Light meson spectroscopy with the KLOE experiment

Biagio Di Micco

Università degli Studi di Roma Tre I.N.F.N sezione di Roma III

for the KLOE collaboration

$$\sqrt{s} = M_{\Phi} = 1.02 \text{ GeV}$$

- $\sigma(\Phi) \approx 3.3 \ \mu b$
- e^+e^- in two separate rings with crossing angle ~25mrad at IP (small Φ momentum p_{Φ} ~13MeV)

Decay	BR(%)
$\phi \longrightarrow K^+ \ K^-$	49.1
$\phi \to K_S K_L$	33.8
$\phi \rightarrow \rho \ \pi \ / \ \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^{\scriptscriptstyle 0}$	15.6
$\phi \rightarrow \eta \gamma$	1.26

16–22 August 2004

The KLOE detector **Electromagnetic Calorimeter (EMC)** Fine sampling Pb (0.5 mm thick) / Scifi (1 YOKE mm ø) Hermetical coverage S.C. COIL High efficiency for low energy photons Cryostat $\sigma_{\rm F}/E = 5.7\%/\sqrt{E(GeV)}$ Barrel EMC $\sigma_t = 54 \text{ps}/\sqrt{\text{E(GeV)}}$ **Central drift chamber (DCH)** DRIFT CHAMBER ε Ĭ Large detection volume 26 ε Cap 2.0 N Uniform tracking and vertexing in all volume Helium based gas mixture $\sigma_v = 1 \text{ mm}$ $\sigma_{pt} / p_t = 0.5\%$ $\sigma_{r,\phi} = 200 \ \mu m$ $\sigma_z = 2 \ mm$ 1.69 m **Quadrupoles' calorimeter (QCAL)** 1.92 m Pb/Sci tile calorimeter covering guads 2.15 m inside KLOE

ICHEP 2004 - 北京

B. Di Micco

7–10 June 2004

outline

- scalar meson physics:
 - $f_0 \rightarrow \pi^+ \pi^-$ spectrum measurement;
 - $f_0 \rightarrow \pi^0 \pi^0$ Dalitz plot analysis;
 - $a_0 \rightarrow \eta \pi^0$ spectrum measurement and Dalitz plot;

• η physics:

- $\eta \rightarrow \gamma \gamma \gamma, \eta \rightarrow \pi^+ \pi^-$ upper limits (test of C and CP violation in strong and electromagnetic interactions);
- $\bullet \eta \to \pi^0 \gamma \gamma$
- $\eta \rightarrow \pi^+ \pi^- \pi^0$ Dalitz plot analysis;

• η' physics

• $\phi \rightarrow \eta' \gamma \rightarrow \pi^+ \pi^- 7 \gamma$ Br measurement;

♦ leptonic width measurement.

to study scalars' nature (qq,qqqq,KK molecules)

16–22 August 2004

$f_0 \rightarrow \pi^+ \pi^-$ spectrum measurement

 $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$

aim of the analysis extracting f₀ properties

from $\pi^+\pi^-\gamma$ data background sources

 $e^+e^- \rightarrow \pi^+\pi^-\gamma$ via ISR (radiative return to ρ and ω)

 $e^+e^- \rightarrow \pi^+\pi^-\gamma$ via FSR

$$\phi \rightarrow \rho^{\pm} \pi^{\mp} (\rho^{\pm} \rightarrow \pi^{\pm} \gamma) \rightarrow \pi^{+} \pi^{-} \gamma$$

analysis selection

 $45^{\circ} < \theta_{\gamma} < 135^{\circ}$ ISR reduced and not "interfering"

 $\frac{\mathrm{d}\sigma}{\mathrm{d}M_{\pi\pi}} = |\mathbf{A}(\mathbf{ISR}) + \mathbf{A}(\mathbf{FSR}) + \mathbf{A}(\mathbf{f}_0) + \mathbf{A}(\rho\pi)|^2$

phenomenological model

Including ππ rescattering data PRD55 (1997) & PRD57 (1998) N.N. Achasov et al.

 $f_0 \rightarrow \pi^0 \pi^0$

• decay channels: $\phi \rightarrow f_{\rho} \gamma \rightarrow \pi^0 \pi^0 \gamma$

16–22 August 2004

B. Di Micco

ICHEP 2004 - 北京

Т

 $\eta \rightarrow \pi^+ \pi^- \pi^0$ 5 prompt clusters 2 chrged track

 $\eta \rightarrow \gamma \gamma$

 $M^{2}_{\pi y}(GeV^{2})$

0.225

0.175

0.15

0.125

0.1

0.075

0.05

0.025

• decay channels: $\phi \rightarrow a_{\rho} \gamma \rightarrow \eta \pi^{0} \gamma$

5 prompt clusters

no charged track

2002 KLOE result Phys.Lett.B53 (2002) 209 $Br(\phi \rightarrow a_{\rho}\gamma) = 7.4 \pm 0.7 \times 10^{-5}$ (2002 DATA)

Properties of $a_0(980)$ - Check of the *kaon-loop* approach in a "background free" environment

 $Br(\phi \to a_{0}\gamma) = 7.45 \pm 0.19 \times 10^{-5}$

 $Br(\phi \rightarrow a_{\rho}\gamma) = 7.25 \pm 0.15 \times 10^{-5}$

B. Di Micco

η physics at KLOE

Usually studied at hadron machines. At KLOE $\mathcal{L} \sim 500 pb^{-1} (2001+2002)$ $\phi \rightarrow \eta \gamma \eta \text{ sample} \sim 19x10^{6}$

η decays studied and/or under study

 $\eta \rightarrow \gamma \gamma \gamma$ Test of C symmetry in e.m and strong interactions (Phys. Lett. B (591) pp. 49-54 (2004)

 $\eta \rightarrow \pi^{+}\pi^{-}$ Test of P and CP symmetry in e.m and strong int. $\eta \rightarrow \pi^{0}\gamma\gamma$ ChPT description of the decay $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ Dalitz plot analysis: ChPT description and asymmetries studies.

