
KLOE Note n. 221

Measurement of the σ(e+e− → π+π−γ(γ)) and the dipion
contribution to the muon anomaly with the KLOE detector
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Abstract

We have measured the cross section σ(e+e− → π+π−γ(γ)) at DAΦNE, the Frascati
φ–factory, using events with initial state radiation photons emitted at small angle
and inclusive of final state radiation. We present the analysis of a new data set
corresponding to an integrated luminosity of 240 pb−1. We have achieved a reduced
systematic uncertainty with respect to previously published KLOE results. From the
cross section we obtain the pion form factor and the contribution to the muon magnetic
anomaly from two-pion states in the mass range 0.592 < Mππ < 0.975 GeV. For the
latter we find ∆ππaµ=(387.2±0.5stat±2.4exp±2.3th)×10−10.
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1 Introduction

The muon magnetic anomaly, aµ, has been recently measured at Brookhaven with an
accuracy of 0.54 ppm [1]. The value of aµ in the standard model, is found to differ
from the experimental value by 2.8 to 3.4 standard deviations [2, 3]. The main source of
uncertainty in the estimate of aµ is the hadronic contribution, which is not calculable in
perturbative QCD. The hadronic contribution, at lowest order, ∆h, loaµ, is obtained from
a dispersive integral over the cross section for e+e−→hadrons [4, 5]. The e+e−→π+π−

channel accounts for ∼ 70% of ∆h, loaµ and ∼ 60% of its uncertainty.
It should be noted that the physically measurable cross section for e+e−→π+π− as

such, cannot be used in the dispersive integral for two reasons. The first, obviously, is
that the measured cross section is affected by initial state radiation (ISR) which must
not be included in the contribution to the muon anomaly. Even the energy at the ππγ
vertex is different from the nominal e+e− collision energy. The second reason is more a
question of tradition and book keeping. The photon at the π+π−γ vertex, at lowest order,
is a bare photon, i.e. without vacuum polarization. The measured cross section must be
therefore corrected for both effects, as we discuss later. Final state radiation (FSR) from
the pions must instead be included. The measured quantities therefore require corrections
for the photon vacuum polarization, for ISR, and to ensure that pion FSR is included,
since some of the events with FSR might have been rejected. In our measurement there
are some additional corrections, mostly due to ambiguities between ISR and FSR because
we measure the dipion mass and not the e+e− collision energy.

In 2005, we published [6] a measurement of the dipion contribution ∆ππaµ, using the
method described in Sec. 2, using data collected in 2001 for

∫

Ldt=140 pb−1, with a
fractional systematic error of 1.3%. We discuss in the following a new and more accurate
measurement of the same quantity.

In particular, the following changes are applied with respect to the data taken in 2001:

• an additional third level trigger was implemented during 2002 to reduce the ineffi-
ciency on the signal π+π−γ events due to the KLOE detector’s cosmic ray muon
trigger-veto, bringing this inefficiency down to few per mill. This has to be compared
with the trigger condition during 2001 data taking, in which the signal efficiency was
reduced by as much as 30% due to the misidentification of pions as cosmic ray events,

• an improved offline background filter was used with the new data sample. This
filter contributed the largest experimental systematic uncertainty to the published
analysis. A downscaling algorithm providing an unbiased control sample allows the
evaluation of the filter efficiency with negligible systematic uncertainty,

• The requirement to have the two tracks form a vertex has been dropped. The vertex
efficiency introduced a 0.3% uncertainty in the previous analysis [6].
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In addition, the knowledge of the detector response and of the KLOE simulation program
have been improved [7].

2 Measurement of e+e− → π+π− cross section at DAΦNE

The KLOE detector operates at DAΦNE, the Frascati φ–factory, a “small angle” e+e−

collider running mainly at a center of mass energy equal to the φ meson mass, W∼1020
MeV. At DAΦNE, we measure the differential cross section for e+e− → π+π−γ as a
function of the π+π− invariant mass, Mππ, for ISR events, and obtain the dipion cross
section σππ ≡ σ(e+e− → π+π−) from [8]:

s
dσ(ee → ππγ)

dM2
ππ

∣

∣

∣

∣

ISR

= σππ(M2
ππ) H(M2

ππ, s). (2.1)

Eq. 2.1 defines H, the “radiator function”. H can be obtained from QED calculations
and depends on the e+e− center of mass energy squared s. In eq. 2.1 we neglect FSR,
which however is included in our analysis. The cross section we obtain is inclusive of all
radiation in the final state.
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Figure 1: Vertical cross section of the KLOE detector, showing the small and large angle
regions where photons and pions are accepted

3 Event selection

3.1 Preselection

The data sample consists of
∫

Ldt=240 pb−1 of data taken in the year 2002, which have
been preselected by a streaming algorithm using the following cuts:
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• at least 2 charged tracks with opposite charge crossing a cylinder centered around
the beam interaction point (IP) with 30 cm length and 8 cm radius

• at least one pair of two tracks must satisfy:

– 150 MeV < |~p1|+ |~p2| < 1020 MeV

– (−220 MeV) < MMiss < 120 MeV

– 80 MeV < MTrk < 400 MeV

where both MTrk and MMiss are computed from energy and momentum conserva-
tion.1

All momenta are evaluated at the point of closest approach (PCA) of each track,
obtained by extrapolating the track inwards to the beam interaction point.

To ensure a good data quality and homogeneity of the data sample in use, data runs
with a luminosity smaller than 25 nb−1 were excluded from the analysis, as were runs from
the short 2002 energy-scan period and runs with bad trigger conditions [9].

3.2 Event selection

After the preselection, events have to fulfill the following selection criteria:

• at least two trigger sectors in the calorimeter [10] must be fired by clusters associated
to the charged tracks in the event

• the events have to pass the software L3 trigger implemented in 2002 data taking to
preserve events rejected by the trigger veto for cosmic ray events

• they have to pass an offline reconstruction filter, which removes machine background
events

• two oppositely charged tracks have to satisfy

– |zPCA| < 7 cm

– %FH < 50 cm

where FH represents the first hit of a wire in the drift chamber, and the cut in
|zPCA| further reduces the length of the cylinder to be crossed by the tracks to 14
cm, see Sec. 3.1

• the two charged tracks should have 50◦ < θπ < 130◦

1Assuming the presence of an unobserved photon and that the tracks belong to particles of the same
mass, Mtrk is computed from energy and momentum conservation:

„√
s−

q

|p+|2 + M2
trk −

q

|p−|2 + M2
trk

«2

− (p+ + p−)2 = 0

where p± is the measured momentum of the positive (negative) particle, and only one of the four solutions
is physical. Assuming the process is e+e− → π+π−X, MMiss is the invariant mass of the X particle in the
final state.
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• only photons within a cone of θγ < 15◦ around the beamline, narrow cones in Fig. 1,
left, are accepted. The photon is not detected, its direction is reconstructed from
event kinematics: ~pγ ' ~pmiss ≡ −~pππ = −(~pπ+ + ~pπ−). This separation of tracks
and photon selection regions in the analysis greatly reduces the contamination from
the resonant process e+e− → φ → π+π−π0 in which the π0 mimics the missing
momentum of the photon(s) and from the final state radiation process e+e− →
π+π−γFSR. Since ISR-photons are mostly collinear with the beam line, a high
statistics for the ISR signal events remains. However, a highly energetic photon
emitted at small angle forces the pions also to be at small angles (outside the selection
cuts), resulting in a suppression of events with M 2

ππ < 0.35 GeV2, see Fig. 1, right

• to avoid spiralizing tracks in the drift chamber, tracks are required to have |pT | > 160
MeV or |pz| > 90 MeV. This also ensures that tracks reach the electromagnetic
calorimeter in the KLOE magnetic field of 0.52 T

• a particle ID estimator (PID) based on a pseudo-likelihood function using time-of-
flight and calorimeter information is used to suppress radiative Bhabhas [11]. At
least one of the two tracks must be recognized as “pion” (or configuration of the
PID)

• φ → π+π−π0 events are rejected by the cut

MTrk = −

√

1−
(

M2
ππ

0.85

)2

× 105. + 250. (3.1)

with MTrk in MeV and M 2
ππ in GeV2, see Fig. 2, left. Above 0.815 GeV2, a cut on

MTrk < 220 MeV is applied.

• Signal events with pions are separated from muons by a cut MTrk > 130 MeV

Fig. 2, right, shows the spectrum for pions events after the selection.

4 The analysis

To obtain the cross section for 0◦ < θπ < 180◦ and θππ < 15◦, θππ > 165◦ we subtract the
residual background from this spectrum and divide by the selection efficiency, acceptance,
and integrated luminosity:

dσππγ

dM2
ππ

=
∆NObs −∆NBkg

∆M2
ππ

1

εSelεAcc

1
∫

Ldt
. (4.1)

Fig. 4 shows the analysis flow. Apart from the offline filter (FILFO) correction and
the L3 trigger efficiency, the selection efficiencies are evaluated via a global Monte Carlo
efficiency, to which the corrections εData

εMC for the individual efficiencies (tracking, trigger)
are applied. The global Monte Carlo efficiency (including the acceptance cut of 50o <
θπ < 130o) is shown in Fig. 3.

The background subtraction, the evaluation of the selection efficiency and the accep-
tance, the measurement of the integrated luminosity, and the unfolding of the experimental
resolution on M 2

ππ (omitted from eq. (4.1) for clarity) are discussed below.
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Figure 2: Left: Signal and background distributions in the MTrk − M2
ππ-plane . Right:

Event spectra for pions after selection.

4.1 L3 (third level trigger) efficiency

The L3 efficiency (third level trigger) has been evaluated from an unbiased downscaled
sample which retains a fraction of events independent of the L3 decision. Fig. 5 shows the
L3 efficiency for 2002 data, which has to be compared with the cosmic ray veto efficiency
in the published analysis which reached an inefficiency of 30% at high values of M 2

ππ.
Given the smallness of the L3 effect, it is considered to be negligible in the analysis, and
a contribution of 0.1% is added to the overall systematic uncertainty in Table 9.

4.2 FILFO (offline background filter) efficiency

This filter, whose purpose is to identify background events before they enter the CPU-
consuming pattern recognition and track fitting algorithms, contributed the largest ex-
perimental systematic error to the previous measurement [12]. A reworking of the offline
background filter for the 2002 data allows to bring the systematic uncertainty on its effi-
ciency to negligible level, while also increasing the efficiency itself. This was achieved by
retaining an unbiased control sample during the data taking and the deactivation of the
BHABREJ subfilter [13]. Fig. 6 shows the efficiency obtained in this way.

4.3 Estimation of background contributions

The relative contribution from the three main background channels

• e+e− → µ+µ−γ(γ)

• e+e− → π+π−π0

• e+e− → e+e−γ(γ)
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Figure 3: Global efficiency of the ππγ event selection from Monte Carlo.

is estimated by fitting the sum of Monte Carlo distributions in Mtrk for signal (e+e− →
π+π−γ(γ)) and the three background channels to the data distribution, using as free
normalization parameters in the fit the weights w which allow to scale the Monte Carlo
distributions for each channel. The fit is performed for 33 bin slices with a width of 0.02
GeV2 in M2

ππ between 0.32 and 0.98 GeV2, using the Mtrk distributions in each slice of
M2

ππ. The fit procedure essentially follows the one described in [14], using the HBOOK [15]
routine HMCMLL with small modifications according to [16, 17].

