Highlights from the KLOE experiment @ DAΦNE

S.Miscetti, LNF INFN For the KLOE collaboration

Electroweak Interactions and Unified Theories, Moriond 04 LaThuile 21-28 March 2004

KLOE Physics program

A Φ -factory is a collider e⁺e⁻ running at $\sqrt{s} = M_{\Phi}$

Main focus on KAON physics:

- CP double ratio/interferometry
- CPT Asym in semileptonic
 - K_s , K_L decays
- V_{us}, K form factors
- BR of $K_{s,L}$, K^{\pm}
- Rare K_s, decays

($K_L \rightarrow \gamma\gamma, K_s \rightarrow 3\pi^0, \gamma\gamma, \pi^+\pi^-\pi^0 ...$)

Non Kaon Physics

- Radiative Φ decays
- $\pi\pi\gamma$ final state
- $\rho\pi$ final states

Continuum physics • σ(had)

DA Φ NE status and plans

- e^+e^- collider (a) $\sqrt{s} = 1020$ MeV
- 2 IP (KLOE DEAR/Finuda)
- Separate e⁺, e⁻ rings to minimize beam-beam interactions
- Crossing angle: 12.5 mrad
- Injection during data-taking

DA Parameters	Design	2002 (KLOE)
N bunches	120+120	51+51
Lifetime (mins)	120	40
Bunch current(mA)	40	20
L _{bunch} (cm ⁻² s ⁻¹)	4.4 · 10 ³⁰	1.5 · 10 ³⁰
L _{peak} (cm ⁻² s ⁻¹)	5.3 · 10 ³²	0.8 · 10 ³²

Standard analysis sample: 450 pb⁻¹ from 2001-2002

Characteristics of a Φ factory

□ The KK pairs in the final state have the same Φ quantum numbers i.e. are produced in a pure $J^{PC} = 1^{--}$ stat

$$\frac{K_{S}(K^{+})}{\sqrt{2}} \longleftarrow \Phi \longrightarrow K_{L}(K^{-}) \qquad \text{purity} \approx 10^{-10}$$

$$i \rangle \propto \frac{1}{\sqrt{2}} \left(|K_{L}, \mathbf{p}\rangle | K_{S}, -\mathbf{p}\rangle - |K_{L}, -\mathbf{p}\rangle | K_{S}, \mathbf{p}\rangle \right)$$

Tagging: observation of $K_{S,L}$ signals presence of $K_{L,S}$

- precision measurement of absolute BR's
- interference measurements of $K_S K_L$ system

 $p_{L,S} = 110 \text{ MeV}$ $\lambda_s = 6 \text{ mm} \text{ Ks}$ decays near interaction point $\beta_{L,S} = 0.22$ $\lambda_L = 3.4 \text{ m}$ Large detector to keep reasonable
acceptance for K_L decays (~0.5 λ_L)

The KLOE experiment

 $\sigma_{\rm E}/{\rm E} = 5.7\% / \sqrt{{\rm E}({\rm GeV})}$ $\sigma_{\rm T} = 54 \text{ ps} / \sqrt{{\rm E}({\rm GeV}) \oplus 50 \text{ ps}}$

• PID capabilities mostly from TOF $\sigma_L(\gamma\gamma) \sim 1.5 \text{ cm} (p^0 \text{ from } K_L \rightarrow \pi^+\pi^-\pi^0)$ 4m- \emptyset , 3.75m-length, all-stereo $\sigma_p/p = 0.4 \%$ (tracks with $\theta > 45^\circ$) $\sigma_x^{hit} = 150 \ \mu m$ (xy), 2 mm (z) $\sigma_x^{vertex} \sim 1 \ mm$

Tagging of $K_S K_L$ beams

crash

 K_L tagged by $K_S \rightarrow \pi^+\pi^-$ vertex at IP $\epsilon \sim 70\%$ (mainly geometrical) K_L angular resolution: $\sim 1^\circ$ K_L momentum resolution: $\sim 1 \text{ MeV}$

 K_S tagged by K_L interaction in EmC $\epsilon \sim 30\%$ (largely geometrical) K_S angular resolution: $\sim 1^\circ (0.3^\circ \text{ in } \phi)$ K_S momentum resolution: $\sim 1 \text{ MeV}$

$K_s {\rightarrow} 3\pi^0$: test of CP and CPT

S Journal KLOE

Observation of $K_S \rightarrow 3\pi^0$ signals CP violation in mixing and/or decay:SM prediction: $\Gamma_S = \Gamma_L |\eta|^2$, giving $BR(K_S \rightarrow 3\pi^0) = 1.9 \ 10^{-9}$ Present published results: $BR(K_S \rightarrow 3\pi^0) < 1.4 \ 10^{-5}$

Uncertainty on $K_S \rightarrow 3\pi^0$ amplitude limits precision of CPT test.

