MEASUREMENT of e⁺e⁻ HADRONIC CROSS SECTION with RADIATIVE RETURN at KLOE

Barva Maura - Università Roma Tre On behalf of the KLOE Collaboration LNF Spring School - May 2004

Summary

- * Motivation of σ_{hadr}
- $\boldsymbol{\diamondsuit} \sigma_{\text{hadr}}$ with radiative return
- ***** Results on $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ at small angle
- Conclusions and outlook

Why the measurement of the cross section is important?

THE ANOMALOUS MAGNETIC MOMENT OF THE MUON

Status of a_{μ} : Theorical vs Experimental value

Hadronic contribution to a_{μ}

The error on a_{μ} (theo) is dominated by the error on a_{μ}^{had}

This quantity is not evaluable in pQCD, but it can be calculated by DISPERSION INTEGRAL:

$$a_{\mu}^{had} = \frac{\alpha}{3\pi^2} \int_{4m_{\pi}^2}^{\infty} ds \quad \frac{K(s)}{s} R(s)$$

 $R(s) = \frac{\sigma(e^+e^- \to hadrons)}{\sigma(e^+e^- \to \mu^+\mu^-)}$

<u>Input:</u>

- a) Hadronic electron-positron cross section data
- b) Hadronic τ- decays, which can be used with the help of the CVC-theorem and an isospin rotation (plus isospin breaking corrections)

 $K(s) = KernelFunction \propto \frac{1}{s}$

The factors 1/s in *the dispersion relation* makes the low energy region particularly relevant.

The $e^+e^- \rightarrow \pi^+\pi^-$ channel accounts for ~70% of the contribution both

to a_{μ}^{had}

How to perform this measurement?

<u>traditional way</u> : measuring cross section by varying e[±] beams energy —> energy scan BUT

DAPNE is a ϕ - factory and therefore runs at fixed c.m.s.-energy: $\sqrt{s} = m_{\phi} = 1.019$ MeV

Complementary approach: Take events with Initial State Radiation (ISR)

"Radiative Return" to ρ -resonance: $e^+ e^- \rightarrow \rho + \gamma \rightarrow \pi^+ \pi^- + \gamma_6$

σ (had) through radiative return

The $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$ is a function of the 2-Pion invariant mass $s'=M_{\pi\pi}$. To extract $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ with the ISR we

• Need to know the RADIATOR FUNCTION H(s)

H(s) is evaluable From MC Phokhara

$$M_{\pi\pi}^{2} \frac{d\sigma_{\pi\pi\gamma}}{dM_{\pi\pi}^{2}} = \sigma_{\pi\pi}(s) \bullet H(s)$$

 Have to properly include radiative corrections (including simultaneously emission of ISR and FSR) $e^{-}e^{+}$, s' hadr.

DAPNE: the Double Annular Φ -factory for Nice Experiments

 $> E_{beams} \approx 510 \text{ MeV}$

> 2 separate rings for e⁺e⁻ to minimize beam-beam interaction

> two interaction region: KLOE-DEAR/FINUDA

> crossing angle: 12.5 mrad ($p_x(\phi) \approx 13$ MeV)

DA ØNE Parameters	Design
N of bunches	120+120
Lifetime (mins)	120
Bunch current (mA)	40
L _{bunch} (cm ⁻² s ⁻¹)	4.4 ×10 ³⁰
L _{peak} (cm ⁻² s ⁻¹)	5.3 ×10 ³²

The KLOE detector: <u>K LOng Experiment</u>

magnet quadrupoles (32 PMT's) Electromagnetic calorimeter

lead/scintillating

fibers (1 mm \varnothing), 15 X_0

• 4880 PMT's

• 98% solid angle coverage

Drift chamber (4 m $\varnothing \times 3.75$ m, CF frame)

- Gas mixture:
- 90% He + 10% C₄H₁₀
- 12582 stereo-stereo

sense wires

almost squared cells

L.N.F. Spring School - May 2004

Measurement of $\sigma_{\pi\pi\gamma}$ - Analysis scheme

Pion tracks at large angles from a vertex close to IP

Photons at small angles to enhance ISR: $d\sigma_{ISR}/d\Omega \sim 1/sin^2\theta$

 \bigcirc relative contribution of "pure" FSR below the % level over entire $M_{\pi\pi}$ spectrum

🙂 reduce background

 \mathfrak{S} Lose events with $M_{\pi\pi}$ < 600 MeV

L.N.F. Spring School - May 2004

LARGE ANGLE ANALYSIS (see after...)

10

Summary of syst. errors and background

Acceptance Trigger FILFO Tracking Vertex Likelihood	0.3% 0.3% 0.6% 0.3% 0.3% 0.1%
Track mass	0.2%
Subsraction Unfolding Total exp	0.5% 0.3% 1.0%
Luminosity	0.6%
Vacuum Polarization FSR Radiator	0.2% 0.3%
function	0.5%
Total theory	0.9%

L.N.F. Spring School - May 2004

Analysis: $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$

Statistics: 141pb⁻¹ of 2001-Data 1.5 Million Events

(1) a_{μ}^{had} prospect: Large Angle analysis

 \checkmark The energy region close to threshold, $M_{\pi\pi} < 600$ MeV, is excluded by our selection cuts

 \checkmark This region contributes ~20% to $a_{\mu}{}^{had}$

Ve use events at large photon angles to access lower $M_{\pi\pi}^{2}$ region. (Photon tagging will be possible in this case)

Check FSR parametrization (by looking to charge asymmetry)

This analysis is going on...

(2) a_{μ}^{had} prospect: the direct measurement of $R_{\gamma} = \frac{e^+e^- \rightarrow \pi^+\pi^-\gamma}{e^+e^- \rightarrow \mu^+\mu^-\gamma}$

 We are also studying a direct measurement of R

 This method is independent from the luminosity estimate

 We are working on obtaining particle ID combining calorimetric and kinematically variables

Conclusion:

<u>Summary:</u>

We have presented the first precise measurement of hadronic cross section using radiative return at KLOE

*Our result is in agreement with CMD2, therefore confirming the existing discrepancy bewteen SM and BNL result on (g-2)_{\mu}

<u>Ongoing activities</u>

* Large angle photon analysis: to study the low $M_{\pi\pi^2}$ region and measure the asymmetry to check the FSR results

* The direct measurement of R= $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)/\sigma(e^+e^- \rightarrow \mu^+\mu^-\gamma)$