The main difference with [14] (apart from the larger number of M 2
ππ slices) is that all

three background processes are treated simultaneously in the same fitting procedure. This
was made possible by the much higher Monte Carlo statistics available (especially for the
πππ process) and the possibility to enlarge the fitting range to include also the full peak
of the π+π−γ events in the Mtrk variable up to 180 - 220 MeV. The following Monte Carlo
samples were used in the fitting procedure:

• 1500 pb−1 of π+π−γ(γ) events, with both ISR and FSR at NLO

• 1500 pb−1 of µ+µ−γ(γ) events, with both ISR and FSR at NLO

• 250 pb−1 of π+π−π0 events

• 490 pb−1 of e+e−γ events

For use in the fit, Monte Carlo distributions are adjusted using the corrections described in
appendix B to procure better agreement with data. The fit is performed after the data has
been corrected for the FILFO efficiency, the FILFO filter is thus not enforced for Monte
Carlo events. The same holds for the L3 filter (see Sec. 4.1). To increase the sensitivity,
the fit is performed without the cut of Mtrk > 130 MeV shown in Fig. 2, left. This allows
to include also the full peak of µµγ events around 110 MeV.

As the contribution from e+e−γ is very small, the fit is not sensitive enough to allow
for a free normalization parameter for Bhabha events. Instead, the contribution of Bhabha
events taken directly from Monte Carlo, using the integrated Monte Carlo luminosity as
the normalization, and the Bhabha normalization parameter is fixed to 1. in the fit, as

8



Figure 4: The description of the analysis flow.
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Figure 5: Efficiency of the L3 software trigger for pions.
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Figure 6: Efficiency of the FILFO reconstruction filter for pions.
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is the contribution from πππ between 0.6 < M 2
ππ < 0.7 GeV2. A cross check on the eeγ

Monte Carlo normalization is presented in a later section of this document (see Sec. 4.3.2).
Some technical details on the fitting procedure in different ranges of M 2

ππ:

• 0.32 - 0.60 GeV2: Binwidth of 1.0 MeV in Mtrk, 4 Monte Carlo sources fitted to
data, eeγ normalization parameter fixed to 1.

• 0.60 - 0.70 GeV2: Binwidth of 0.5 MeV in Mtrk, 4 Monte Carlo sources fitted to
data, eeγ and π+π−π0normalization parameters fixed to 1.

• 0.70 - 0.98 GeV2: Binwidth of 0.5 MeV in Mtrk, 3 Monte Carlo sources fitted to
data, eeγ normalization parameter fixed to 1.

The π+π−π0 contribution in Mtrk vanishes above 0.70 GeV2, therefore the fit is performed
using only 3 sources above this value. The results of the background fit procedure for each
slice in M 2

ππ can be found in the appendix A.
Once the normalization parameters w are obtained in each slice of M 2

ππ, they are
applied on an event-by-event basis as weights in the filling of the histograms running the
standard selection including the cut in Mtrk > 130 MeV with a binwidth in M 2

ππ of 0.01
GeV2 (which is half the value used for the M 2

ππ slices used in the fit to obtain the Monte
Carlo weights for each process, so each weight in a M 2

ππ slice is applied to two consecutive
bins contained in this slice interval). From this the fraction of background events

ftot ≡ Nbkg/Ntot =
wµµγ ·NMC

µµγ + wπππ ·NMC
πππ + weeγ ·NMC

eeγ

Ntot
(4.2)

is obtained in each bin of M 2
ππ, relative to the number of data events Ntot found in this bin

of M2
ππ. The data spectrum is then corrected in each bin of M 2

ππ with the factor (1−ftot).
The statistical error on the combined background fraction in each bin i of M 2

ππ is
calculated from

(δfi)
2 =

(

wµµγ,i · δNµµγ,i

Ndat,i

)2

+

(

wµµγ,i ·Nµµγ,i · δNdat,i

N2
dat,i

)2

+

(

wπππ,i · δNπππ,i

Ndat,i

)2

+

(

wπππ,i ·Nπππ,i · δNdat,i

N2
dat,i

)2

+

(

weeγ,i · δNeeγ,i

Ndat,i

)2

+

(

weeγ,i ·Neeγ,i · δNdat,i

N2
dat,i

)2

(4.3)

where the wi take into account the different amounts of integrated luminosity for data and
Monte Carlo events. The errors on the wi enter in the determination of the systematic
uncertainty, which is described later in Sec. 4.3.4.

Table 4.3 and Figs. 7 and 8 show the result of the background evaluation.

4.3.1 Effect of the corrections for Mtrk distributions in Monte Carlo

The Monte Carlo distributions in Mtrk need to be adjusted to match the data distribu-
tions [18] (see appendix B.1). As can be seen from Table 4.3 and Fig. 9, the χ2 of the
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∆M2
ππ fµµγ(γ) wµµγ(γ) fπππ wπππ feeγ(γ) weeγ(γ) χ2

min/ndf Pχ2>χ2
min

(GeV2) (%) (%) (%) (%)

0.32-0.33 2.98±0.14 1.11±0.03 4.17±0.37 1.01±0.04 0.37±0.07 1±0 27.0/59 100.0
0.33-0.34 2.73±0.12 4.50±0.34 0.20±0.05
0.34-0.35 2.33±0.10 1.06±0.02 3.90±0.27 0.89±0.03 0.27±0.05 1±0 35.6/66 99.9
0.35-0.36 2.58±0.09 3.89±0.24 0.16±0.04
0.36-0.37 2.15±0.08 1.06±0.02 3.70±0.23 1.04±0.04 0.28±0.04 1±0 67.3/71 60.4
0.37-0.38 1.97±0.07 3.45±0.21 0.25±0.04
0.38-0.39 1.75±0.06 1.07±0.02 3.09±0.18 1.07±0.04 0.19±0.03 1±0 61.8/67 65.7
0.39-0.40 1.72±0.05 2.80±0.16 0.21±0.03
0.40-0.41 1.53±0.05 1.05±0.02 2.58±0.15 1.12±0.05 0.18±0.03 1±0 85.4/73 15.2
0.41-0.42 1.40±0.04 2.50±0.14 0.17±0.02
0.42-0.43 1.31±0.04 1.06±0.02 2.26±0.12 1.18±0.05 0.18±0.02 1±0 55.8/74 94.4
0.43-0.44 1.21±0.03 2.08±0.11 0.17±0.02
0.44-0.45 1.16±0.03 1.06±0.02 1.76±0.10 1.22±0.07 0.16±0.02 1±0 45.0/65 97.2
0.45-0.46 1.02±0.03 1.75±0.09 0.17±0.02
0.46-0.47 0.91±0.02 1.02±0.02 1.73±0.08 1.25±0.06 0.15±0.02 1±0 66.1/77 80.7
0.47-0.48 0.88±0.02 1.37±0.07 0.13±0.01
0.48-0.49 0.81±0.02 1.05±0.02 1.28±0.06 1.22±0.06 0.12±0.01 1±0 109.0/79 1.4
0.49-0.50 0.71±0.02 1.05±0.05 0.12±0.01
0.50-0.51 0.71±0.02 1.07±0.02 0.97±0.05 1.17±0.07 0.11±0.01 1±0 101.0/80 5.7
0.51-0.52 0.65±0.01 0.87±0.04 0.11±0.01
0.52-0.53 0.61±0.01 1.07±0.02 0.96±0.05 1.72±0.13 0.08±0.01 1±0 93.5/80 14.4
0.53-0.54 0.57±0.01 0.94±0.05 0.07±0.01
0.54-0.55 0.54±0.01 1.07±0.01 0.83±0.04 1.82±0.18 0.08±0.01 1±0 80.3/81 50.1
0.55-0.56 0.53±0.01 0.74±0.04 0.08±0.01
0.56-0.57 0.53±0.01 1.06±0.01 0.68±0.04 1.88±0.22 0.07±0.01 1±0 72.6/83 78.5
0.57-0.58 0.53±0.01 0.56±0.03 0.08±0.01
0.58-0.59 0.55±0.01 1.08±0.01 0.64±0.04 2.44±0.29 0.08±0.01 1±0 97.8/86 18.0
0.59-0.60 0.54±0.01 0.52±0.03 0.09±0.01
0.60-0.61 0.56±0.01 1.09±0.01 0.18±0.01 1.00±0.00 0.08±0.01 1±0 157.8/180 88.3
0.61-0.62 0.72±0.01 0.24±0.02 0.10±0.01
0.62-0.63 0.84±0.01 1.09±0.01 0.19±0.01 1.00±0.00 0.13±0.01 1±0 117.5/184 100.0
0.63-0.64 0.86±0.01 0.14±0.01 0.13±0.01
0.64-0.65 0.90±0.01 1.06±0.01 0.13±0.01 1.00±0.00 0.14±0.01 1±0 170.9/202 94.5
0.65-0.66 1.00±0.01 0.12±0.01 0.17±0.01
0.66-0.67 1.06±0.02 1.07±0.01 0.09±0.01 1.00±0.00 0.16±0.01 1±0 146.4/210 100.0
0.67-0.68 1.16±0.02 0.09±0.01 0.18±0.01
0.68-0.69 1.27±0.02 1.05±0.01 0.07±0.01 1.00±0.00 0.21±0.01 1±0 211.6/216 57.2
0.69-0.70 1.40±0.02 0.05±0.01 0.21±0.01
0.70-0.71 1.51±0.02 1.05±0.01 0±0 1.00±0.00 0.19±0.01 1±0 200.2/218 80.1
0.71-0.72 1.68±0.02 0±0 0.23±0.01
0.72-0.73 1.83±0.03 1.06±0.01 0±0 1.00±0.00 0.24±0.01 1±0 181.3/232 99.4
0.73-0.74 2.02±0.03 0±0 0.29±0.02
0.74-0.75 2.10±0.03 1.05±0.01 0±0 1.00±0.00 0.31±0.02 1±0 228.8/236 61.9
0.75-0.76 2.33±0.03 0±0 0.32±0.02
0.76-0.77 2.50±0.03 1.04±0.01 0±0 1.00±0.00 0.38±0.02 1±0 249.4/250 49.8
0.77-0.78 2.73±0.03 0±0 0.35±0.02
0.78-0.79 2.94±0.04 1.03±0.01 0±0 1.00±0.00 0.41±0.02 1±0 202.1/254 99.3
0.79-0.80 3.18±0.04 0±0 0.43±0.02
0.80-0.81 3.35±0.04 1.04±0.01 0±0 1.00±0.00 0.47±0.02 1±0 192.5/258 99.9
0.81-0.82 3.60±0.04 0±0 0.47±0.02
0.82-0.83 3.79±0.04 1.03±0.01 0±0 1.00±0.00 0.51±0.02 1±0 187.6/210 86.5
0.83-0.84 3.99±0.04 0±0 0.47±0.02
0.84-0.85 4.13±0.05 1.03±0.01 0±0 1.00±0.00 0.54±0.03 1±0 178.7/258 100.0
0.85-0.86 4.26±0.05 0±0 0.50±0.02
0.86-0.87 4.44±0.05 1.01±0.01 0±0 1.00±0.00 0.52±0.03 1±0 163.0/190 92.2
0.87-0.88 4.69±0.05 0±0 0.53±0.03
0.88-0.89 4.83±0.05 1.02±0.01 0±0 1.00±0.00 0.55±0.03 1±0 173.3/218 98.9
0.89-0.90 4.86±0.05 0±0 0.52±0.03
0.90-0.91 4.85±0.05 1.00±0.01 0±0 1.00±0.00 0.50±0.02 1±0 193.8/218 87.9
0.91-0.92 4.86±0.05 0±0 0.48±0.02
0.92-0.93 5.00±0.05 1.02±0.01 0±0 1.00±0.00 0.48±0.02 1±0 181.6/210 92.3
0.93-0.94 4.74±0.05 0±0 0.46±0.02
0.94-0.95 4.64±0.04 1.01±0.01 0±0 1.00±0.00 0.38±0.02 1±0 209.8/192 18.0
0.95-0.96 4.46±0.04 0±0 0.37±0.02
0.96-0.97 4.23±0.04 1.02±0.01 0±0 1.00±0.00 0.36±0.02 1±0 179.8/178 44.8
0.97-0.98 3.87±0.04 0±0 0.26±0.01

Table 1: Results of the background fit.
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Figure 7: Fractional contributions for each of the three background channels to the to-
tal number of events present in the sample. Top: relative contribution of µ+µ−γ(γ)
events. Middle: relative contribution of π+π−π0 events. Bottom: relative contribution of
e+e−γ(γ) events.
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Figure 8: Sum of the 3 fractional background contributions shown in Fig. 7.
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fit with this corrections is very good, except for some regions at small M 2
ππ. The fit was

also carried out using the corrections described in appendix B.2, which produce a good
χ2 below and above the ρ peak (but are much worse in the ρ mass region). Given the
better χ2 of this second corrections below 0.5 GeV2, we use in this region the result of the
background fit obtained from correcting the distributions with this second approach.
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Figure 9: Probability for χ2 > χ2
min for two different ways to correct Mtrk distributions

in Monte Carlo. Black: Using the corrections described in appendix B.1. Red: Using
corrections described in appendix B.2. The second approach works better for M 2

ππ < 0.5
GeV2, and has therefore been used in the background fitting for this region.