Unitarity: $(1 + i \tan \phi_{SW})R_e \varepsilon - \Sigma_f A^*(K_S \rightarrow f) A(K_L \rightarrow f)/\Gamma_S = (-i + \tan \phi_{SW}) \operatorname{Im} \delta$ $(\varepsilon_{S,L} = \varepsilon \pm \delta)$

A limit on BR(K_S \rightarrow 3 π^0) at 10⁻⁷ level translates into a 2.5-fold improvement on the accuracy of Im δ (2 10⁻⁵). Assuming CPT invariance in the decay:

$$\frac{\delta(M_{K0} - M_{\overline{K0}})}{M_{K}} \sim 5 \ 10^{-19} \qquad (M_{K}/M_{Planck} = 4 \ 10^{-20})$$

$K_s \rightarrow 3 \pi^0$ search: method

Entries/1

- \checkmark K_s tagged by K_L*crash*
- ✓ 6 prompt γ's (β_{clu} = 1)
- \checkmark no charged tracks from IP
- ✓ normalization with sample with 4 γ 's (Ks →2 π^0)
- ✓ Kinematic fit
 - Impose K_S mass and K_L 4-momentum conservation, β = 1 for each γ
 - Estimate E_{γ} , \mathbf{r}_{γ} , t_{γ} , \sqrt{s} , p_{ϕ}

Rejection power of χ^2_{fit} not enough to eliminate main background due to $K_S \rightarrow \pi^0 \pi^0 + 2$ fake γ 's

$K_s \rightarrow 3\pi^0$ search: $2\pi^0$ vs $3\pi^0$

Two pseudo- χ^2 built to discriminate between 2π vs 3π hypotheses (BKG: $K_S \rightarrow \pi^0 \pi^0 + 2$ fake γ 's)

□ $\chi^2_{3\pi}$ – pairing of 6 γ clusters with better π⁰ mass estimates □ $\chi^2_{2\pi}$ – best pairing of 4 γ's 40 out of 6: π⁰ masses, E(K_S), P(K_S), c.m. angle between π⁰'s 20

Initial Signal BOX definition obtained from analysis of 6-pb⁻¹ equivalent MC sample.

$K_s \rightarrow 3\pi^0$ search: $\chi_{2\pi}$, $\chi_{3\pi}$ sidebands

$K_s \rightarrow 3\pi^0$: $\chi_{2\pi}, \chi_{3\pi}$ signal region

$K_s \rightarrow 3\pi^0$: preliminary result

UL optimized by varying in MC: Signal-Box definition, χ^2_{fit} and the residual K_s energy ($\Delta E = M_{\Phi}/2-\Sigma E\gamma$). We find:

□ N(data) = 4 events selected as signal, with efficiency $\varepsilon_{3\pi} = 22.6\%$

 \Box N(bkg) = 3 ±1.4 (stat.) ± 0.2 (sys.) bkg events expected from MC.

Folding the proper BKG uncertainty we get: $N_{3\pi} < 5.8 \oplus 90\%$ CL

Normalize to $K_S \rightarrow 2\pi^0$ counts in same data set (38x10⁶, $\varepsilon_{3\pi} = 92\%$)

$$\begin{aligned} & \text{BR}(\text{K}_{\text{S}} \rightarrow \pi^{0} \pi^{0} \pi^{0}) = \frac{N_{3\pi} / \varepsilon_{3\pi}}{N_{2\pi} / \varepsilon_{2\pi}} \quad \text{BR}(\text{K}_{\text{S}} \rightarrow \pi^{0} \pi^{0}) < 2.1 \ 10^{-7}, \quad \text{Preliminary} \\ & \text{This translates to:} \quad |\eta_{000}| = \left| \frac{A(\text{K}_{\text{S}} \rightarrow \pi^{0} \pi^{0} \pi^{0})}{A(\text{K}_{\text{L}} \rightarrow \pi^{0} \pi^{0} \pi^{0})} \right| < 2.4 \ 10^{-2} \end{aligned}$$

$K_s \rightarrow \pi e \nu$ decay: Physics issues

✓ Sensitivity to CPT violating effects through charge asymmetry:

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^- e^+ \nu) - \Gamma(K_{S,L} \to \pi^+ e^- \nu)}{\Gamma(K_{S,L} \to \pi^- e^+ \nu) + \Gamma(K_{S,L} \to \pi^+ e^- \nu)}$$

