

A.Antonelli (INFN/Frascati) for the KLOE collaboration

Heavy Quarks and Leptons 2004

San Juan, Porto Rico, 1-5 June

Most precise test of unitarity possible at present comes from 1st row:

$$\frac{|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2}{\Delta = 0.0042 \pm 0.0019 \text{ PDG02}}$$

 $2|V_{ud}|dV_{ud} = 0.0015$ from super-allowed 0⁺→ 0⁺ Fermi transitions, n β-decays: $2|V_{us}|dV_{us} = 0.0011$ from semileptonic kaon decays (PDG 2002 fit)

Disagreement among K_{e3} (Older measurements' inclusiveness

of radiative processes uncertain)

 $K_{\mu3}$ larger uncertainties

Both K \pm and K⁰ must be measured

$|V_{us}|$ is extracted from K_{l3} partial decay widths

$$|V_{us}| \quad f_{+}^{K^{0}\pi^{-}}(0) = \left[\frac{\Gamma_{i}}{\mathcal{N}_{i} S_{ew} I_{i}(\lambda_{+}, \lambda_{0}, 0)}\right]^{1/2} \frac{1}{1 + \delta_{SU(2)}^{i} + \delta_{e^{2}p^{2}}^{i} + \frac{1}{2}\Delta I_{i}(\lambda_{+}, \lambda_{0})}$$

where *i* runs over the four modes $K^{\pm,0}(e3), K^{\pm,0}(\mu 3)$
 $G^{2}_{\mu} M^{5}_{\nu_{i}}$ few 10⁻²

- $N_i = \frac{\mathbf{O}_{\mu}^{-1} \mathbf{W}_{Ki}^{-1}}{192\pi^3} \mathbf{C}_i^2$ [Ci=1(2^{-1/2}) for neutral (charged kaon decays)]
- $f_+^{K0\pi-}(0)$ form factor at zero momentum transfer: pure theory calculation (χPT , lattice)
- $I(\lambda_{+}, \lambda_{0}, 0)$ phase space integral, S_{ew} short distance corrections (1.0232)
- $\delta^{i}_{SU(2)}$, δ_{e2p2} form factor correction due to isospin breaking (strong and electromagnetic)
- $\Delta I_i(\lambda_+,\lambda_0)$) phase space electromagnetic correction
- λ_+, λ_0 slopes (momentum dependence of the vector and scalar form factors)

Knowledge of 4 main K_L BR's at present dominated by 3 measurements:

 $\frac{\Gamma(K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0})}{\Gamma(K_{L} \rightarrow \pi e \nu)} \text{ and } \frac{\Gamma(K_{L} \rightarrow \pi^{0} \pi^{0} \pi^{0})}{\Gamma(K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{0})}, \text{ with } \sim 2\% \text{ relative uncertainty [NA31]}$

$$R_{\mu/e} = \frac{\Gamma(K_L \Rightarrow \pi \mu \nu)}{\Gamma(K_L \Rightarrow \pi e \nu)} = 0.702 \pm 0.011 \text{ [Argonne HBC 1980]}$$

3-\sigma discrepancy (~4%) between measurement and expectation for $R_{\mu/e}$:

 $R_{\mu/e} = 0.671 \pm 0.011$, direct measurement for K⁺, from KEK-E246 2001

R_{μ/e} calculable from the slopes λ_+ and λ_0 of vector and scalar form factors: 0.670 ± 0.002, if $\lambda_0 = 0.0183 \pm 0.0013$, from ISTRA+ 2003 0.668 ± 0.006, if $\lambda_0 = 0.017 \pm 0.004$, from one-loop χPt

K_L lifetime is poorly known $\Delta \tau / \tau = 0.8\%$

K[±]*decays* – *Present knowledge*

PDG02 BR dominated by a single experiment (Chiang 72)

New E-865 BR(K⁺ $\rightarrow \pi^0 e^+ \nu$) does not agree with PDG02 (2.2 σ) •not absolute BR

•use PDG for normalization

DA ΦNE: the Frascati φ factory

The ϕ decay at rest provides monochromatic and pure kaon beams

• The KK pairs in the final state have the same quantum numbers as the ϕ , *i.e.*, they are produced in a pure $J^{PC} = 1^{--}$ state

 $\mathbf{K}_{\mathbf{S}} (\mathbf{K}^{+}) \longleftarrow \Phi \longrightarrow \mathbf{K}_{\mathbf{L}} (\mathbf{K}^{-}) \text{ Contamination } \approx 10^{-10}$ $|i\rangle \propto \frac{1}{\sqrt{2}} \left(|K_{L}, \mathbf{p}\rangle |K_{S}, -\mathbf{p}\rangle - |K_{L}, -\mathbf{p}\rangle |K_{S}, \mathbf{p}\rangle \right)$