4.3.2 Cross check on normalization of e+e−γ(γ) events

Since the background fit is not sensitive to the rather small contribution from Bhabha
events to the signal events (see Fig. 7, lower plot), a cross check has been performed in the
region between 0.7 and 0.9 GeV2 to verify that the amount of Bhabha events in Monte
Carlo has been produced with the correct normalization.

Data has been selected in bin slices of M 2
ππ using the xor condition for the π/e estimator

(see Sec. 4.7). In this condition, events are selected only if one of the two tracks is identified
to be a pion and the other one to be an electron. This greatly enhances the amount
of Bhabha events with respect to ππγ events. The absolute amount of Bhabha events
does change very little when using the xor over the or selection used in the standard
selection. This is different for the ππγ events, of which only 3 - 4% of the events from
the standard selection end up fulfilling the xor condition. In this way, while the absolute
number of Bhabha events does not change between the two different selection schemes,
they experience a relative enhancement respect to the ππγ events. As of the already
small amount of µµγ events selected in the or condition (see Fig. 7, upper plot) again
only 3 - 4% survive in the xor condition (the π/e separator treats muons and pions
almost identically), in the absence of πππ events, one can fit the distributions in Mtrk

with the simple sum of a polynomial (Bhabha) background and a Gaussian (ππγ) signal.
Integrating the polynomial function obtained from the fit allows to estimate the Bhabha
content in the Mtrk distribution for each slice of M 2

ππ between 0.7 and 0.9 GeV2 (where
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πππ events are absent, as their spectrum dies out above 0.7 GeV2). Upscaling the integral

of the Gaussian function obtained in the fit with the number c =
N .or.

ππγ

N .xor.
ππγ

, one recreates

the number of ππγ events in the or condition. From this, one can easily determine the
amount of Bhabha events expected to survive the standard selection cuts. Comparing the
outcome with the direct result from the Bhabha Monte Carlo, one can make a statement
about the goodness of the normalization of the Bhabha Monte Carlo.

Fig. 10 shows the result of the fit in 10 slices of M 2
ππ between 0.7 and 0.9 GeV2.

Fig. 11 depicts the estimate of Bhabha contribution to the data spectrum obtained with
the method described above, together with the direct outcome of the Bhabha Monte
Carlo used in the background fit (see also Fig. 7, lower plot). The agreement is very good,
justifying the use of the Bhabha Monte Carlo in the background fitting procedure without
a free normalization parameter.
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Figure 10: Result of the fit of the Mtrk spectrum of data selected with the xor of the π/e
estimator with a polynomial + Gaussian function. 10 slices of M 2

ππ between 0.70 and 0.90
GeV2 are shown.
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Figure 11: Result of the cross check on eeγ normalization using xor selected data (blue
triangles) and the outcome of the Monte Carlo (black crosses) used in the background fit.

4.3.3 Contributions from additional backgrounds

A potential contribution from events e+e− → e+e−π+π− has been evaluated using a sam-
ple of 800.000 reconstructed Monte Carlo events from the process φ → ηγ → e+e−π+π−γ,
which have been provided by the KLOE η → e+e−π+π− analysis, and the EKHARA
Monte Carlo generator [19, 20].

The EKHARA generator, which contains the diagrams shown in Fig. 12, was used to
evaluate the effective cross section for having at least one pair of charged particles fulfilling
the following requirements:

• 50o < θtrack < 130o

• pT,track > 160 MeV or pz,track > 90 MeV

• 150MeV < |~p1|+ |~p2| < 1020MeV

• (−220)MeV < MMiss < 120MeV

• 130MeV < Mtrk < elliptical cut in Fig. 2, left

• θΣ < 15o or θΣ > 165o

• At least one of the tracks fulfilling these conditions should be identified as a pion

The last condition is imposed since 2 electrons passing all conditions would be rejected by
the π/e likelihood estimator.

To accommodate the reconstruction efficiency into the EKHARA effective cross section,
the φ → ηγ → e+e−π+π−γ Monte Carlo events (which were obtained from a Monte Carlo
generator interfaced with the KLOE detector simulation) were used to find out how many
tracks with 50o < θtrack < 130o and pT,track > 160 MeV or pz,track > 90 MeV would fulfill
the following conditions:

• each track must cross a cylinder centered around the beam interaction point with
14 cm length and 8 cm radius
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• the transverse distance to the IP of the first (wire) hit in the drift chamber of each
track must be smaller than 50 cm

It was found that for pions, this reconstruction efficiency from Monte Carlo is επ =
0.94, while for the electrons, one obtains εe = 0.98, both flat in θ and equal for both
charges. Using these values in EKHARA as a weight for the charged tracks surviving the
requirements mentioned above, one obtains a total cross section of σeeππ = (46.98±0.15)pb.

Fig. 13 shows the relative contribution from e+e− → e+e−π+π− events to the spectrum
in Fig. 2, right. This plot was obtained by using the effective cross section obtained from
EKHARA to estimate the effective yield of e+e−π+π− events for 241.4pb−1 in bins of the
invariant mass squared of the pair of tracks, assuming for both tracks to have the mass of
a charged pion. This event yield was then compared to the data spectrum after selection.
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Figure 12: Diagrams contributing to the process e+e− → e+e−π+π− (figure taken
from [20]).

M2 
ππ [GeV2]

0

0.002

0.004

0.006

0.008

0.01

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 13: Relative contribution from the process e+e− → e+e−π+π− to the data spec-
trum.
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To evaluate an eventual contribution from e+e− → e+e−µ+µ− (in which the muons
are misidentified as pions), we have used the NEXTCALIBUR Monte Carlo generator [21].
Applying acceptance cuts and the cut on Mtrk shown in Fig. 2, left, on the pair of muons
produced in the final state, the obtained cross section gives an event yield which is com-
patible with zero in most of the range of M 2

ππ, reaching a relative contribution to the
data spectrum of 0.05% only below 0.5 GeV2. This contribution is therefore considered
negligible for our analysis.

The additional background contribution from φ → (f0 + σ)γ → π+π−γ has been
estimated with PHOKHARA6.1, where the Achasov model fitted to π0π0γ was imple-
mented [22]. This contribution has been found to be negligible within the small angle
selection cuts described in Sec. 3.2.

The e+e− → ωγISR → π+π−π0γ contribution (σ = 5 nb) has been studied with
PHOKHARA5.0 interfaced with GEANFI detector simulation for the KLOE experiment [23],
105 events were generated in the full phase space. No events survived to the π+π−γ selec-
tion cuts, mostly due to the cut on missing mass in the preselection rejecting events with
mMiss > 120 MeV, which is the case for ω → π+π−π0 events.

4.3.4 Evaluation of the systematic uncertainty

The systematic uncertainty due to the background estimation has two parts:

• The contribution from the error on the weights w obtained in the fit procedure

• The contribution from e+e− → e+e−π+π− events (see Sec. 4.3.3)

The errors on the weights w obtained in the fit are enlarged if Pχ2>χ2
min

is smaller than

5% according to

δw −→
√

χ2
min

ndf
· δw (4.4)

Since δσππγ is proportional to (1−f) = 1−fµµγ −fπππ−feeγ , the relative uncertainty
on the cross section from the weights is given by2:

δσππγ

σππγ
=

√

(

δwµµγ

wµµγ
fµµγ

)2
+
(

δwπππ

wπππ
fπππ

)2
+ 2 · %µµγ,πππ

δwµµγ

wµµγ
fµµγ

δwπππ

wπππ
fπππ +

(

δweeγ

weeγ
feeγ

)2

1− fµµγ − fπππ − feeγ

(4.5)
The parameter %µµγ,πππ describes the correlation between the fit parameters wµµγ and
wπππ. Its value lies between -0.1 and +0.1. The contribution from eq. 4.5 to the relative
uncertainty on the σππγ cross section is smaller than 0.05% above 0.6 GeV2, and between
0.08 and 0.16% below (this reflects the fact that above 0.6 GeV2, the contribution from
πππ events is not fitted with a free normalization parameter anymore).

For the events e+e− → e+e−π+π−, the relative contribution as in Fig. 13 has been
subtracted from the spectrum, and a conservative error of 50% (including a 25% error of
the generator [24]) is taken as an uncertainty on the measurement.

2As the Bhabha events are not fitted, but merely included in the fit without a free normalization
parameter, weeγ = 1 and δweeγ = 0, as seen in Table 4.3; therefore the Bhabhas do not contribute to the
numerator in eq. 4.5.
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M2
ππ (GeV2) 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095

0.3 0.5 0.4 0.4 0.4 0.4
0.4 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.3 0.3
0.5 0.3 0.3 0.3 0.2 0.3 0.2 0.2 0.2 0.2 0.2
0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
0.7 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.8 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
0.9 0.1 0.1 0.1 0.1 0.1

Table 2: Systematic error in % due to background subtraction in 0.01 GeV2 bin intervals
of M2

ππ. The bin center is given by the sum of the values in the first row and first column.

Fig. 14 and Table 2 show the final systematic uncertainty on the measurement due to
the effects from the background evaluation. This introduces an error of 0.3% on the value
of ∆ππaµ.
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Figure 14: Systematic uncertainty to the cross section measurement due to background.

4.4 Efficiency estimation for the cuts in Mtrk

Once the background is subtracted from the spectrum, we correct for the efficiencies of
the kinematical variables Mtrk. It is evaluated from the Monte Carlo production for
π+π−γ(γ)events with the PHOKHARA generator. As this generator has been interfaced
with the GEANFI, we can extract the efficiency as a function of (M 2

ππ)rec. The kinematical
efficiency is thus the part of the Global Monte Carlo efficiency which is evaluated in
(M2

ππ)rec. From the outcome of the background fit procedure (see Sec. 4.3), one finds that
the corrections performed to the Monte Carlo distributions in reconstructed observables
result in a very good agreement in the shapes of the distributions (see e.g. χ2/ndof values
in Table 4.3 or the plots of fit results in appendix A). We therefore do not perform an
additional correction concerning a difference between Mtrk efficiencies obtained from data
and from Monte Carlo.
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The systematic uncertainty has been estimated by performing the analysis changing
the cut Mtrk = 130 MeV which separates ππγ from µµγ events to Mtrk = 120 MeV. A
fractional difference of 0.1% (flat in Mππ) on the ππγ cross section is found. A similar
change can be expected from a variation of the elliptical cut in the Mtrk-M

2
ππ-plane (Fig. 2,

left). A value of 0.2% is thus taken as systematic error due to the Mtrk cut.