150

100

50

background

estimate

from the

sidebands

- 4γ
- Require 4γ with E>50 MeV, $|\cos\theta| < 0.91$ $\theta_{vv} > 15^{\circ}$ to reduce 3γ bckgr

Violates C, BR < 5×10⁻⁴ @95% CL

$\eta \rightarrow \gamma \gamma \gamma$

$\eta \rightarrow \pi^0 \gamma \gamma$, Br measurement

Theoretical predictions: $\Gamma(\eta \rightarrow \pi^0 \gamma \gamma)$ [eV]VDM0.30±0.16(Ng-Peters)Vector+axial res.0.47±0.20(Ko)Quark-box diagram0.70 – 0.92(Ng-Peters, Nemoto et al.) $\chi PT+VMD+scalars$ 0.42±0.20(Ametller et al.) $\chi PT+ENJL$ 0.58±0.30(Bellucci-Bruno)

 PDG(2002) GAMS
 Experimental η production

 Br($\eta \rightarrow \pi^0 \gamma \gamma$) = 7.2 ± 1.4 x10⁻⁴ (0.85 ± 0. 18 eV/c²)
 $\pi^- + p \rightarrow \eta + n$

 Crystall Ball (2004)
 $\pi^- + p \rightarrow \eta + n$

 Br($\eta \rightarrow \pi^0 \gamma \gamma$) = 2.7 ± 0.9 ± 0.5 x10⁻⁴ (0.32 ± 0. 15 eV/c²)

SND(2001) Br($\eta \rightarrow \pi^{0}\gamma\gamma$) < 8.9x10⁻⁴

 $\phi \rightarrow \eta \gamma$

B. Di Micco

 $\eta \rightarrow \pi^0 \gamma \gamma$ analysis sketch $\Phi \rightarrow \eta \gamma$ $= \frac{5\gamma \text{ final state}}{\sigma = 8pb \text{ GAMS Br}}$ main background sources $\eta \gamma \rightarrow \pi^0 \pi^0 \pi^0 \gamma$ (cut off rejecting merged clusters and lost photons configurations) $f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma, a_0 \gamma \rightarrow \eta \pi^0 \gamma, \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma (cut off)$ rejecting the masses of the decaying products) 160 **Expected** using 140 $\epsilon = 5.7\%$ **GAMS Br** 120 100 80 60 **40** 20 0 300 350 400

Preliminary analysis shows:

- GAMS overestimates Br
- Indication of signal at CB level

Work in progress to improve background rejection

^{16–22} August 2004

 $\phi \rightarrow \eta' \gamma \rightarrow \pi^+ \pi^- 7 \gamma$

• charged $\Rightarrow \eta' \rightarrow \eta \pi^+ \pi^- \text{ and } \eta \rightarrow \pi^0 \pi^0 \pi^0$

KLOE

PRELIMINARY

• neutral $\Rightarrow \eta' \rightarrow \eta \pi^0 \pi^0$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$

 $M_{\eta'}$ from $\pi^+\pi^-6\gamma$ (we should discard 1 photon among the seven ones), we keep all combinations and subtract from MC.

 $N_{\eta'} = 3401 \pm 61 (\text{stat.}) \pm 31 (\text{bkg. sub.})$ R = 4.9 ± 0.1 ± 0.2

> 2000 DATA Phys. Lett. B541 (2002) $R = 4.7 \pm 0.5_{stat} \pm 0.3_{syst}$ 175 events

metry:

$$A_{FB} = \frac{\sigma_F - \sigma_B}{\sigma_F + \sigma_B}$$

- high sensitivity;
- luminosity uncertainity free;
- partial cancellation of systematics on efficiency and background subtraction.
- fully energy correlated systematics cancel out in $\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}$ evaluation.

 $\sqrt{\Gamma_{ee}\Gamma_{\mu\mu}}$ from $\mu\mu$ cross section:

B. Di Micco

ICHEP 2004 - 北京

ICHEP 2004 - 北京

2% contamination

 $e^+e^- \rightarrow e^+e^-$

 $r_{vertex} < 10 \text{ cm from the I.P.}$

 $53^{\circ} < \theta < 127^{\circ}$

To cut ISR and FSR background: W'/W > 0.95 w' final energy of e^+e^-

$$rac{W'}{W} = \sqrt{rac{{{\sin { heta _1}} + {\sin { heta _2}} - \left| {\sin ({ heta _1} + { heta _2})}
ight|}}{{{\sin { heta _1}} + {\sin { heta _2}} + \left| {\sin ({ heta _1} + { heta _2})}
ight|}}$$

 $e^+e^- \rightarrow \mu^+\mu^$ $r_{vertex} < 10$ from the I.P.; $970 \text{ MeV} < P(\mu^+) + P(\mu^-) < 1010 \text{ MeV}$ Total calorimeter energy < 700 MeV $53^\circ < \theta < 127^\circ$ W'/W > 0.985(efficiency loss below 0.98) π contamination evaluated from data

16–22 August 2004

B. Di Micco

ICHEP 2004 - 北京

Lepton universality $\Gamma_{ee} = \Gamma_{\mu\mu} @ 3\%$

B. Di Micco

16-22 August 2004

- scalar and pseudoscalar meson physics;
- KLOE has already published in this field;
- a lot of new results are coming out.

