L} \to \pi^- e^+ \nu) + \Gamma(K_{S,L} \to \pi^+ e^- \nu)}$ $A_s = (-2 \pm 9_{stat} \pm 6_{syst}) \ 10^{-3}$ (never measured before) $(A_{I} = (3.322 \pm 0.058 \pm 0.047) \, 10^{-3}, \text{ KTeV } 2002)$

<u>future</u>: next year run $2 \text{ fb}^{-1} \rightarrow \sigma(A_s) \sim 3 \cdot 10^{-3}$

$$K_L$$
 decays

Precisely measure **absolute** branching ratios, with rel. accuracy < 1% $410pb^{-1} \Rightarrow (13 \cdot 10^6 tagged K_L) \times 4$

- K_L decay vertex in a fiducial volume in DC (given a $K_S \rightarrow \pi^+\pi^-$ tag)
- ♦ Kinematic identification for charged decays using reconstructed momenta

photons counting for $K_L \rightarrow 3\pi^0$ BR(K_L $\rightarrow X$) = ϵ_{Tag}^X	$\frac{N_{sig}^{X}}{N_{rec.}} \epsilon_{F.V.} \epsilon_{Tag}^{X}$ $\frac{N_{Tag}^{X}}{E_{Tag}^{all}}$			
Tag bias $\frac{1 \text{ lag}}{\text{E}_{\text{Tag}}} \approx 1$		\mathbf{K}_{ℓ^3}	$\pi^+\pi^-\pi^0$	$3\pi^0$
Reconstruction efficiency	E _{rec.} X	≈ 60%	45%	100%
Fiducial volume acceptance	E _{F.V.}	≈ 26%		

Slightly different Tagging efficieny among K_L topologies

$K_L \rightarrow neutrals$

• ~ 100% trigger efficiency good data/MC agreement

Slightly different Tagging efficieny among K_L topologies

 $K_{L} \rightarrow \text{interaction}$ fraction 30%trigger efficiency 85%

Slightly different Tagging efficieny among K_L topologies

$K_L \rightarrow$	interaction,	punch-trough
fraction		
	30%	17%
trigger e	efficiency	
	85%	65%

data/MC agreement at $\sim 10\%$

possible source of systematic uncertainty at $\sim 1-2\%$

Tagging with K_s autoTrigger $\epsilon \sim 20\%$

K_L decays: Tag bias

Sligthely different Tagging efficicieny among K_L topologies

$K_L \rightarrow charged$

• Few % decrease of $K_{s} \rightarrow \pi^{+}\pi^{-}$ reconstruction efficiency at small R_{KL}

good data/MC agreement typical correction $0.5\% \pm 0.1\%$

Typical biases	for K _s autoTrigger Ta	ag
charged	neutrals	
0.985	1.02	

K_L decays: Kinematics

Charged K_L decay modes selected by kinematics: $P_{miss} - E_{miss}$

 $P_{miss} - E_{miss}$ distribution very sensitve to radiation and momentum resolution \longrightarrow Check with independent selection by PiD

V_{us} from K₀ semileptonic decays at KLOE- M. Antonelli – ICHEP04 Beijing 15-23 August 2004

K_L decays: Preliminary results

SOLV KLOE

• Preliminary results:

 $BR(K_{T} \rightarrow \pi ev) = 0.3994 \pm 0.0006 \pm 0.0034$ Data 9000 $BR(K_{T} \rightarrow \pi \mu \nu) = 0.2708 \pm 0.0005 \pm 0.0025$ K_{e3} 8000 K_{u3} 7000 $BR(K_{T} \rightarrow 3\pi^{0}) = 0.2014 \pm 0.0003 \pm 0.0022$ $\pi^+\pi^-\pi^0$ 6000 $BR(K_{T} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = 0.1271 \pm 0.0004 \pm 0.0010$ $1 \pi^+\pi^-$ 5000 Preliminary systematics: 4000 3000 $3\pi^0$ πεν πμν $\pi^+\pi^-\pi^0$ 0.0002 Selection 0.0004 0.0003 0.0015 2000 Shape 0.0010 0.0008 1000 Tag bias 0.0022 0.0006 0.0016 0.0011 -150 -125 -25 -100 -75 -50 0 25 50 0.0023 0.0007 Lifetime 0.0017 0.0012

Lesser of $\mathbf{P}_{\text{miss}} - \mathbf{E}_{\text{miss}}$ in $\pi\mu$ or $\mu\pi$ hyp. (MeV)

V_{us} from K₀ semileptonic decays at KLOE- M. Antonelli – ICHEP04 Beijing 15-23 August 2004

100

75

K_L decays: Preliminary results

• Preliminary results:

 $BR(K_{L} \rightarrow \pi e\nu) = 0.3994 \pm 0.0006 \pm 0.0034$ $BR(K_{L} \rightarrow \pi \mu \nu) = 0.2708 \pm 0.0005 \pm 0.0025$ $BR(K_{L} \rightarrow 3\pi^{0}) = 0.2014 \pm 0.0003 \pm 0.0022$ $BR(K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = 0.1271 \pm 0.0004 \pm 0.0010$

Preliminary systematics:

	πεν	πμν	$\pi^+\pi^-\pi^0$	$3\pi^0$
Selection	0.0004	0.0003	0.0002	0.0015
Shape	0.0010	0.0008	-	-
Tag bias	0.0022	0.0016	0.0006	0.0011
Lifetime	0.0023	0.0017	0.0007	0.0012

K_L decays: results comparison

K_L decays: lifetime from unitarity

• sum of absolute branching fractions:

 $\Sigma BR(K_L \rightarrow X) = 1.0023 \pm 0.0009 \pm 0.0077$ Rare decays from PDG

Upper limit on K_{L} invisible BR $1.05 \cdot 10^{-2}$ @90 C.L.