4.5 Correcting for the detector resolution

The correction for the detector resolution (often called unfolding) in M 2
ππ takes place right

after the correction for the kinematical efficiencies (see Fig. 4). As this implies the passage
from (M 2

ππ)rec to (M2
ππ)true, subsequent corrections have to be performed in (M 2

ππ)true.
The number of events in bin i of (M 2

ππ)true can be related to the spectrum of observed
events in bins j of (M 2

ππ)rec via

N true
i =

∑

j=1

P (N true
i |N rec

j ) ·N rec
j (4.6)

where the sum runs over all bins of the reconstructed quantity M 2
ππ. The problem then

consists in finding the quantity P (N true
i |N rec

j ), which describes the bin-to-bin migration of
events due to the event reconstruction (and thus the detector resolution). This quantity
determines the contribution of an observed event in bin j of (M 2

ππ)rec to the bin i in
(M2

ππ)true.
We have used to methods to evaluate P (N true

i |N rec
j ):

• Evaluating P (N true
i |N rec

j ) directly from a sample of reconstructed π+π−γ(γ) Monte
Carlo events, using the normalization condition

ntrue
∑

i=1

P (N true
i |N rec

j ) = 1 (4.7)

This corresponds to the statement that each observed event must come from one or
more bins of the true values of M 2

ππ. Then the correction reduces to a simple matrix

multiplication of P (N true
i |N rec

j ) with the vector of the observed spectrum in bins of

(M2
ππ)rec. However, a bias can be introduced due to the parametrization of |Fπ|2

used in the Monte Carlo generation.

• Evaluating P (N true
i |N rec

j ) using Bayes’ theorem [25]. This is a more sophisticated

procedure, reducing the bias from the parametrization for |Fπ|2 used in the Monte
Carlo production by defining P (N true

i |N rec
j ) as

P (N true
i |N rec

j ) =
P (N rec

j |N true
i ) · P0(N

true
i )

∑ntrue

l=1 P (N rec
j |N true

l ) · P0N true
l

(4.8)

where the initial probability P0(N
true
l ) is changed in an iterative procedure to become

more and more consistent with the distribution of the N true
i . Both P0(N

true
l ) and

the response matrix P (N rec
j |N true

i ) are obtained from a Monte Carlo production of
π+π−γ(γ) events. An easily modifiable FORTRAN code from the authors’ webpage [26]
performs the necessary calculations and iterations.
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Figure 15: The probability matrix P (N true
i |N rec

j ) (smearing matrix) which represents the

correlation between generated (true) and reconstructed values for M 2
ππ.

In Fig. 15, the probability matrix P (N true
i |N rec

j ) from Monte Carlo is shown. The high
precision of the KLOE drift chamber results in an almost diagonal matrix. Both methods
give rather similar results. Following the advice from the author of the Bayesian unfolding
method, we perform a smoothing of the spectrum to be unfolded to avoid fluctuations
caused by statistical limitations. The smoothing is performed only in the regions below
0.5 GeV2 and between 0.7 and 0.95 GV2, and not in the region of the ρ− ω interference.
Fig. 16 shows the outcome of the two methods, compared to the original input spectrum.
In the analysis, we use the Bayesian approach, while the Matrix Multiplication method is
used to estimate the systematic uncertainty. It has also been verified that the outcome of
the procedure does not depend on the χ2-like cutoff value used to terminate the iteration
loop. Fig. 17 shows the covariance matrix obtained in the Bayesian unfolding method.
It essentially maintains the diagonal structure of the smearing matrix without getting
broader. As an estimate for the systematic uncertainty on the differential dσππγ/dM2

ππ

cross section, the π+π−cross section and |Fπ|2, we take the absolute value of the difference
between the two methods. As can be seen in Fig. 18, this gives a significant contribution
only near the ρ− ω interference region, where the smallness of the width of the ω meson
introduces strong variations in the shape of |Fπ|2 over small intervals of M 2

ππ. Table 3
shows the values of the relative systematic uncertainty on our measurement in %, only
non-negligible in the region between 0.58 and 0.63 GeV2. Please note that the unfolding
has a negligible effect on the integral on aππ

µ , as it simply moves events between adjacent
bins. Therefore, the uncertainty given in Table 3 should not be taken into account when
evaluating the integral on aππ

µ from σππ.
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Figure 16: Left: Input spectrum (black) in bins of (M 2
ππ)rec and unfolded spectrum for

matrix multiplication method (red) and Bayesian method (blue) in bins of (M 2
ππ)true.

Right: Ratio of the unfolded over the input spectrum, for the matrix multiplication method
(red) and the Bayesian method (blue) in bins of Mππ.

M2
ππ (GeV2) 0.585 0.595 0.605 0.615 0.625

δunf (%) 0.4 0.3 2.1 4.0 0.4

Table 3: Systematic error in % on dσ(e+e− → π+π−γ)/dM2
ππ , σ(e+e− → π+π−) and |Fπ|2

due to the correction for detector resolution in 0.01 GeV2 intervals. The indicated values
for M2

ππ represent the center of the bin. Outside this interval the effect is negligible.

4.6 Tracking efficiency

The efficiency of reconstructing the pion track is measured per single charge, both on
Monte Carlo and data samples, conditioned to the presence of a tagging track of opposite
sign. More specifically, the efficiency to find the pion track of a given sign is parametrized
as a function of momentum and polar angle slices of the candidate track.

We studied Monte Carlo events of π+π−γ and two control samples from data: π+π+π0

events, that are almost background free and provide large statistics (the cross section
σe+e−→π+π−π0 is about 1 order of magnitude larger than the signal), but they are limited
to probe track momentum p < 400 MeV; and π+π−γ events, which are contaminated with
π+π+π0 and µ+µ−γ events, such that hard cuts are applied and the resulting statistics is
small, but it allows to cover larger momentum bins.

The selection of the π+π−π0 data sample is based on the following requirements applied
on a sample of 5 pb−1 of “raw” data:

(3π.1) at least one tagging track “good”, namely first hit
√

x2
FH + y2

FH < 50 cm and point of

the closest approach (pca) of the backward track extrapolation
√

x2
PCA + y2

PCA < 8

cm, |zPCA| < 7 cm;

(3π.2) the tagging track must have a cluster associated to it (after extrapolating the track
to the calorimeter and looking for a cluster within a sphere of radius = 90 cm)
recognized as a pion – PID function logLπ/Le > 0;

(3π.3) 2 and only 2 photons, namely prompt clusters – according to the standard prescrip-
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Figure 17: Covariance matrix obtained from the Bayesian unfolding method.
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Figure 18: Estimate of the systematic uncertainty on the points of the differential
dσππγ/dM2

ππ cross section, the π+π−cross section and |Fπ|2 due to the unfolding pro-
cedure. It has been obtained by dividing the unfolded spectrum from the Matrix Multi-
plication method for the unfolded spectrum from the Bayesian method. The fits outside
the region of the ρ− ω interference give values compatible with 1.
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Figure 19: Data vs. Monte Carlo comparison of tracking efficiencies for negative (top)
and positive (bottom) tracks, as a function of the expected momentum, for different polar
angle range. Pions are obtained from a sample of π+π−π0 data and π+π−γ MC events.
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tion |tclu − rclu/c| < 5σt – and neutral, i.e. neither associated to the tagging track
nor to other tracks;

(3π.4) the 2 photons must have energy > 50 MeV and be distant > 60 cm, each other.

Momenta of the two photon clusters are improved by means of a χ2 minimization proce-
dure, where measured variables and constraints are sketched in the following table:

10 measurements: 5 for each γ 4 constraints

Eγ ≡ γ cluster energy M 2
γγ = m2

π0

~rγ ≡ γ cluster space coordinates M 2
Miss(

∑

Ei, |
∑

~pi|) = m2
π+

tγ ≡ γ cluster time tγ − |~rγ | /c = 0, for each γ

where the missing mass, MMiss, is evaluated from momenta of the 2 photons and of the
tagging track.

The following criteria to select π+π−γ events from a sample of 90 pb−1 of “raw” data
and 110 pb−1 of Monte Carlo – with scale factor 6, i.e. effective 660 pb−1 – are used:

(ππγ.1) at least one tagging track “good”, namely first hit
√

x2
FH + y2

FH < 50 cm and point of

the closest approach (pca) of the backward track extrapolation
√

x2
PCA + y2

PCA < 8

cm, |zPCA| < 7 cm;

(ππγ.2) the tagging track must have an associated cluster (after extrapolating the track to the
calorimeter and looking for a cluster within a sphere of radius = 90 cm) recognized
as a pion – PID function logLπ/Le > 0;

(ππγ.3) 1 and only 1 photon with energy > 50 MeV;

(ππγ.4) the tagging track must have momentum |~ptag| > 460 MeV, to suppress π+π−π0

events on data;

(ππγ.5) the expected track must have mass MMiss < 120 MeV – evaluated using 4-momentum
conservation on momenta of the photon and the tagging track – and MLP < 0.3, to
suppress µ+µ−γ events on data.

No difference is found on Monte Carlo with and without requirements (ππγ.4) and (ππγ.5).
For all three samples, the event is efficient if a fitted track with opposite charge with

respect to the tagging track, and with
√

x2
FH + y2

FH < 50 cm,
√

x2
PCA + y2

PCA < 8 cm and

|zPCA| < 7 cm – namely the same quality cuts on tracks used in the event selection – is
found, for given values of expected momentum p, and polar angle θ.

Fig. 19 shows the comparison of the tracking efficiency between pions from π+π−π0

data and from the signal Monte Carlo sample, as a function of the expected momentum,
for different polar angle ranges. Fig. 20 shows the same comparison for pions of π+π−γ
data and Monte Carlo samples.
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Figure 20: Data vs. Monte Carlo comparison of tracking efficiencies for negative (top)
and positive (bottom) tracks, as a function of the expected momentum, for different polar
angle range. Pions are obtained from a sample of π+π−γ data and π+π−γ MC events.
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For each θ slice, we evaluated data over Monte Carlo corrections as the ratio of the
tracking efficiencies as a function of p, for pions of both signs:

c3π(θπ± , pπ±) =
εdata
π+π−π0(θπ± , pπ±)

εMC
π+π−γ

(θπ± , pπ±)
, cppg(θπ± , pπ±) =

εdata
π+π−γ(θπ± , pπ±)

εMC
π+π−γ

(θπ± , pπ±)

Both Fig. 21 and Fig. 22 show that corrections result almost flat for the momentum of
interest, and in good agreement for pions of the same sign and same polar angle range,
obtained from two different data samples.
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Figure 21: Ratio of the single track efficiency, as a function of momentum, between pions
obtained from π+π−π0 data and π+π−γ MC events. The average ratio over momentum
is taken as the data-MC correction for each angle interval indicated inside the panels.

The tracking efficiency as a function of M 2
ππ is obtained mapping these single pion

efficiencies, measured as a function of p and θ, with generated kinematics from Monte
Carlo. In particular, we used events with the same acceptance and Mtrk cuts of the event
selection.

