

Copyright 3 2001 Newspaper Enterprise Association, Inc.

Paolo Valente - INFN LNF

The KLOE quadrupole tile calorimeter 28

Lead/Scintillator tile calorimeter (QCAL)

YOKE

S.C. COIL

Paolo Valente - INFN LNF

The KLOE drift chamber

Cylindrical Drift Chamber 4 m Ø, 3.3 m Length 90% Helium, 10% Isobutane 12582/52140 sense/total wires 12 layers 2×2 cm² + 46 layers 3×3 cm² all stereo wires

Paolo Valente - INFN LNF

The KLOE calorimeter

Electromagnetic Calorimeter

- Pb / Scintillating Fibers
- 4880 PMTs
- 2 × 32 Endcap + 24 Barrel modules
 98% coverage of solid angle

Hadron 2001

Paolo Valente - INFN LNF

K_L Tag

Paolo Valente - INFN LNF

R

 ${
m K_{I}}
ightarrow \pi^{+}\pi^{-}$

Paolo Valente - INFN LNF

K_s Tag

Tag efficiency from data: Systematic effect due to different velocity of γ (from $\pi^0\pi^0$) and of π^{\pm}

Paolo Valente - INFN LNF

$E > 50 \text{ MeV}; \cos \theta > 0.945$

Machine background

K_s K_L

Hadron 2001

$\epsilon^{+-} / \epsilon^{00} = (95.030 \pm 0.005) \%$

$K_S \rightarrow \pi^+\pi^-$ selection

Paolo Valente - INFN LNF

Tracking efficiency from $K_S \rightarrow \pi^+\pi^-$ sub samples in p_T and θ bins:

Use p of K_L and one π track to close kinematically the event
 Then look for the other - track

• Then look for the other π track

Paolo Valente - INFN LNF

Photon efficiency

✤ Photon efficiency is evaluated from $\phi → \pi^+\pi^-\pi^0$ control sample in θ bins and as function of energy

* 4 prompt cluster θ and E distributions compared with $K_s \rightarrow \pi^0 \pi^0$ Monte Carlo

Paolo Valente - INFN LNF

$K_S \rightarrow \pi e \nu$ preselection

2 tracks from the IP
Cuts in p(K_S) vs. M_{ππ}

 $\varepsilon = 62.4 \%$

Paolo Valente - INFN LNF

t₀, TCA and trigger efficiencies

t₀, TCA and trigger efficiencies estimated <u>directly from data</u> using several control samples: $K_L \rightarrow \pi e \nu, \phi \rightarrow \pi^+ \pi^- \pi^0, K_S \rightarrow \pi^+ \pi^-$

$$\epsilon_{\text{TCA+T0+TRG}} = (81.7 \pm 0.5) \%$$

<u>Method A:</u> • Single particle efficiency from data • Plug in Monte Carlo

 $\frac{Method B}{Select events using only the chamber}$

Consistent results using the 2 methods

Hadron 2001

Paolo Valente – INFN LNF

π /e separation by TOF: data vs. MC ³⁹

D δ t in $K_L \rightarrow \pi e_V$ before the DC wall used to evaluate the efficiency (and weight MC events)

Efficiency for the cut $|D\delta t(\pi,\pi)| = (91.5 \pm 0.5) \%$ Efficiency for the cut $|D\delta t(\pi,e)| = (91.8 \pm 0.5) \%$

Paolo Valente - INFN LNF

Hadronic cross section (g-2)

$$(g-2)/2 = a_u^{QED} + a_u^{hadr} + a_u^{weak} + \dots$$

Use dispersion integral to express a_{μ} in terms of $R = \sigma^{hadr}/\sigma^{\mu\mu}$

$$a_{\mu}^{hadr} = (\alpha \cdot m_{\mu}/3\pi)^2 \int_{4m_{\pi}^2}^{\infty} ds \frac{R(s) \cdot \tilde{K}(s)}{s^2}$$

Recently a 2.6 σ discrepancy with SM value of a_{μ}^{hadr} observed by E821: (420±170) ×10⁻¹¹

Paolo Valente - INFN LNF

41

Rejection of final state radiation (FSR) background

Check of FSR parameterization

Pion charge asymmetry: $A(\theta_i) = \frac{N^{\pi_+}(\theta_i) - N^{\pi_-}(\theta_i)}{N^{\pi_+}(\theta_i) + N^{\pi_-}(\theta_i)}$ Paolo Valente – INFN LNF

$$q_{\gamma}^{2} = \left(M_{\phi} - \sqrt{\vec{p}_{1}^{2} + M_{track}^{2}} - \sqrt{\vec{p}_{2}^{2} + M_{track}^{2}}\right)^{2} = 0 \quad \bigstar \quad \mathsf{M}_{track} \text{ definition}$$

Likelihood using TOF and shower profile to reject radiative Bhabha

Paolo Valente - INFN LNF

Hadron 2001

43

Kinematical cut in M_{track} vs. Q^2 to reject $\pi^+\pi^-\pi^0$

High Q² region: data suppressed by 'cosmic veto' in the trigger

Paolo Valente - INFN LNF

 $Q^{2}_{\pi+\pi}$ (GeV²) Hadron 2001