• K_L FV acceptance depends on K_L lifetime

Assuming $\Sigma BR(K_L \rightarrow X) = 1$ $\lambda_{KL} = 51.35 \pm 0.05 \pm 0.26$ ns

 K_L lifetime from $K_L \rightarrow \pi^0 \pi^0 \pi^0$

 τ (PDG) (fit) = (51.7 ± 0.4) ns τ (Vosburg, 1972) = (51.54 ± 0.44) ns - 0.4 Mevents τ (KLOE) = (51.15 ± 0.20stat) ns - 14.5 Mevents - 440 pb⁻¹

Preliminary Systematics 0.6%

Unitarity test of CKM matrix $-V_{us}$

Most precise test of unitarity possible at present comes from 1st row:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$$

 $\Delta = 0.0042 \pm 0.0019 \text{ PDG02}$

 $2|V_{ud}|dV_{ud} = 0.0015$ from super-allowed $0^+ \rightarrow 0^+$ Fermi transitions, n β -decays: $2|V_{us}|dV_{us} = 0.0011$ from semileptonic kaon decays (PDG 2002 fit)

$|V_{us}|$ from neutral K_{l3} partial decay widths

$$\left| V_{us} \right| \times f_{\star}^{K^{0}\pi^{-}}(0) = \left[\frac{128\pi^{3}\Gamma_{K}^{\ell}}{G_{F}^{2}M_{K}^{5}S_{ew}I_{K}^{\ell}(\lambda_{\star},\lambda_{0})} \right]^{1/2} \frac{1}{1 + \delta_{em}^{K\ell}}$$

 $f_{+}^{K0\pi-}(0)$ form factor at zero momentum transfer: pure theory calculation (χ PT, lattice) $I_{K}^{\ell}(\lambda_{+}, \lambda_{0})$ phase space integral, S_{ew} short distance corrections (1.0232) λ_{+}, λ_{0} slopes (momentum dependence of the vector and scalar form factors) $\delta_{em}^{K\ell}$ electromagnetic correction (amplitude and phase space)

KLOE measurements of $V_{us}f_{+}^{K\pi}(0)$

CKMwg prescription is used to extract $V_{us} f_{+}^{K\pi}(0)$ from the partial decay width

use quadratic parametrization

$$f_i(t) = f_i(0) \left[1 + \lambda_i \frac{t}{m_{\pi^+}^2} + \frac{\lambda_i'}{2} \frac{t^2}{m_{\pi^+}^4} \right]$$

$$\begin{split} \lambda_{+} &= 0.0206 \pm 0.0018 \\ \lambda_{+}' &= 0.0032 \pm 0.0007 \qquad \text{from KTeV} \\ \lambda_{0} &= 0.0137 \pm 0.0013 \end{split}$$

average K_L lifetime from KLOE and WA(Vosburgh '72, Devlin '67)

 $\lambda_{_{KL}}\!\!=51.35\pm0.25~ns$

K₁ BR's assuming unitarity

Preliminary KLOE results: $|\mathbf{V}_{us}|\mathbf{f}_{+}^{K\pi}(\mathbf{0})(\mathbf{K}_{se3}) = 0.2171 \pm 0.0017$ $|\mathbf{V}_{\mu s}|\mathbf{f}_{+}^{K\pi}(\mathbf{0})(\mathbf{K}_{\mu s}) = 0.2147 \pm 0.0014$ $|\mathbf{V}_{\mu s}| \mathbf{f}_{\pm}^{K\pi}(\mathbf{0})(\mathbf{K}_{\mu 3}) = 0.2167 \pm 0.0015$ from unitarity (Marciano): $(1-|V_{ud}|^2)^{1/2} \mathbf{f}_{\pm}^{K\pi}(\mathbf{0}) = 0.2177 \pm 0.0028$ $f_{+}^{K\pi}(0)$ from Leutwyller-Roos 0.961(8) confirmed by D. Becirevic et al. (Lattice+CHPT) 0.960(9)

KLOE measurements of $V_{us} f_{+}^{K\pi}(0)$

KLOE is analyzing a unique data sample: 500 pb⁻¹ of ϕ decays

• Best upper limit on $K_s \rightarrow \pi^0 \pi^0 \pi^0$

important contributions to the measurement of V_{us}

- K_s semileptonic BR measured for first time with 1.4% accuracy
- Preliminary measurements of dominat K_L BR's with 0.9% accuracy
- Preliminary measurements of K_L lifetime with 1%-0.5% accuracy
- Analysis of K^{\pm} , BR's, and lifetime in progress
- Analysis of K_L semileptonic form factor slopes in progress **KLOE expects to collect 2 fb**⁻¹ in 2004-2005

• improved analyses of rare decays and interference studies