For a given bin in M 2
ππ (width = 0.01GeV2), the tracking efficiency is an average over

the n different configurations of (θπ+ , pπ+ , θπ− , pπ−) contributing to that bin:

εtrk(M
2
ππ) =

1

N

n
∑

k=1

νk εk, (4.9)

where N is the number of Monte Carlo events used to compute the frequency νk with
which a certain k configuration occurs.
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Figure 22: Ratio of the single track efficiency as a function of momentum, between pions
obtained from π+π−γ data and π+π−γ MC events. The average ratio over momentum is
taken as the data-MC correction for each angle interval indicated inside the panels.

The correction factors in Fig. 21 (constant as function of momentum) and Fig. 22 has
been used to evalute the data-Monte Carlo corrections as function of M 2

ππ to the tracking
efficiency. The fractional difference between the results obtained with the two samples is
0.3%, which is taken as systematic error.

4.7 Pion cluster identification efficiency

In this analysis, each track is extrapolated to the calorimeter and at least one cluster is
searched for within a sphere of radius |~rext − ~rclu| < 90 cm, where ~rext and ~rclu are the
coordinates of the extrapolated point of the track in the calorimeter and of the cluster
centroid, respectively. If there is more than 1 cluster inside this sphere, the most energetic
one is defined as the cluster associated to the track.

Fig. 23 shows that the distance between the extrapolated points of the pion tracks is
larger than 3 m, for the Mππ region of interest.

Clusters associated to the tracks are used to provide the trigger (see below subsection)
and for the purpose of particle identification, by means of the same likelihood function [11]
computed for the analysis of the published results, but trained with 2002 data sample.
We require at least one track to be identified as a pion, namely at least one track must
have an associated cluster with logLπ/Le > 0. This requirement is equivalent to exclude
events in the low left rectangle of Fig. 24.

The single π± efficiency, εtcl, is defined as the probability of finding a cluster with
logLπ/Le > 0, conditioned to the presence of the π∓ track. This is evaluated on both
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Figure 23: Distance between the points extrapolated to the calorimeter of the 2 pion tracks
as a function of invariant mass square of the 2 pions.

data (from a sample of ∼ 120 pb−1 from “streamed” events) and Monte Carlo (from a
sample of ∼ 10 pb−1 with scale factor 6, i.e. effective ∼ 60 pb−1) π+π−γ events, where
the pion track of opposite sign has an associated cluster with logLπ/Le > 0 and this fires
at least 2 calorimeter trigger sectors.

In this case, the presence of both tracks is exploited in terms of the same θππ < 15◦ and
Mtrk cuts used in the event analysis of Sec. 3.2, i.e. a selection cleaner and more efficient
than the control samples obtained from “raw” data for the tracking efficiency.

Therefore, the single pion efficiencies are evaluated in finer slices of momentum (30
bins between 200 and 500 MeV) and polar angle (8 intervals between 50◦ and 90◦) of the
fitted pion track, with better resolution than the expected momentum. These are mapped
using the formula of eq. 4.9, εtcl(M

2
ππ) = (

∑

k νk εk)/N , where (the “OR of the likelihood”
is considered) :

εk = 1−
[

1− εdata
π+π−γ(θπ+ , pπ+)

] [

1− εdata
π+π−γ(θπ− , pπ−)

]

→ εdata
π+π−γ(M2

ππ) (4.10)

εk = 1−
[

1− εMC
π+π−γ(θπ+ , pπ+)

] [

1− εMC
π+π−γ(θπ− , pπ−)

]

→ εMC
π+π−γ(M2

ππ) (4.11)

The choice of the track-to-cluster association radius Rtca = |~rext − ~rclu| = 90 cm is
motivated by trigger studies discussed below. Fig. 25 shows both εdata

π+π−γ(M2
ππ) and

εMC
π+π−γ(M2

ππ), depending on Rtca = 70, 80, 90, 100, 110 cm.

The ratio, r90 ≡ εdata(M2
ππ)/εMC(M2

ππ), between data and Monte Carlo efficiencies
with Rtca = 90 cm is used and the relative systematic error is given by the relative
difference between r110 and r70 and results to be << 0.1%, and is therefore considered
negligible.
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4.8 Trigger corrections

Signal events are selected according to calorimeter self-triggering pions: at least two trigger
sectors [10] with energy deposit above threshold – provided that they are not located in
the same end cap – must be fired by the clusters associated to the pion tracks.
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Figure 26: Left: space–time correlation of the clusters able to fire one calorimeter trigger
sector with respect to extrapolated point, ~rext, of the positive (top) and the negative
(down) pion track, from data. Right: particle identity of the clusters able to fire one
calorimeter trigger sector as a function of ∆R ≡ |~rclu−~rext|, for positive (top) and negative
(down) pion tracks, from Monte Carlo.

The efficiency for this selection is obtained with the single pion method, from the
same samples used in the previous subsection. The two tracks satisfying the requirements
of the analysis selection are extrapolated to the calorimeter. Clusters with the centroid
located within 90 cm from the point extrapolated from the π± track to the calorimeter
are assigned to the π± category. The choice of 90 cm radius is motivated by the need to
include as many clusters originated by pions – either fragments or photons produced in π
interactions with the calorimeter – as possible.

Clusters firing 1 sector are investigated in terms of their time difference, ∆T±, with
respect to the time of the most energetic cluster close to the extrapolated point ~rext of
the pion and the distance, ∆R±, between the cluster centroid and ~rext: the choice of 90
cm allows to include more clusters correlated in time and space to pions. Left panel of
Fig. 26 shows the correlation of these variables for π+π−γ data events. This behaviour is
also confirmed on π+π−γ Monte Carlo events: right panel of Fig. 26 shows the particle
identity of the clusters as a function of ∆R±, the choice of 90 cm allows to include more
clusters originated by the pions and not to add accidental clusters.
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The single π± probability, P0,1, of firing 0 or 1 trigger sectors is measured for both
data and MC signal events where the trigger is provided by the π∓. This probability is
parametrized in 30 momentum bins between 200 and 500 MeV and 8 intervals of polar
angle between 50◦ and 90◦ of the pion track.

The self-trigger efficiency as a function of M 2
ππ is obtained mapping the single pion

probabilities as in eq. 4.9, εtrg(M
2
ππ) = (

∑

k νk εk)/N , where for both data and MC:

εk = 1− P1(θ+, p+)P0(θ−, p
−

)− P0(θ+, p+)P1(θ−, p
−

)− P0(θ+, p+)P0(θ−, p
−
) → εππγ(M2

ππ)
(4.12)

The correctness of this combinatorial has been checked by Monte Carlo.
The efficiency evaluated with the single pion method using data is checked with an

estimate of the efficiency of self-triggering pions conditioned to the drift chamber trigger.
With the following conventions:

N. of events with EMC trigger = εEMCNTOT = NEMC

N. of events with DC trigger = εDCNTOT = NDC

N. of events with both triggers = εEMCεDCCT NTOT = NBOTH

CT is the correlation term between EMC and DC triggers, where CT = 1 means no
correlation.

Monte Carlo studies prove that CT ≈ 1 for π+π−γ events of this analysis.
We applied the ratio of data over Monte Carlo efficiencies, obtained with single pion

method of eq. 4.12. The systematic error of the trigger correction is evaluated comparing
the single pion method with the DC conditioned efficiency, from the same data sample.
Fig. 27 shows the comparison between self-triggering pion efficiencies, evaluated with the
two methods. The relative systematic error is about 0.1%.

4.9 From M2
ππ to (M0

ππ)2

The quantity M 2
ππ is computed from measured momenta of the pions and is shifted by

radiative effects from the mass value at the π+π−γ vertex, (M 0
ππ)2 (see Fig. 28). The

transition from M 2
ππ to (M0

ππ)2 is evaluated using a private version of the PHOKHARA
Monte Carlo generator [27] . This generator allows to (approximately) tell whether a
generated photon comes from the initial or the final state. The presence of final state
radiation shifts the observed value of M 2

ππ (evaluated from the momenta of the two charged
pion tracks in the events) away from the value of the invariant mass squared of the virtual
photon produced in the collision of the electron and the positron. The shift is only in one
direction, (M 0

ππ)2 ≥ M2
ππ.

To find out in which bin of (M 0
ππ)2 an event with a measured value of M 2

ππ belongs,
a probability matrix similar to the unfolding matrix in Sec. 4.5 has been constructed (see
Fig. 29). As the unshifting correction is performed inside the small angle acceptance
cuts (50o < θπ < 130o, θππ < 150 or θππ > 1650), the effect of this correction (which is
necessitated by the presence of final state radiation in the selected events) is minimized
due to the natural suppression of events with final state radiation for these acceptance
cuts.
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Figure 27: Top: comparison between the single pion method and the efficiencies for self-
triggering pions obtained from events with a drift chamber trigger as a function of the ππ
invariant mass, obtained from the same data sample. Down: the relative difference.
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Figure 28: Photon emission from pions, shifting the dipion mass M 0
ππ → Mππ.

A matrix multiplication similar to the one used to estimate the systematic uncertainty
in the unfolding procedure is then applied to unshift the spectrum and pass from M 2

ππ to
(M0

ππ)2.
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Figure 29: Unshifting matrix. The line above (M 0
ππ)2 = 1.03 GeV2 in the left plot

represents events with two pions and one photon in the final state. As our final results
extend only up to (M 0

ππ)2 = 0.95 GeV2, these events are outside the range.

Fig. 30, obtained directly from Monte Carlo, shows the unshifting correction on the
spectrum. The relative increase of final state radiation due to events with one photon
from ISR and one photon from FSR over pure ISR events at low values of M 2

ππ introduces
a larger effect of the unshifting in this region, resulting in a decrease of the spectrum in
this region (for a more detailed discussion on the unshifting, see [28]).

4.10 Acceptance

The acceptance for the cuts in θπ and θππ for σππ and |Fπ|2 are evaluated using the private
version of the PHOKHARA Monte Carlo generator which has also been used in Sec. 4.9, as
they need to be known in bins of (M 0

ππ)2, the invariant mass squared of the virtual photon
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Figure 30: Unshifting correction due to final state radiation on the spectrum (obtained
from Monte Carlo).

produced in the collision of the electron and the positron3. To exclude the doublecounting
of acceptances, the acceptance in θπ has been evaluated for events with θππ < 150 or
θππ > 1650.

Fig. 31 shows the acceptance for the cut in 50o < θπ < 130o (left) and θππ < 150 or
θππ > 1650 (right).
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Figure 31: Left: Acceptance for the cut in θπ (conditioned to the cut on θππ). Right:
Acceptance for the cut in θππ.

4.10.1 Systematic error on Acceptance

We evaluated the fractional difference in the M 2
ππ spectrum for both data and Monte

Carlo, varying the cut (see Fig 32) θππ < θcut = 15◦ (or θππ > θcut = 15◦).
If θcut < 15◦ (e.g. selecting events with θππ < 14◦) we evaluated the quantity:

N(θππ < θcut)−N(θππ < 15◦)

N(θππ < 15◦)
=

N(θππ < θcut)

N(θππ < 15◦)
− 1 = − N(θcut < θππ < 15◦)

N(θcut < θππ < 15◦) + N(θππ < θcut)
(4.13)

where the third expression focuses on the independent quantities and provides the correct
statistical error propagation

p

N2(θcut < θππ < 15◦) N(θππ < θcut) + N(θcut < θππ < 15◦) N2(θππ < θcut)

[N(θcut < θππ < 15◦) + N(θππ < θcut)]
2

(4.14)

3As the differential cross section dσππγ/dM2
ππ is not corrected for the transition from M 2

ππ to (M0
ππ)2,

the acceptance correction in θππ in this case is done in M2
ππ .
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Figure 32: Fiducial volume of the analysis, together with enlarging (or squeezing) of the
θππ cone. Both hemispheres are considered in the analysis and in these studies.

