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Status on (g-2)

Davier, Eidelman, Hocker, Zhang: hep-ph/0308213,
E821: hep-ex/0401008
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* The nature of the difference in the two theoretical evaluations of auhad has to be understood in order to
claim a discrepancy between (SM-)theory and experiment

* More and better information on the hadronic contribution to the SM calculation of a, could help to
clarify this difference and (together with a further reduction of the experimental error) give the
discrepancy between theory and experiment a higher significance



Dispersion integral:

a, " can be expressed in terms of
o(e*e~— hadrons) by the use of a
dispersion integral:

E}dsohadr TEKE) s (S)K(s))

E.. 18 the threshold energy above which pQCD is applicable
* 5 1s the c.0o.m.-energy squared of the hadronic system
* K(s) 1s a steady function that goes with 1/s,

enhancing low energy contributions of 0" (s)



Low energy contribution:

The region around the energy of the p-meson adds with ca. 61% to
the total value of a . [jeerlehner: hep-ph/0104304]
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The p-meson decays to 100% in t*mt~, so in this energy region the
analysis efforts concentrate on the determination of

o(e'e—n"m)



o(e"e—mx ") with ISR:

Particle factories have the opportunity to measure the cross section o(e” e- — hadrons)

as a function of the hadronic c.m. energy M 2 . by using the radiative return.
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M2 do(et e — hadrons + y)
hadr dM?2

= o(e* e — hadrons) HM?, )

hadrons

This method is a complementary approach to the standard energy scan.

It requires precise calculations of the radiator H.
=» EVA + PHOKHARA MC Generator
(S. Binner, J.H. Kiihn, K. Melnikov, Phys. Lett. B 459, 1999)
(H. Czyz, A. Grzelinska, J.H. Kiihn, G. Rodrigo, hep-ph/0308312)



DAO®ONE: A ®-Factory

(Double Annular ®-Factory for Nice Experiments)

e*e - collider with v/s =m=~1.020 GeV
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KLOE:

(KLOng Experiment)

 Magnet:
Superconducting coil (B=0.5T)

« EM Calorimeter:
Lead/Scintillating fibres
4880 PM

e Driftchamber:
12582 Sense Wires
52140 wires 1n total

e Beryllium Beampipe:
R=10 cm, 0.5 mm thick

T1m




Signal selection:

Pion tracks are measured at angles ) /r
500< 0, <130° W
Q
Photons are required to be within

BY < 15°or 6v> 165°

//Jﬂ i

0 8

Untagged measurement in which we cut
on the direction of the missing
momentum

f)y = ~Prmiss = ~(P+ +P-)

T m

The choice of this kinematical region
was motivated by:

» small relative contribution of FSR

* reduced background contamination:

il
Y
B
By

° e'e"—>e'e7y

° efeT > uuTy 6 m
e ete = ¢ — wan’



Background rejection:

To reduce Bhabha

contamination, a
n-e-separation is performed

using a particle ID estimator

— TOF of charged clusters in
EMC

— Shape and energy deposition
of the cluster

The event is selected if one
of the charged tracks is
identified to be a pion.
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Background rejection:
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The signal is further selected
by performing a cut in the
kinetical variable

trackmass in order to
reduce n* -’ background

Trackmass

ut u-y background
(M, =105 MeV) 1s
rejected by a cut on
M., =120 MeV

160

track 140

The trackmass is the particle mass for

the two tracks obtained by using the 4- 120
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momentum-conservation and the assum-
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Remaining contaminations
from '’ and puy are
measured by fitting the shape
of signal and background in
the trackmass distribution for
different bins of M__ 2.

The estimated number of
background events is then

subtracted from the spectrum.
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Luminosity: |

* Luminosity measured with Large Angle Bhabhas: 55°<0_<125°

« 2 independent generators used for radiative corrections:
— BABAYAGA (Pavia group):

— BHAGENTF (Berends modified): o= (428.5+0.3 ) nb

# Systematics from
generator claimed to
be 0.5%

4 Experimental
systematic error
determined by
comparing data and
MC angular and
momentum
distributions

.= (428.8+0.3_ ) nb

sta

Systematics on Luminosity

Theory 0.5 %
Acceptance 0.2 %
Background (stmry+uwy) 0.1 %
Trigger+Track+Clustering 0.2 %
Knowledge of s run-by-run 0.1 %
TOTAL 0.5 % theory @ 0.3% exp = 0.6 %