- <u>**Tagging</u>**: observation of $K_{S,L}$ signals presence of $K_{L,S}$ </u>
 - precision measurement of absolute BR's
- Interference measurements of $K_S K_L$ system

K+K-K_LK_S $1.5 \times 10^6/\text{pb}^{-1}$ $10^6/\text{pb}^{-1}$; $p^* = 110$ MeV/c $p^* = 127$ MeV/c $\lambda_S = 6$ mm K_S decays near interaction point $\lambda_{\pm} = 95$ cm $\lambda_L = 3.4$ m Large detector to keep reasonable
acceptance for K_Ldecays (~0.5 λ_L)

The KLOE experiment

Be beam pipe (0.5 mm thick) **Instrumented permanent magnet quadrupoles** (32 PMT's)

Drift chamber $(4 \text{ m} \emptyset \times 3.3 \text{ m})$ 90% He + 10% IsoB, CF frame 12582 stereo sense wires

Electromagnetic calorimeter Lead/scintillating fibers 4880 PMT's

Superconducting coil (5 m bore) $B = 0.52 \text{ T} (\int B \, dl = 2 \text{ T} \cdot \text{m})$

 $\sigma_{E}/E \qquad 5.7\% / \sqrt{E(\text{GeV})}$ $\sigma_{t} \qquad 54 \text{ ps } / \sqrt{E(\text{GeV}) \oplus 50 \text{ ps}}$ (relative time between clusters) $\sigma_{L}(\gamma\gamma) \sim 2 \text{ cm } (\pi^{0} \text{ from } K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0})$

 V_{us} from K_0 semileptonic decays at KLOE- A. Antonelli – HQL04 San Juan 1-5 June 2004

K_L tagged by *K_S* → $\pi^+\pi^-$ vertex at IP Efficiency ~ 70% (mainly geometrical) *K_L* angular resolution: ~ 1° *K_L* momentum resolution: ~ 1 MeV 4 · 10⁵ tags/pb⁻¹

 K_S tagged by K_L interaction in EmC Efficiency ~ 30% (largely geometrical) K_S angular resolution: ~ 1° (0.3° in ϕ) K_S momentum resolution: ~ 1 MeV $3 \cdot 10^5$ tags/pb⁻¹

 V_{us} from K_0 semileptonic decays at KLOE- A. Antonelli – HQL04 San Juan 1-5 June 2004

Analysis of $K_S \rightarrow \pi ev$ decays

- K_{crash} tag + 2 tracks from IP with $M_{\pi\pi} < 490$ MeV (reject $K_S \rightarrow \pi\pi(\gamma)$)
- **TOF identification:** compare π -e expected flight times, reject $\pi\pi,\pi\mu$ bkg

V_{us} from K₀ semileptonic decays at KLOE- A. Antonelli – HQL04 San Juan 1-5 June 2004

 $K_S \rightarrow \pi^- e^+ \nu, \pi^+ e^- \nu$

 $K_{\rm S} \rightarrow \pi^- e^+ \nu, \pi^+ e^- \nu$

Result sensitivity to fit interval well below present statistical uncertainty

Normalize signal counts to $K_S \rightarrow \pi \pi(\gamma)$ counts in the same data set (use PDG03 for BR($K_S \rightarrow \pi \pi(\gamma)$), dominated by KLOE measurement)

Selection efficiency (given the tag) is evaluated by charge, using data control sample of $K_L \rightarrow \pi ev$ decaying close to IP: $\epsilon (\pi^-e^+) = (24.1\pm0.1\pm0.2)\%$; $\epsilon (\pi^+e^-) = (23.6\pm0.1\pm0.2)\%$

$$BR(K_{S} \rightarrow \pi^{-}e^{+}v) = (3.54 \pm 0.05_{stat} \pm 0.05_{syst}) \ 10^{-4}$$

$$BR(K_{S} \rightarrow \pi^{+}e^{-}v) = (3.54 \pm 0.05_{stat} \pm 0.04_{syst}) \ 10^{-4}$$

$$BR(K_{S} \rightarrow \pi ev) = (7.09 \pm 0.07_{stat} \pm 0.08_{syst}) \ 10^{-4}$$

$$(Published result: (6.91 \pm 0.34_{stat} \pm 0.15_{syst}) \ 10^{-4} Phys.Lett.B535:3742,2002)$$

$$A_{S,L} = \frac{\Gamma(K_{S,L} \rightarrow \pi^{-}e^{+}v) - \Gamma(K_{S,L} \rightarrow \pi^{+}e^{-}v)}{\Gamma(K_{S,L} \rightarrow \pi^{-}e^{+}v) + \Gamma(K_{S,L} \rightarrow \pi^{+}e^{-}v)}$$

$$A_{S} = (-2 \pm 9_{stat} \pm 6_{syst}) \ 10^{-3}$$
(never measured before)