If θcut > 15◦ (e.g. selecting events with θππ < 16◦) we evaluated the quantity:

N(θππ < θcut)−N(θππ < 15◦)

N(θππ < 15◦)
=

N(θππ < θcut)

N(θππ < 15◦)
− 1 =

N(15◦ < θππ < θcut)

N(θππ < 15◦)
(4.15)

We measured how well the Monte Carlo reproduces the acceptance cut on data, in a way
similar to the studies for the acceptance in the luminosity measurement [29].

Fig. 34 and Fig. 35 show the fractional variation on the M 2
ππ spectrum as a function

of θcut.
The excursion on the spectrum at θcut = (15 ± 1)◦ as function of M 2

ππ is taken as
systematic error.

The systematic errors are given in Table 4.

M2
ππ range (GeV 2) Systematic error (%)

0.35 ≤ M 2
ππ < 0.39 0.6

0.39 ≤ M 2
ππ < 0.43 0.5

0.43 ≤ M 2
ππ < 0.45 0.4

0.45 ≤ M 2
ππ < 0.49 0.3

0.49 ≤ M 2
ππ < 0.51 0.2

0.51 ≤ M 2
ππ < 0.64 0.1

0.64 ≤ M 2
ππ < 0.95 -

Table 4: Acceptance systematic errors.
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Figure 33: Dependence on θcut with increasing M 2
ππ ranges from upper to lower panels.

These ranges (in GeV2) are specified in the plot in place of the ordinate labels.
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Figure 34: Dependence on θcut with increasing M 2
ππ ranges from upper to lower panels.

These ranges (in GeV2) are specified in the plot in place of the ordinate labels.
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Figure 35: Dependence on θcut with increasing M 2
ππ ranges from upper to lower panels.

These ranges (in GeV2) are specified in the plot in place of the ordinate labels.
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4.11 Luminosity
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Figure 36: Top: zoom of Mtrk spectrum from VLAB data fitted with the sum of an
exponential plus a Gaussian functions. Down: the same spectrum, after subtracting the
exponential, compared with a distribution of events with both tracks identified as pions,
from the same data sample.

The absolute normalization of the data sample is obtained [30] from very large angle
(55◦ < θ < 125◦) Bhabha, VLAB, events. The integrated luminosity, L, is provided by:

L =
Nobs −Nbkg

σeff
, (4.16)

where Nobs is the number of candidate large angle Bhabha events, Nbkg is the number of
background events and σeff is the effective cross section for the KLOE VLAB selection
cuts. This is cross section is evaluated by the Monte Carlo generator Babayaga [31] –
including QED radiative corrections with the parton shower algorithm – interfaced with
the KLOE detector simulation GEANFI [7]. The method for the luminosity determination,
the event-selection criteria, and the systematics are all discussed in [30], and we consider
here only the updates for the 2002 data analysis.
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An updated version of the generator, Babayaga@NLO [32], has been released, in which
the new predicted cross section decreases by 0.7% (σBhabha = 456.2 nb) 4 and the theoret-
ical uncertainty improves from 0.5% to 0.1% with respect to the older version.

From the experimental point of view, the hardware veto of cosmic rays, has been
removed during 2002 data taking. This implies that this inefficiency is not present in
this analysis of VLAB events, and, furthermore, the background process e+e− → π+π− is
slightly increased with respect to the analysis of 2001 data, because the veto inefficiency
was remarkable for this class of events.

Fig. 36, top, shows the tail of the Mtrk spectrum of VLAB events in which the signal
and background distributions are respectively parametrized with an exponential and a
Gaussian function. Fig. 36, bottom, shows the comparison of the same spectrum after
subtracting the exponential with the distribution of events with both tracks fulfilling the
pion identification – logLπ/Le > 0 – out of the same sample.

Table 5 lists the differences in the contributions to the corrections and systematic errors
used for the luminosity measurement, between the analyses of the two data sets.

2001 2002

relative theoretical error on σeff 0.5% 0.1%

background correction −0.6% −0.7%

cosmic ray veto efficiency +0.4% negligible

relative error on L: δth ⊕ δexp 0.6% 0.3%

Table 5: Differences between 2001 and 2002 corrections and systematic errors on the
luminosity measurement.

More in detail, the background correction is the fraction of events identified as e+e− →
π+π− to be subtracted from data and cosmic ray veto efficiency is the fraction of events
to be added to the event counts, because of this inefficiency. The relative systematic error
on the luminosity measurement is 0.3%.

5 Radiative corrections

5.1 The radiator function

To pass from the radiative differential cross section

dσ(e+e− → ππ + γISR(γISR))(M2
ππ , θππ)/dM2

ππ

to the total cross section for the process e+e− → π+π−, in the absence of photons from
final state radiation, one can relate the two items by introducing a theoretical radiator
function H(M 2

ππ, s, θππ) via the equation [8, 33]

dσ(e+e− → ππ + γISR(γISR))(M2
ππ, θππ)

dM2
ππ

× s = H(M 2
ππ, s, θππ)× σ(e+e− → ππ)(M 2

ππ)

(5.1)

4For a comparison of the Bhabha cross section with the other generators see [30].
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Here M2
ππ is the squared invariant mass of the two-pion system (which is identical

to the squared invariant mass of the virtual photon γ∗ in the absence of FSR), s is the
squared center-of-mass energy of the DAΦNE collider, and θππ is the angle of the photon
or the photon system (in case there is more than one photon). The dimensionless quantity
H describes the emission of soft, virtual and hard photons in the initial state.

Using σππ(M2
ππ) = πα2

3M2
ππ

β3
π|Fπ(M2

ππ)|2, one can easily rewrite eq. 5.1 as5

dσππγ(γ)(M
2
ππ, θππ)

dM2
ππ

=
H(M2

ππ, s, θππ)

s
× πα2

3M2
ππ

β3
π|Fπ(M2

ππ)|2 (5.2)

One can exploit eq. 5.2 using the PHOKHARA Monte Carlo generator, which con-
tains ISR processes to next-to-leading order [33], to obtain the H-function. Setting
|Fπ(M2

ππ)|2 = 1 in the generator (and switching off the vacuum polarization of the in-
termediate photon in the generator), H(M 2

ππ, s, θππ) becomes

H(M2
ππ, s, θππ) = s× 3M2

ππ

πα2β3
π

×
dσππγ(γ)(M

2
ππ, θππ)

dM2
ππ

∣

∣

∣

MC

|Fπ(M2
ππ)|2=1

(5.3)

This is a convenient mechanism to extract H for certain cut values of θΣ without
having to deal with analytic formulas. If the binwidth dM 2

ππ is chosen identical for the

measured
dσππγ(γ)

dM2
ππ

and the
dσππγ(γ)

dM2
ππ

∣

∣

∣

MC

|Fπ(M2
ππ)|2=1

obtained from Monte Carlo, the division

for H automatically passes from a differential to an absolute cross section.
In the present analysis, H is evaluated for 0◦ < θππ < 180◦, as shown in Fig. 37. Using

a radiator function which is inclusive in θππ allows to factorize and treat consistently FSR
effects in the evaluation of the θππ acceptance (see Sec. 5.2).
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Figure 37: The dimensionless radiator function H(M 2
ππ, s), inclusive in θΣ, in bins of 0.01

GeV2 in M2
ππ. The value used for s in the Monte Carlo production is s = (Mφ)2 =

(1.019456 GeV )2
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5.1.1 Systematic error of the radiator function

The error quoted by the authors of PHOKHARA on the ISR part of the generator is
0.5%, mainly due to missing diagrams like non-factorizable two-photon exchange graphs
(see Fig. 38).

Figure 38: Two-photon exchange graph, not simulated in PHOKHARA.

In addition, we add an experimental systematic uncertainty to the radiator function
due to the spread of

√
s during the 2002 running period of DAΦNE. Fig. 39, left, shows the

spread in
√

s in the data. Fig. 39, right, shows the ISR cross section
dσππγ

dM2
ππ

∣

∣

∣

MC

|Fπ(M2
ππ)|2=1

for

two extreme values of
√

s (1019.2 and 1019.8 GeV), divided by the corresponding value of s
(as one needs to divide the measured cross section for H/s, see eq. 5.2). The experimental
systematic uncertainty is taken as half of the relative difference between the cross sections
in Fig. 39, right. Fig. 40 and Table 6 show the relative systematic uncertainty on H
coming from the spread in

√
s. This introduces an error of 0.2% on the value of aππ

µ .

(M0
ππ)2 (GeV2) 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095

0.3 0.3 0.4 0.2 0.1 0.2
0.4 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.3 0.1 0.2
0.5 0.3 0.3 0.1 0.2 0.3 0.3 0.3 0.2 0.2 0.3
0.6 0.1 0.3 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.3
0.7 0.3 0.3 0.4 0.3 0.3 0.3 0.4 0.3 0.3 0.3
0.8 0.4 0.4 0.3 0.5 0.4 0.5 0.4 0.4 0.5 0.5
0.9 0.5 0.6 0.6 0.6 0.7

Table 6: Systematic error in % due to the the spread in
√

s in the 2002 data taking period,
given in 0.01 GeV2 bin intervals of (M 0

ππ)2. The bin center is given by the sum of the
values in the first row and first column.

5.2 The treatment of final state radiation

The presence of events with final state radiation in the data sample affects our analysis in
the following items:
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Figure 40: The relative systematic uncertainty on H coming from the spread in
√

s.

• The Mtrk distributions (Secs. 4.3 and 4.4). These distributions are affected by final
state radiation. Missing FSR terms and the model dependence might affect our
background fitting procedure and the Mtrk efficiency. However, as these corrections
are performed within the small angle selection cuts, in which FSR is suppressed;
and due to the fact that we have found parametrizations which make the Monte
Carlo distributions in Mtrk resemble very much the ones for data (see appendix B
for details), we do not expect a non-negligible uncertainty due to final state radiation
effect on Mtrk

• The unshifting procedure 4.9. Again, this correction is performed inside the small
angle acceptance cuts, minimizing its impact. Still, the correction reaches several
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percent at lower values of (M 0
ππ)2. It has been argued [34] that the presence of a

second photon from FSR could give a non-negligible effect, as these higher-order
diagrams are not yet included in the PHOKHARA Monte Carlo code. As this is
however a higher order effect, we do not expect a sizable contribution.

• The θππ variable. While θπ is rather unaffected by the presence of final state radi-
ation, this is not true for θππ. In fact, the requirement to have θππ at small angles
is the key factor for the suppression of final state radiation in this analysis. After
correcting for the θππ acceptance, the spectrum is inclusive in θππ and therefore
also inclusive with respect to final state radiation. Here we completely depend on
the PHOKHARA Monte Carlo generator and the model of photon radiation from
pointlike pions (sQED).

• The division for the radiator function H(s). Here we assume factorization between
the ISR and the FSR process. This has been tested in the previous publication [6,28],
and our assumption was found to be valid within 0.2%.

As all the effects of final state radiation have already been evaluated in our previous
publication [6], and since the general approach in this analysis has not changed so much
concerning the treatment of final state radiation, we assume the combined error of 0.3%
for the uncertainty on the relative FSR contribution and the model dependence to be valid
also in this analysis.