Efficiencies: .| '-\ |
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After subtracting the residual background, correcting for the FSR contribution,
dividing for luminosity and efficiencies and unfolding the detector resolution, we

arrive to
o(ete—mmy)
. . 2.
in bins of M__~:
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To get the cross section for e'e—m"n - we divide the ™y cross section by the

cross section wtny for “pointlike” pions

which is obtained technically from the = Cross Section €Te™— w7
MC generator by setting F_=1: el ] -
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state radiation events in order to evaluate a,

We distinguish between two kinds of FSR contributions:

LO-FSR NLO-FSR

LO-FSR: No initial state radiation, e” and e collide at the energy
M,=1.02 GeV

NLO-FSR: Simultaneous presence of one photon from initial state
radiaition and one photon from final state radiation



Final State Rad.: y

LO-FSR is a background in our
analysis - fiducial volume cuts
reduce relative contribution well

below 1%:
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NLO-FSR should be included in
thespectrum - however the cut in
trackmass removes this contribution
at low M__%:
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Final State Rad.: |

Two complementary procedures to correct for Final State Radiation:

FSR-exclusive approach: FSR-inclusive approach:

N(eTe = 7" 7T Yigg (Yrsr))

subtract remaining FSR contr. ‘ add back missing FSR contr.
using PHOKHARA MonteCarlo (sQED)

o(e*e — T Yigr) ‘ o(e'e” — " T Ygg Yrsr)

Division by radiator function H (obtained from MC for pure ISR)

o(e’e— )

2 2
Map M .., iy to M,

add back FSR by hand using MonteCarlo

(sQED, Schwinger 1990)

\4

o(e’e — T T Ypgr )




The difference between the two
methods 1s < 0.2%

L~ 0

Higher order FSR diagrams and
NLO interference terms between

T - ISR and FSR amplitudes
oot (ot simulated by MC) are negligible
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Systematic error:

The systematic error has | : Experiment
contributions from: — Acceptance 0.3%
— Trigger 0.3%
— Tracking 0.3%
— Vertex 0.7%
— Rec. Filter 0.6%
' — Particle ID 0.1%
Theory — Track Mass O.ZEA)
— Radiator Function H 0.5% : Eﬁg lfl?r?;r 82 02‘:
— Vacuum Polarization 0.2% '
— Luminosity 0.6% o
— FSR resummation 0.5% TOTAL 1.2%

TOTAL 1.0%




a, - preliminary results:

Calculating the dispersion integralﬁ f o™ (s)K(s)ds gives:
n

a, 10(0.35< =M, 2<0.95 GeV?) = (389.2 = 0.8, = 4.7, 3.9, ) 10710

theo

Comparison with CMD?2:
a,17(0.37< M, < 0.93GeV?)

KLOE: (376.5 = 0.8, = 5.9 ) 10-10

syst+theo

CMD2: (378.6 £ 2.7, = 2.3, 1rtneo) 10717

« Both measurement are in agreement within the errors

* e*e” — T discrepancy for a is confirmed



Conclusions: o

e For the first time 1nitial state radiation has been used to measure the
precise cross section for ete— -

e Analysis finished:
Result currently circulated within collaboration for approval, will
be published 1n the next weeks

e Next Steps:

- replay the analysis with 2002 data (hope for better systematics
due to more clean and stable machine conditions)

- study events at large photon angles to access lower M__? regions
and check FSR parametrization (scalar QED)

=»charge Asymmetry

- use uwy events for cross checking vacuum polarisation, FSR

and additional ISR effects



Charge asymmetry: o

In the case of non-vanishing FSR contribution, the interference term
between ISR and FSR 1s odd under exchange m* <= - .This gives rise

to a charge asymmetry.

_N_.(6)-N_(0)
N_.(O)+N_(6

A(0)

This is an ideal means to check the =
validity of the FSR model used in the - N. (8)
MonteCarlo - just compare the N_(0)
charge asymmetry between data and ~ .
MonteCarlo 1n the presence of FSR.
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Relative FSR contribution 1s high
if both pions and photons are
emitted at large angles:

500< 6, < 130°
500< 0, < 130°

In this case, the photon can be
detected, which helps in suppressing
m ' background.

This 1s a completely new analysis
(currently going on).
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