 $(A_L = (3.322 \pm 0.058 \pm 0.047) \ 10^{-3}$, KTeV 2002)

future: next year run $2 \text{ fb}^{-1} \rightarrow \sigma(A_S) \sim 3 \cdot 10^{-3}$

 $K_{\rm S} \rightarrow \pi e \nu - V_{\mu \rm S} f_+^{K\pi}(0)$

Our <u>preliminary</u> result agrees better with latest K^+ data, while showing a deviation from old K_{e3}^0 data

$K_S \rightarrow \pi e \nu - V_{us}$			
	0.235		
PDG02, CKMwg use $f_{+}^{K^{0}\pi^{-}}(0) = 0.961 \pm 0.008$	0.23	Unitarity a	nd V _{ud}
from Leutwyler, Roos Z.Phys. C 25 1984	0.225	Ī	
• computed up to p ⁴ contr. in	0.22	I I	
χPTconfirmed by a latticecalculation	0.215	Į	
(Isidori et al., hep-ph 0403217)	0.21	.	0
$\frac{\delta V_{us} }{ V_{us} } = \frac{1}{2} \left(\frac{\delta BR}{BR} \right) \oplus \frac{1}{2} \left(\frac{\delta \tau}{\tau} \right) \oplus \frac{1}{20} \left(\frac{\delta \tau}{\tau} \right)$	$\left(\frac{\delta\lambda_{+}}{\lambda_{+}}\right) \oplus \frac{\delta}{2}$	$\mathbf{K}_{e3} = \mathbf{K}_{e3}$ $\mathbf{K}_{e3} = \mathbf{K}_{e3}$ $\mathbf{V}_{us}(\mathbf{K}_{s,e3}) = 0.224$ $\mathbf{K}_{e3} = 0.224$	5±0.0026
$0.7\% \oplus 0.05\% \oplus$	0.3% ⊕	0.8% KLOL premi	iiiiai y

K_L decays – Status and objectives

Precisely measure **absolute** branching ratios, with rel. accuracy < 1%

K_L decays – BR stability

- Obtain number of signal counts by fitting data to a linear combination of MC spectra for signal
- Each BR obtained by normalizing signal counts to the number of tags:
- Tagging efficiency cancels out in the ratio except for O(1%), channeldependent, tag-bias correction

Reliability of tag-bias correction checked by using various tag algorithms, with corrections ranging from 7% to 0.1%

 K_L lifetime from $K_L \rightarrow \pi^0 \pi^0 \pi^0$

Charged kaon decays

Measure absolute BR's to < 1%:

K[±] *decays* – *Status and objectives*

• After tag a dedicated reconstruction of K^{\pm} tracks is performed, correcting for charged kaon dE/dx in the DC walls

•Evaluation of selection bias due to interference from tagging decay

•Analysis with MC upgrade (radiative processes, optimized EmC response to π/μ)

V_{us} from K₀ semileptonic decays at KLOE- A. Antonelli – HQL04 San Juan 1-5 June 2004

K⁺ lifetime

In progress:

efficiency evaluation directly from data sample selected using EMC information + kinematic fit

V_{us} from K₀ semileptonic decays at KLOE- A. Antonelli – HQL04 San Juan 1-5 June 2004

KLOE is analyzing a unique data sample: 500 pb⁻¹ of ϕ decays

 $> K_S$ semileptonic BR measured for first time with 1.4% accuracy allowing an independent measurement of V_{us}

Measurement of K_L BR's and lifetime are near to completion, preliminary result for summer conferences

>Analysis of K^{\pm} , BR's, and lifetime in progress

KLOE expects to collect 2 fb⁻¹ in 2004-2005

DA **P**NE upgrades and 2004 running

New KLOE IR

- Rotation for low- β quads
- Decrease β_x and coupling
- Allow changes to KLOE field

Pole-shims on wigglers

• Eliminate octopole terms

Run plans

- Increase peak luminosity and reach $1.5 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- Restart by end of June with FINUDA first
- Switch to KLOE in early fall and deliver > 1 fb⁻¹ to KLOE

2004 run plans

Expected DA\PhiNE performance

- Luminosity up to 2×10^{32} cm⁻² s⁻¹
- Lifetime > 1 hr (was 0.6 hr in 2002)
- 10 pb⁻¹/day, 200 pb⁻¹/month