5.3 The vacuum polarisation

In order to obtain the bare cross section, vacuum polarization effects must be subtracted.
This is done by correcting the cross section for the running of αem as follows:

σbare = σdressed

(

α(0)

α(s)

)2

≡ σdressed/δ(s) (5.4)

where the running of α can be written as [35]:

α(s) =
α(0)

1−∆αlep(s)−∆αhad(s)
(5.5)

The leptonic contribution can be calculated analytically, while the hadronic contribution
comes from a dispersion integral which includes the hadronic cross section itself as inte-
grand6:

∆αhad(s) = −α(0)s

3π
Re

∫ ∞

4m2
π

ds′
R(s′)

s′(s′ − s− iε)
(5.6)

Therefore, the correct procedure has to be iterative and it should include the same data
that must be corrected. However, since the correction is at the few percent level, we have
used the ∆αhad(s) as evaluated using σhad(s) values measured previously [36].

Fig. 41 shows the correction δ(s) applied to the π+π− cross section. This correction
avoids doublecounting of higher order terms in the dispersion integral for aππ

µ , and it is
not applied to the pion form factor |Fπ|2 in Table 6 (see also the analysis flow in Fig. 4).

A table with the values of δ(s) can be found in appendix C. The error on the δ(s)
points adds a systematic contribution to the value of aππ

µ of 0.1%.

6R(s) ≡ σhad
bare(s)/

4πα(0)2

3s
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Figure 41: Correction factor δ(s): σundressed(s) = σdressed(s)/δ(s), obtained from [36].

6 Results

The differential π+π−γ cross section is obtained from the observed count, Nobs, after sub-
tracting the residual background, Nbkg, correcting for the overall acceptance, εacc(M

2
ππ),

and the luminosity L, as discussed in the previous sections:

dσππγ

dM2
ππ

=
Nobs −Nbkg

∆M2
ππ

1

εacc(M2
ππ) L (6.1)

The differential cross section is then divided by the radiator function (provided by
the Phokhara Monte Carlo program [33]) to obtain the measured total cross section
σππ(γ)(M

0
ππ)2, as in eq. 5.1.

The pion form factor can then be obtained from the total cross section σππ(γ)(M
0
ππ)2

by subtracting FSR under the assumption of pointlike pions (ηFSR [37]), and including
the effects from vacuum polarisation δV P (see Sec. 5.3):

|Fπ((M0
ππ)2)|2 =

3

π

(M0
ππ)2

α2
em β3

π

σππ(γ) (1.− ηFSR) · δV P . (6.2)

Our results are summarized in Table 6, which lists:

• the differential cross section dσ(e+e− → π+π−γ)/dM2
ππ as a function of the invariant

mass of the di-pion system, M 2
ππ, in the angular region θππ < 15◦ or θππ > 165◦,

0◦ < θπ < 180◦;

• the bare cross section σ(e+e− → π+π−), inclusive of FSR, but with the vacuum
polarization effects removed [36], as a function of (M 0

ππ)2;

• the pion form factor dressed with vacuum polarization, but with FSR effects ex-
cluded, as a function of (M 0

ππ)2 (equal to M 2
ππ in the absence of FSR).

The cross section for e+e−→π+π−γ, after applying the corrections described above, is
shown in Fig. 42 left, for | cos θγ | > cos(15◦), while the bare cross section for e+e− → π+π−

is shown in the right panel.
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σππγ σbare
ππ |Fπ|2

Reconstruction Filter negligible
Background subtraction M 2

ππ dependent (Tab. 2)
Trackmass 0.2 % flat in M 2

ππ

Particle ID negligible
Tracking 0.3 % flat in M 2

ππ

Trigger 0.1 % flat in M 2
ππ

Unfolding M 2
ππ dependent (Tab. 3)

Acceptance M 2
ππ dependent (Tab 4)

L3 0.1 % flat in M 2
ππ

Luminosity 0.3 % flat in M 2
ππ

FSR resummation - 0.3 %
Rad. function (H(M 2

ππ)) - 0.5 %√
s dep. of H - M 2

ππ dependent (Tab. 6)
Vacuum Polarization - (Tab. 11) -

Table 7: List of systematic uncertainties.

The errors given in Table 6 are statistical only, while the common systematic errors
are shown in Table 7. It should be noted that the statistical errors account only for the
diagonal elements of the covariance matrix. The bin-by-bin errors are correlated as a
result of the unfolding procedure; for error propagation, as for example in the calculation
of ∆ππaµ (see below), the covariance matrix must be used [38].
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Figure 42: Left: Cross section for the e+e− → π+π−γ(γ) process, inclusive in θπ and with
0o < θππ < 15o or 165o < θππ < 180o. Right: Bare cross section for e+e− → π+π−.

In Fig. 43, the result for the pion form factor (including vacuum polarisation, and
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Figure 43: |Fπ|2 as a function of (M 0
ππ)2.

undressed from pionic final state radiation) is shown.

7 Evaluation of ∆ππaµ

The dispersive integral for ∆ππaµ is computed as the sum of the values for σ0
ππ listed in

Table 5 times the kernel K(s):

∆ππaµ =
1

4π3

∫ smax

smin

ds σ0
ππ(γ)(s)K(s) , (7.1)

where the kernel, see the second paper of Ref. [5], is given by

K(s) = x2
(

1− x2

2

)

+ (1 + x)2(1 + x−2)
(

log(1 + x)− x +
x2

2

)

+
1 + x

1− x
x2 log x

with

x =
1−

√

1− 4m2
µ/s

1 +
√

1− 4m2
µ/s

Eq. 7.1 gives

∆ππaµ = (387.2 ± 0.5stat ± 2.4exp ± 2.3th)× 10−10

in the interval 0.35< M 2
ππ < 0.95 GeV2. Contributions to the systematic errors on ∆ππaµ

are given in Table 9.
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M2
ππ|(M

0
ππ)2 σππγ σbare

ππ
|F (π)|2

M2
ππ|(M

0
ππ)2 σππγ σbare

ππ
|F (π)|2GeV2 nb/GeV2 nb GeV2 nb/GeV2 nb

0.355 13.07±0.16±0.09 309±4 7.35±0.11 0.655 59.62±0.19±0.31 683.8±2.7 25.90±0.10
0.365 14.21±0.16±0.09 335±4 8.09±0.11 0.665 56.28±0.18±0.29 626.9±2.5 23.98±0.10
0.375 15.20±0.16±0.10 354±4 8.68±0.11 0.675 53.43±0.18±0.28 573.5±2.4 22.16±0.09
0.385 16.60±0.16±0.11 380±4 9.45±0.11 0.685 49.84±0.17±0.26 520.8±2.2 20.33±0.09
0.395 18.23±0.17±0.11 405±4 10.23±0.11 0.695 47.22±0.16±0.24 476.0±2.0 18.78±0.08
0.405 19.97±0.16±0.12 439±4 11.28±0.11 0.705 44.65±0.16±0.23 435.8±1.9 17.38±0.08
0.415 22.00±0.17±0.14 472±4 12.30±0.11 0.715 41.40±0.15±0.21 389.5±1.7 15.70±0.07
0.425 24.09±0.17±0.15 511±4 13.51±0.11 0.725 39.40±0.14±0.20 360.7±1.6 14.69±0.07
0.435 26.57±0.17±0.16 548±4 14.70±0.11 0.735 37.80±0.14±0.19 331.1±1.5 13.63±0.06
0.445 29.26±0.18±0.17 592±4 16.13±0.12 0.745 36.05±0.14±0.18 302.6±1.4 12.60±0.06
0.455 32.56±0.19±0.19 648±4 17.91±0.12 0.755 34.13±0.13±0.17 276.0±1.3 11.63±0.05
0.465 35.60±0.19±0.20 695±4 19.49±0.12 0.765 32.50±0.13±0.16 251.4±1.2 10.70±0.05
0.475 39.18±0.19±0.22 749±4 21.31±0.13 0.775 31.14±0.12±0.16 230.2±1.1 9.91±0.05
0.485 44.28±0.20±0.25 826±5 23.85±0.13 0.785 30.01±0.12±0.15 212.3±1.0 9.24±0.04
0.495 49.73±0.21±0.28 908±5 26.61±0.14 0.795 29.23±0.11±0.15 197.4±0.9 8.68±0.04
0.505 54.17±0.22±0.30 963±5 28.65±0.14 0.805 28.46±0.11±0.14 183.7±0.9 8.16±0.04
0.515 59.20±0.22±0.33 1035±5 31.25±0.15 0.815 27.79±0.11±0.14 171.3±0.8 7.69±0.04
0.525 63.90±0.23±0.35 1085±5 33.25±0.15 0.825 27.06±0.11±0.14 158.4±0.8 7.180±0.035
0.535 69.82±0.24±0.38 1158±5 36.05±0.16 0.835 26.43±0.10±0.13 147.0±0.7 6.732±0.032
0.545 74.68±0.24±0.41 1209±5 38.22±0.16 0.845 26.02±0.10±0.13 137.5±0.6 6.358±0.030
0.555 79.20±0.24±0.43 1242±5 39.88±0.16 0.855 25.63±0.10±0.13 127.4±0.6 5.948±0.028
0.565 83.79±0.25±0.45 1289±5 42.06±0.16 0.865 25.43±0.10±0.13 119.2±0.6 5.621±0.026
0.575 85.79±0.25±0.46 1276±5 42.27±0.16 0.875 25.49±0.10±0.13 111.5±0.5 5.304±0.025
0.585 88.66±0.25±0.58 1285±5 43.18±0.16 0.885 25.49±0.10±0.13 104.9±0.5 5.038±0.023
0.595 90.24±0.25±0.55 1282±5 43.61±0.16 0.895 25.77±0.10±0.13 98.7±0.4 4.784±0.022
0.605 91.38±0.25±2.01 1262±5 43.37±0.16 0.905 26.20±0.10±0.13 93.1±0.4 4.550±0.020
0.615 70.10±0.21±2.83 898.1±3.5 33.03±0.13 0.915 26.81±0.10±0.13 87.6±0.4 4.322±0.019
0.625 65.02±0.20±0.43 801.7±3.2 29.84±0.12 0.925 27.49±0.10±0.14 82.8±0.4 4.117±0.018
0.635 64.92±0.20±0.34 785.7±3.1 29.31±0.12 0.935 28.57±0.10±0.14 78.74±0.33 3.950±0.017
0.645 62.40±0.20±0.32 734.2±2.9 27.57±0.11 0.945 29.86±0.10±0.15 74.74±0.31 3.780±0.016

Table 8: σππγ , σbare
ππ cross sections and pion form factor |Fπ|2 for bins of 0.01 GeV2,

where the value given indicates the bin center. While the σππγ cross section is given as a
function of M 2

ππ, the σbare
ππ cross section and |F 2

π | are given as function of (M 0
ππ)2. The error

attached to each value represents the statistical uncertainty. For σππγ , the second error
gives the systematic uncertainty obtained by adding the contributions listed in Table 7
quadratically for each value of 0.01 GeV2.
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Reconstruction Filter negligible
Background subtraction 0.3 %
Trackmass 0.2 %
Particle ID negligible
Tracking 0.3 %
Trigger 0.1 %
Unfolding negligible
Acceptance (θππ) 0.2 %
Acceptance (θπ) negligible
Software Trigger (L3) 0.1 %
Luminosity (0.1th ⊕ 0.3exp)% 0.3 %√

s dep. of H 0.2 %

Total exp systematics 0.6 %

Vacuum Polarization 0.1 %
FSR resummation 0.3 %
Rad. function H 0.5 %

Total theory systematics 0.6 %

Table 9: List of systematic errors on ∆ππaµ

8 Comparison between 2008 and 2005 analyses

In order to compare consistently the π+π−γ differential cross section from this analysis to
that from our previous analysis, two corrections have been applied to the previous results:

• a−0.7% overall shift, due to the new evaluation of the Bhabha cross section, obtained
from the updated version of the Babayaga generator (see Sec. 4.11);

• an energy-dependent effect due to a double counting of the calorimeter cluster ef-
ficiency in the evaluation of the trigger correction, which overestimates the cross
section mainly at low-mass values by a few percent.
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Figure 44: Comparison of the present result with the published data, updated for the
effects described in the text. The band is just the fractional systematic error of the ratio.