If CPT holds, $A_s = A_L \rightarrow A_S \neq A_L$ signals CPT violation in mixing and/or decay with $\Delta S \neq \Delta Q$

Sensitivity to CP violation in K⁰-K⁰ mixing:
 A_S = 2Rε (CPT symmetry assumed)
 A_S never measured before

✓ Can extract $|V_{us}|$ via measurement of BR(K_S → πe_{V})

$K_s \rightarrow \pi e \nu$ decay: analysis path

- K_s tagged by K_L crash + 2 tracks from IP
- Main bkg from $K_S \rightarrow \pi \pi(\gamma)$, kinematic rejection: $M_{\pi\pi}$ < 490 MeV
- TOF Pid: compare π -e expected flight times, reject $\pi\pi,\pi\mu$ bkg

LaThuile 21-28/March/04

Moriond EWK 04 S.Miscetti

$K_s \rightarrow \pi e \nu$ decay: events counting

$K_s \rightarrow \pi e \nu$ decay: events counting

 ✓ Signal spectrum clearly sensitive to the presence of a photon in the final state

 ✓ Radiative effects included through an IR-finite treatment in MC (no energy cutoff)

Rate normalized to $K_S \rightarrow \pi \pi(\gamma)$ counts in the same data set

Use PDG03 for BR(K_S $\rightarrow \pi\pi(\gamma)$) KLOE dominated

$K_s \rightarrow \pi e \nu$ decay: BR and A_s

Correct for charge-dependent efficiencies, mainly due to TOF, extracted from data control sample ($K_{L} \rightarrow \pi ev$ with a vertex close to IP): $\varepsilon \approx 20\%$ given the K_I crash tag

 $BR(K_S \rightarrow \pi^- e^+ v) = (3.54 \pm 0.05_{stat} \pm 0.05_{svst}) \ 10^{-4}$ $BR(K_S \rightarrow \pi^+ e^- \nu) = (3.54 \pm 0.05_{stat} \pm 0.04_{svst}) \ 10^{-4}$

BR(K_S $\rightarrow \pi e \nu$) = (7.09 ± 0.07_{stat} ± 0.08_{svst}) 10⁻⁴

Published result: $(6.91 \pm 0.34_{stat} \pm 0.15_{syst}) 10^{-4}$, KLOE '02

 $A_{s} = (-2 \pm 9_{stat} \pm 6_{syst}) 10^{-3}$ (Never measured before)

 $A_{\rm L} = (3.322 \pm 0.058 \pm 0.047) \ 10^{-3} \ [{\rm KTeV} \ 2002]$ $A_{\rm L} = (3.317 \pm 0.070 \pm 0.072) \ 10^{-3} [NA48 \ 2003]$

OE preliminary

valuation of the

systematics near

completion

CKM unitarity test : V_{us}

Most precise test of CKM Unitarity comes, at present, from 1st row:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$

Can test if Δ = 0 at few 10 ⁻³	(PDG02	Δ = 0.0042 ± 0.0019)
• super-allowed $0^+ \rightarrow 0^+$ Fermi		$2 V_{ud} \delta V_{ud} = 0.0015$
transitions and $n \beta$ – decays:		211/181/1 = 0.0011
 semileptonic Kaon decays (PDG 20 	002 fit):	$2 v_{us} o v_{us} = 0.0011$

To extract $|V_{us}|$ from K_{e3}^0 decays, have to include EM effects:

 $\Gamma(\mathrm{K}^{0} \to \pi \mathrm{ev}(\gamma)) \propto |\mathrm{V}_{\mathrm{us}} f_{+}^{\mathrm{K}0\pi}(0)|^{2} \mathrm{I}(\lambda_{\mathrm{t}}) (1 + \Delta \mathrm{I}(\lambda_{\mathrm{t}}, \alpha)) (1 + \delta_{\mathrm{EM}})$

Relative
uncertainty:
$$\frac{\delta |V_{us}|}{|V_{us}|} = 0.5 \frac{\delta \Gamma}{\Gamma} \oplus 0.05 \frac{\delta \lambda_t}{\lambda_t} \oplus \frac{\delta f_+^{K0\pi-}(0)}{f_+^{K0\pi-}(0)}$$
0.5% $\oplus 0.3\% \oplus 1\%$

$K_s \rightarrow \pi e \nu \text{ decay: } V_{us} f_+^{K\pi}(0)$

Compare our K_s measurement of $|V_{us} f_{+}^{K0\pi-(0)|}|$ with existing numbers on PDG 02:

- fit result for $\Gamma(K^+ \rightarrow \pi^0 e^+ \nu)$
- fit result for $\Gamma(K_L \rightarrow \pi e^+ \nu)$,
- fit result for $\Gamma(K^+\!\!\to\pi^0\mu^+\!\nu)$
- fit result for $\Gamma(K_L \rightarrow \pi^- \mu^+ \nu)$,

and $\Gamma(K^+ \rightarrow \pi^0 e^+ \nu)$ from E865 experiment

CKM wg prescription

Our preliminary result shows better agreement with latest K⁺ data, and a appreciable deviation from old measurements

 $K_s \rightarrow \pi ev$ decay: V_{us} determination §

Knowledge of K_I BR's

Knowledge of 4 main K_L BR's at present dominated by 3 measurements:

$$\Box \quad \frac{\Gamma(K_L \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L \to \pi e \nu)} \text{ and } \quad \frac{\Gamma(K_L \to \pi^0 \pi^0 \pi^0)}{\Gamma(K_L \to \pi^+ \pi^- \pi^0)} \text{ with ~2\% relative uncertainty [NA31]}$$
$$\Box \quad R_{\mu/e} = \frac{\Gamma(K_L \to \pi \mu \nu)}{\Gamma(K_L \to \pi e \nu)} = 0.702 \pm 0.011 \text{ [Argonne HBC 1980]}$$
$$3-\sigma \text{ discrepancy (~4\%) between measurement and expectation for } R_{\mu/e}\text{:}$$

- $R_{\mu/e} = 0.671 \pm 0.002$, direct measurement for K⁺, from KEK-E246 01
- $R_{\mu/e}$ calculable from the slopes λ_{+} and λ_{0} of vector and scalar f.factors: 0.670 \pm 0.002, if λ_0 = 0.0183 \pm 0.0013, from ISTRA+ 2003 0.668 \pm 0.006, if λ_0 = 0.017 \pm 0.004, from one-loop χ Pt

Status of K_L BR's measurement

Have to precisely measure **absolute** branching ratios, with rel. accuracy < 1%

Moriond EWK 04 S.Miscetti

K[±] decays: analysis status

Dedicated reconstruction for K[±] tracks applied, all data re-processed Measurement of absolute BR's: K⁺ beam tagged from K⁻ $\rightarrow \pi^{-}\pi^{0}$, $\mu^{-}\nu$

Working on: efficiency estimates, bias from requiring tagging decay

a_{μ} - SM prediction vs experiment

Updated measurement from E821@BNL, averaging results for μ^+ and μ^- : $a_{\mu} = (11\ 659\ 208\ \pm\ 6)\ 10^{-10}$

Contributions to the SM prediction: $\begin{cases} (10^{-10} \text{ units}) \end{cases}$

 $\begin{cases} a_{\mu}(\text{QED}), \ 11\ 658\ 470.4 \pm 0.3 \\ a_{\mu}(\text{weak}), & 15.4 \pm 0.2 \\ a_{\mu}(\text{hadronic}), & \sim 700 \end{cases}$

Uncertainty on lowest-order hadronic vacuum polarization dominates

Hadronic correction to the γ propagator not calculable by p-QCD for low M_{γ^*}

a_{μ} - SM prediction vs experiment

Dispersion integral relates $a_{\mu}^{had}(vac-pol)$ to $\sigma(e^+e^- \rightarrow hadrons)$

Process $e^+e^- \rightarrow \pi^+\pi^-$ @ $\sqrt{s} < 1$ GeV contributes 66% to a_{μ}^{had} So far, estimates of a_{μ}^{had} from:

- measuring $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ vs \sqrt{s} at an e^+e^- collider, varying the beam energy (CMD2, 0.9% rel. uncertainty)
- using the spectral function from $\tau^{\pm} \rightarrow \pi^{\pm}\pi^{0}\nu_{\tau}$ (LEP, CESR data)

$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ from $\pi^+\pi^-\gamma$ events

Measure $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$ at fixed \sqrt{s} Exploit ISR to extract $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ for $\sqrt{s'}$ from $2m_{\pi} \rightarrow \sqrt{s}$ (s' = s - 2 Ey \sqrt{s})

Have to watch out for hard FSR:

- Rate ~ same order as ISR signal
- FSR causes events with $M_{\gamma*} = \sqrt{s}$ to be assigned to lower $\sqrt{s'}$ values

Have to properly include radiative corrections,

Must remove vacuum polarization,

Measurement of $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$

 \Box Two high- θ tracks from a vertex close to IP

Compute photon momentum, **without explicit** *γ* **detection**:

 $p_{\gamma} = p_{e+} + p_{e-} - p_{\pi+} - p_{\pi-}$

\Box Select signal with a small- θ photon, to enhance ISR:

 $d\sigma_{ISR}/d\Omega \sim 1/sin^2\theta$

- relative contribution of hard FSR below the % level over entire
- $M_{\pi\pi}$ spectrum
- no acceptance for $M_{\pi\pi} < 600 \text{ MeV}$
- Reduce background

Residual background from $\pi^+\pi^-\pi^0$, $e^+e^-\gamma$, $\mu^+\mu^-\gamma$

Preliminary result: $\sigma(\pi^+\pi^-\gamma)$

Luminosity from e⁺e⁻(γ) counts, 55° < θ_e < 125°, σ calculated at 0.5%, experimental accuracy 0.3%

 $\square Experimental M_{\pi\pi}^{2} resolution unfolded in all spectra shown$

Radiator function $H(M_{\pi\pi}^2)$, defined as: 30

 $\frac{d\sigma(\pi\pi\gamma, M_{\pi\pi}^{2})}{dM_{\pi\pi}^{2}} = H(M_{\pi\pi}^{2}) \sigma(\pi\pi, M_{\pi\pi}^{2}),$

with inclusion of radiative effects, from QED MC calculation (PHOKHARA,

Karlsuhe Theory Group, Kühn et al.)

Preliminary result : aµ

a_u: **prospects** $\pi^+\pi^-\gamma$ at large angles

Moriond EWK 04 S.Miscetti

LaThuile 21-28/March/04

Other on-going analysis (I)

- $\ \ \, \pi^+\pi^-\gamma \text{ at large angle. Study interference pattern FSR and } \Phi \to f_0\gamma$ (first hints of an $f_0(980)$ signal)
- $\Box \ \pi^0 \pi^0 \gamma \text{ high stat. sample for } \Phi \to f_0 \gamma \to \pi^0 \pi^0 \gamma$
 - separate not resonant vs resonant contribution

LaThuile 21-28/March/04

- fit Dalitz plot to study interference between $\Phi \rightarrow S \gamma$ and VDM production

Moriond EWK 04 S.Miscetti

Other on-going analysis (II)

- $\Box \sim 20$ million η 's produced **Search for forbidden** η decays:
 - C violating: **BR**($\eta \rightarrow \gamma \gamma \gamma$) < 1.7 10⁻⁵, 90% CL, hep-ex/0402011 CP, P violating: BR($\eta \rightarrow \pi^+\pi^-$) < 9 10⁻⁶, 90% CL, in prog preliminary **Precision studies of meson dynamics:**
 - Dalitz plot analyses of $\eta \rightarrow 3\pi$, $\eta \rightarrow \pi^0 \gamma \gamma$, and $\eta \rightarrow \pi^+ \pi^- \gamma$

\Box Pseudoscalar mixing angle measurements, $\phi \rightarrow \eta' \gamma$

Analysis of $\pi^+\pi^-3\pi^0\gamma$ final states from decay chain $\eta' \rightarrow \eta\pi\pi$, $\eta \rightarrow 3\pi$

BR(
$$\phi \rightarrow \eta' \gamma$$
) = (6.04±0.10_{stat}±0.36_{syst})10⁻⁵

- confirm previous KLOE result
- Kloe preliminary • can extract mixing angle, uncertainty better than 1-degree

Other on-going analysis (III)

\Box Φ -meson properties:

- Combined line-shape fit in principal decay channels
- Measurement of $\Gamma(\phi \rightarrow e^+e^-)$ from FB asymmetry vs \sqrt{s}
- Measurement of $\Gamma(\phi \rightarrow \mu^+ \mu^-)$ from $\sigma_{\mu\mu} vs \sqrt{s}$

Summary

KAON physics:

- □ Sensitivity to K_s BR's at the 10⁻⁷ level (preliminary UL for K_s \rightarrow 3 π ⁰)
- \Box Measurement of K_{e3} mode at the % level, 10⁻² accuracy on A_S
- Measurement of BR's for semileptonic K_L and K^+ decays in progress
 - Huge statistics, uncertainty will be limited by systematics
 - Will clarify situation concerning V_{us}

Non Kaon physics:

□ Analysis of σ (had) at small angles almost completed (draft in preparation) Measurement of a_{μ}^{had} with 6 10⁻¹⁰ total error, σ (e⁺e⁻ → $\pi^{+}\pi^{-}$) at 1.6% Large angles meas. in progress: a_{μ}^{had} contribution for $M_{\gamma*} < 600$ MeV

 \Box A lot of measurement in progress on light scalar, pseudoscalar mesons and on determination of lineshape and Γ_{ll}