DAΦNE run plans (from KLOE perspective)

- Start FINUDA data taking A.S.A.P
- 250 pb^{-1} for FINUDA in ~2 months
- Realistically restart KLOE towards end of year
- Run KLOE for ~1 year with goal of collecting 2 fb^{-1}

Physics vs. luminosity: perspectives

$5 \times 10^8 K_S K_L$	today	Limit on BR($K_S \rightarrow 3\pi^0$) at 10 ⁻⁷ level $K_S \rightarrow \pi e \nu$ charge asymmetry (A_S) to 10 ⁻² V_{us} from $K_{\ell 3}$ decays at few × 10 ⁻³ level		
2 fb⁻¹ $2 \times 10^9 K_S K_L$	KLOE '04-'05	Limit on $K_S \rightarrow 3\pi^0$ at 10^{-8} level A_S to 4×10^{-3} First studies of $K_S K_L$ system with interference		
40 fb⁻¹ $4 \times 10^{10} K_S K_L$	Original KLOE program	Re ε'/ε at 10 ⁻⁴ level Im ε'/ε at 10 ⁻³ level from $K_S K_L$ interference		
200 fb⁻¹ $2 \times 10^{11} K_S K_L$	DAΦNE2	High-precision studies of $K_S K_L$ system via interference measurements Competitive measurement of Re δ from A_S BR $(K_S \rightarrow 3\pi^0)$ and BR $(K_S \rightarrow \pi^0 \ell \ell)$ to 20%		

 $VV, K_I \rightarrow \pi VV, \text{ and } K_I \rightarrow \pi$

 $\mathbf{\Lambda}^{-}$

probably not within reach

Generators for radiative K decays

<u>New MC generators</u> for $\pi\pi$ and Kl3 decays including radiated photon, without any cutoff on the energy. The fraction of events in the tail is in agreement with present experimental knowledge:

$BR(K_L \to \pi e v\gamma, E_{\gamma} > 30 MeV \theta_{e\gamma} > 2$	20°)	1 0 ²			
$BR(K_L \to \pi e \nu) =$		10		litys-	Malalation
kTeV (0.908±0.015)×10 ⁻²	2				
Bijnens et al 0.93×10^{-2}		1		40	60
$MC = 0.93 \times 10^{-2}$			0 20	40	00
$\underline{BR(K_{S} \to \pi\pi\gamma, E_{\gamma} > 50MeV)}_{-}$	E731	(2.56±0.09))×10 ⁻³		
$BR(K_S \to \pi\pi)$	МС	2.6 ×10-3			

ππ΄

120

140

160

180

 $E_{\gamma}(MeV)$

200

1000000

Entries

 $\frac{d\Gamma}{dE} = \left|A_o\right|^2 \cdot \alpha \cdot b \cdot \left(\frac{E}{M}\right)^2$

10 6

10

10

10³

Generators for radiative K decays

Simulated event samples statistically comparable to data

 $\phi \rightarrow all$ 452 pb⁻¹ at 1:5 scale ~300M events

 $\phi \rightarrow K_S K_L$ 452 pb⁻¹ at 1:1 scale ~500M events

Each run in data set individually simulated

 \sqrt{s} , \mathbf{p}_{ϕ} , \mathbf{x}_{ϕ} , background, dead wires, trigger thresholds...

Inclusion of accidental activity from machine background

extracted from $e^+e^- \rightarrow \gamma\gamma$ events in data set inserted run-by-run to match temporal profile of bkg in data

Tuning of calorimeter response simulation on μ , π , K_L

Suite of new generators introduced, particular emphasis on radiative processes

V_{us} from K₀ semileptonic decays at KLOE- A. Antonelli – HQL04 San Juan 1-5 June 2004

Form factors: λ_+ *,* λ_0

 $\begin{array}{l} \clubsuit q^2 \text{ resolution:} \\ \circ \ \mathsf{K}_L : \delta p_\pi \text{ and } \delta p_{\mathsf{lept}} \text{ from } \mathsf{DC}, \delta p_L \text{ from } \delta p_S \text{ and } \delta p_\varphi \\ \circ \ \mathsf{K}^\pm : \delta p_K \text{ and } \delta p_{\mathsf{lept}} \text{ from } \mathsf{DC}, \text{ dominated by } \delta \mathsf{E}_{\pi 0} \end{array}$

4 A 1% precision on $f_{+}^{K\pi}(0)$ requires $\delta\lambda_0=0.001$ ($\approx 5\%$)

V_{us} from K₀ semileptonic decays at KLOE- A. Antonelli – HQL04 San Juan 1-5 June 2004