As a result of these updates, the value of ∆ππaµ from our previous analysis changes to
(384.4 ± 0.8stat ± 4.6sys) × 10−10. The fractional difference between the spectra for the
present analysis and that previously published (with updates), is shown in Fig. 44. While
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the agreement below the ρ peak is good, above 0.7 GeV2 there is some difference between
the two spectra. The value obtained for the integral is consistent between the two data
sets (as shown in Table 10). Because of the analysis improvements and the quality of the
2002 data, we consider that the present results to supersede those previously published.

∆ππaµ×1010 0.35 < M 2
ππ < 0.95GeV2

published 05 388.7 ± 0.8stat ± 4.9sys

updated 05 384.4 ± 0.8stat ± 4.6sys

new data 08 387.2 ± 0.5stat ± 3.3sys

Table 10: Comparison among ∆ππaµ values from KLOE analyses.

9 Comparison with CMD-2 and SND results

We may compare the present result on |Fπ|2 with the results from the energy scan ex-
periments at Novosibirsk CMD-2 [39] and SND [40]. For a given energy scan experiment,
whenever there are several data points falling in one 0.01GeV2 bin, we average the values.
The result can be seen in Fig. 45, left. Fig. 45, right, shows the fractional difference be-
tween the data points from the energy scan experiments (CMD-2 and SND) and the KLOE
data. There is reasonable agreement between the experiments, as also indicated by the
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Figure 45: Left. |Fπ|2 from CMD-2 [39], SND [40] and KLOE with statistical errors.
Right. Fractional difference between CMD-2 (C) or SND (S) and the KLOE (K) results.
The dark (light) band is the KLOE statistical (statistical ⊕ systematic) error. For CMD-2
and SND points the statistical⊕systematic error is shown.

computed values of ∆ππaµ given below in the range of overlap 0.630< Mππ < 0.958GeV,
combining statistical and systematic errors in quadrature:

SND, 2006 [40] ∆ππaµ = (361.0 ± 5.1) × 10−10

CMD-2, 2007 [39] ∆ππaµ = (361.5 ± 3.4) × 10−10

this work ∆ππaµ = (356.7 ± 3.1) × 10−10.
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A fit for the best value gives 359.2±2.1 with χ2/dof=1.24/2, corresponding to a confidence
level of 54%.

10 Conclusions

We have measured the dipion contribution to the muon anomaly, ∆ππaµ, in the interval
0.592<Mππ<0.975 GeV, with negligible statistical error and a 0.6% experimental system-
atic uncertainty. Radiative corrections calculations increase the systematic uncertainty to
0.9%. Combining all errors we find:

∆ππaµ(0.592<Mππ<0.975 GeV) = (387.2 ± 3.3) × 10−10.

This result is consistent with our previous value, with a total error smaller by 30%. Our
new result confirms the current disagreement between the standard model prediction for
aµ and the measured value.
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A Results of the background fit procedure
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Figure 46: Results of the background fit procedure for slices in M 2
ππ between 0.32 and

0.40 GeV2. Shown are the data (black), sum of all Monte Carlo contributions (blue),
ππγ(γ) and µµγ(γ) Monte Carlo (red), πππ Monte Carlo (green) and Bhabha Monte
Carlo (magenta).
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Figure 47: Results of the background fit procedure for slices in M 2
ππ between 0.40 and

0.48 GeV2. Shown are the data (black), sum of all Monte Carlo contributions (blue),
ππγ(γ) and µµγ(γ) Monte Carlo (red), πππ Monte Carlo (green) and Bhabha Monte
Carlo (magenta).
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Figure 48: Results of the background fit procedure for slices in M 2
ππ between 0.48 and

0.52 GeV2. Shown are the data (black), sum of all Monte Carlo contributions (blue),
ππγ(γ) and µµγ(γ) Monte Carlo (red), πππ Monte Carlo (green) and Bhabha Monte
Carlo (magenta).
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Figure 49: Results of the background fit procedure for slices in M 2
ππ between 0.56 and

0.64 GeV2. Shown are the data (black), sum of all Monte Carlo contributions (blue),
ππγ(γ) and µµγ(γ) Monte Carlo (red), πππ Monte Carlo (green) and Bhabha Monte
Carlo (magenta).
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Figure 50: Results of the background fit procedure for slices in M 2
ππ between 0.64 and

0.72 GeV2. Shown are the data (black), sum of all Monte Carlo contributions (blue),
ππγ(γ) and µµγ(γ) Monte Carlo (red), πππ Monte Carlo (green) and Bhabha Monte
Carlo (magenta).
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Figure 51: Results of the background fit procedure for slices in M 2
ππ between 0.72 and 0.80

GeV2. Shown are the data (black), sum of all Monte Carlo contributions (blue), ππγ(γ)
and µµγ(γ) Monte Carlo (red) and Bhabha Monte Carlo (magenta).
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Figure 52: Results of the background fit procedure for slices in M 2
ππ between 0.80 and 0.88

GeV2. Shown are the data (black), sum of all Monte Carlo contributions (blue), ππγ(γ)
and µµγ(γ) Monte Carlo (red) and Bhabha Monte Carlo (magenta).
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Figure 53: Results of the background fit procedure for slices in M 2
ππ between 0.88 and 0.96

GeV2. Shown are the data (black), sum of all Monte Carlo contributions (blue), ππγ(γ)
and µµγ(γ) Monte Carlo (red) and Bhabha Monte Carlo (magenta).
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B Correcting Monte Carlo distributions

B.1 Momentum corrections

The following corrections have been applied to Monte Carlo momenta components pi

pi → pi/ζ(θ, sπ) (B.1)

where

ζ(θ, sπ) =

{

c(θ)− (1.2354 − 2.1833sπ + 0.87765s2
π)10−3 if θ > π/2

c(θ) if θ < π/2

and

c(y) = (1.− 5 · 10−4)(1 − (y/|y|(1 − e−|y|/0.07)− 1)/2.5/510) ; y = θ − 0.85 (B.2)

If sπ > 0.8 GeV 2 c → c− 0.0002.
If sπ < 0.8 GeV 2 the momenta of the positive (p+

i ) and negative track (p−i ) are smeared
(p+,−

i → p+,− · smear+,−) according to

smear+ =

{

1− 0.007x 1/20 of the events
1− 0.0018x else

smear− =

{

1− 0.007x 1/20 of the events
1− 0.0023x else

where x is a random Gaussian variable (with mean 0 and sigma 1). Plots on the effect of
these corrections on data-MC comparison for variables of significant interest can be found
in [18].

B.2 Momentum corrections for data and Monte Carlo

A second description of corrections to Monte Carlo distributions has been obtained from [41]
- it acts only on the momenta of the two charged particles, not on the angles. Different
from the procedure above (appendix B.1), also the momenta components of data are
corrected. For the Monte Carlo distributions, corrections are identical for particles with
positive and negative charge.

The data momenta get corrected in the following way:

- Positively charged track:

– p+
x|y = p+

x|y × (1.− 8. · 10−4)

– p+
z = p+

z + |p+
z | · 8. · 10−4

- Negatively charged track:

– p−x|y = p−x|y × (1.− 2. · 10−4)

– p−z = p−z + |p−z | · 5. · 10−4

The Monte Carlo momenta get corrected in two steps:
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s δV P s δV P s δV P s δV P

0.355 1.0096±0.0003 0.505 1.0027±0.0004 0.655 1.0465±0.0020 0.805 1.0362±0.0012
0.365 1.0091±0.0003 0.515 1.0033±0.0003 0.665 1.0438±0.0015 0.815 1.0360±0.0012
0.375 1.0085±0.0003 0.525 1.0042±0.0003 0.675 1.0419±0.0010 0.825 1.0359±0.0012
0.385 1.0079±0.0003 0.535 1.0056±0.0003 0.685 1.0404±0.0006 0.835 1.0357±0.0012
0.395 1.0073±0.0003 0.545 1.0074±0.0002 0.695 1.0392±0.0003 0.845 1.0353±0.0012
0.405 1.0067±0.0003 0.555 1.0094±0.0002 0.705 1.0382±0.0004 0.855 1.0353±0.0012
0.415 1.0061±0.0003 0.565 1.0116±0.0003 0.715 1.0374±0.0007 0.865 1.0348±0.0012
0.425 1.0054±0.0004 0.575 1.0134±0.0004 0.725 1.0366±0.0009 0.875 1.0344±0.0012
0.435 1.0048±0.0004 0.585 1.0144±0.0006 0.735 1.0362±0.0011 0.885 1.0339±0.0012
0.445 1.0042±0.0004 0.595 1.0132±0.0006 0.745 1.0364±0.0011 0.895 1.0333±0.0012
0.455 1.0036±0.0004 0.605 1.0106±0.0009 0.755 1.0366±0.0011 0.905 1.0327±0.0012
0.465 1.0031±0.0004 0.615 1.0679±0.0007 0.765 1.0366±0.0011 0.915 1.0320±0.0012
0.475 1.0027±0.0004 0.625 1.0674±0.0045 0.775 1.0365±0.0011 0.925 1.0311±0.0012
0.485 1.0025±0.0004 0.635 1.0564±0.0035 0.785 1.0365±0.0011 0.935 1.0301±0.0012
0.495 1.0025±0.0004 0.645 1.0503±0.0027 0.795 1.0364±0.0012 0.945 1.0290±0.0012

Table 11: Vacuum Polarization values used in the analysis, see [36]. The value of s
corresponds to the bin center.

1. Shifting the momenta components

• For s < 0.5 GeV2: px|y|z = px|y|z × (1. + 3.8 · 10−4)

• For s ≥ 0.5 GeV2 and s < 0.8 GeV2: px|y|z = px|y|z × (1. + 2.5 · 10−4)

• For s ≥ 0.8 GeV2: px|y|z = px|y|z × (1. + 3.0 · 10−4)

2. Smearing the momenta components

If sπ < 0.7 GeV 2 the momenta of the positive (p+
i ) and negative track (p−i ) are

smeared (p+,−
i → p+,− · smear+,−) according to

smear+,− =

{

1− 0.005x 1/20 of the events
1− 0.0015x else

If sπ ≥ 0.7 GeV 2 the momenta of the positive (p+
i ) and negative track (p−i ) are

smeared (p+,−
i → p+,− · smear+,−) according to

smear+,− =

{

1− 0.007x 1/20 of the events
1− 0.0018x else

where x is a random Gaussian variable (with mean 0 and sigma 1).

C Vacuum Polarization

Table 11 shows the values used for δV P to obtain the bare cross section (see Sec. 5.3). The
values are taken from [36].

63



References

[1] G. W. Bennett et al. [Muon G-2 Collaboration], Phys. Rev. D 73 (2006) 072003

[2] J.P. Miller, E. de Rafael and B.L. Roberts, Rept. Prog. Phys. 70 (2007) 795

[3] F. Jegerlehner, [hep-ph/0703125]

[4] C. Bouchiat and L. Michel, J. Phys. Radium 22 (1961) 121.

[5] S. Brodsky and E. de Rafael, Phys. Rev. 168 (1968) 1620; B.E. Lautrup and E. de
Rafael, Nuovo Cimento, 1A (1971) 238.

[6] A. Aloisio et al. [KLOE coll.], Phys. Lett. B 606 (2005) 12

[7] F. Ambrosino et al. [KLOE coll.], Nucl. Instrum. Meth. A 534 (2004) 403.
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