
ar
X

iv
:0

70
7.

41
30

v2
  [

he
p-

ex
] 

 1
6 

M
ay

 2
00

8

Study of the process e
+
e

− → ωπ
0 with the

KLOE detector

The KLOE Collaboration

F. Ambrosino d, A. Antonelli a, M. Antonelli a, F. Archilli a,

C. Bacci h, P. Beltrame b, G. Bencivenni a, S. Bertolucci a,
C. Bini g, C. Bloise a, S. Bocchetta h, V. Bocci g, F. Bossi a,

P. Branchini h, R. Caloi g, P. Campana a, G. Capon a,
T. Capussela d, F. Ceradini h, S. Chi a, G. Chiefari d,

P. Ciambrone a, E. De Lucia a, A. De Santis g, P. De Simone a,

G. De Zorzi g, A. Denig b, A. Di Domenico g, C. Di Donato d,
S. Di Falco e, B. Di Micco h, A. Doria d, M. Dreucci a, G. Felici a,

A. Ferrari a, M. L. Ferrer a, G. Finocchiaro a, S. Fiore g,
C. Forti a, P. Franzini g, C. Gatti a, P. Gauzzi g, S. Giovannella a,

E. Gorini c, E. Graziani h, M. Incagli e, W. Kluge b, V. Kulikov k,
F. Lacava g, G. Lanfranchi a, J. Lee-Franzini a,i, D. Leone b,

M. Martini a, P. Massarotti d, W. Mei a, S. Meola d, S. Miscetti a,
M. Moulson a, S. Müller a, F. Murtas a, M. Napolitano d,
F. Nguyen h, M. Palutan a, E. Pasqualucci g, A. Passeri h,

V. Patera a,f, F. Perfetto d, M. Primavera c, P. Santangelo a,
G. Saracino d, B. Sciascia a, A. Sciubba a,f, F. Scuri e, I. Sfiligoi a,

T. Spadaro a, M. Testa g, L. Tortora h, P. Valente g,
B. Valeriani b, G. Venanzoni a, R.Versaci a, G. Xu a,j

aLaboratori Nazionali di Frascati dell’INFN, Frascati, Italy.
bInstitut für Experimentelle Kernphysik, Universität Karlsruhe, Germany.

cDipartimento di Fisica dell’Università e Sezione INFN, Lecce, Italy.
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Abstract

Using ∼ 600 pb−1 collected with the KLOE detector at DAΦNE, we have studied
the production cross section of π+π−π0π0 and π0π0γ final states in e+e− collisions
at center of mass energies between 1000 and 1030 MeV. By fitting the observed in-
terference pattern around Mφ for both final states, we extract a measurement (pre-
liminary) for the ratio Γ(ω → π0γ)/Γ(ω → π+π−π0) = 0.0934± 0.0022. Since these
two final states represent the 98% of the ω decay channels, we use unitarity to derive
BR(ω → π+π−π0) = (89.94±0.23)% and BR(ω → π0γ) = (8.40±0.19)%. Moreover,
the parameters describing the e+e− → π+π−π0π0 reaction around Mφ are used to
extract the branching fraction for the OZI and G-parity violating φ→ωπ0decay:
BR(φ→ ωπ0) = (5.63 ± 0.70) × 10−5.

Key words: e+e− collisions, rare φ decays, VMD, OZI violation, Isospin violation

1 Introduction

In the energy region of few tens of MeV around Mφ, the e+e− → π+π−π0π0

production cross section is largely dominated by the non-resonant processes
e+e− → ρ/ρ′ → ωπ0. However, in a region closer to Mφ, a contribution from
the OZI and G-parity violating decay φ→ωπ0 is expected. This strongly sup-
pressed decay can be observed only through the interference pattern with the
previous reaction, which shows up as a dip in the production cross section as
a function of the center of mass energy (

√
s). A fit to the cross section energy

dependence allows us to extract the φ→ωπ0 branching fraction (BR).

There is a much more complicated interference scenario for the e+e− → π0π0γ
channel. Here we expect contributions also from φ → ρπ and φ → Sγ inter-
mediate states, where S is a scalar meson. In another paper [1] we have shown
that at

√
s ∼ Mφ the interference between φ → Sγ and e+e− → ωπ0 events,

evaluated by fitting the Mππ-Mπγ Dalitz plot, is small. Assuming this effect to
be negligible to first order, a fit to the cross section interference pattern for this
final state will nevertheless give information about the e+e− → ρ/ρ′ → ωπ0

process and the resonant decays φ→ ωπ0 and φ→ ρπ0. Comparing with the
fit to the π+π−π0π0 channel, the ratio Γ(ω → π0γ)/Γ(ω → π+π−π0) can be
extracted.
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2 The KLOE detector

The KLOE [2] experiment operates at DAΦNE [3], the Frascati φ-factory.
DAΦNE is an e+e− collider running at a center of mass energy of ∼ 1020 MeV,
the mass of the φ-meson. Equal-energy positron and electron beams collide at
an angle of π-25 mrad, producing φ-mesons nearly at rest.

The KLOE detector consists of a large cylindrical drift chamber, DC, sur-
rounded by a lead-scintillating fiber electromagnetic calorimeter, EMC. A su-
perconducting coil around the EMC provides a 0.52 T field. The drift cham-
ber [4], 4 m in diameter and 3.3 m long, has 12,582 all-stereo tungsten sense
wires and 37,746 aluminium field wires. The chamber shell is made of car-
bon fiber-epoxy composite and the gas used is a 90% helium, 10% isobu-
tane mixture. These features maximize transparency to photons and reduce
KL → KS regeneration and multiple scattering. The position resolutions are
σxy∼150 µm and σz∼ 2 mm. The momentum resolution is σ(p⊥)/p⊥ ≈ 0.4%.
Vertices are reconstructed with a spatial resolution of ∼3 mm. The calorime-
ter [5] is divided into a barrel and two endcaps, for a total of 88 modules,
and covers 98% of the solid angle. The modules are read out at both ends
by photo-multipliers, both in amplitude and time. The readout granularity is
∼ (4.4×4.4) cm2, for a total of 2440 cells . The energy deposits are obtained
from the signals amplitude while the arrival times of particles and the posi-
tions in three dimensions are obtained from the time differences. Cells close in
time and space are grouped into a calorimeter cluster. The cluster energy E
is the sum of the cell energies. The cluster time T and position ~R are energy

weighed averages. Energy and time resolutions are σE/E = 5.7%/
√

E (GeV)

and σt = 57 ps/
√

E (GeV) ⊕ 50 ps, respectively. The KLOE trigger [6] uses
both calorimeter and chamber information. In this analysis all the events are
selected by the trigger calorimeter, requiring two energy deposits with E > 50
MeV for the barrel and E > 150 MeV for the endcaps. A cosmic veto reject
events where at least two outermost EMC layers are fired.

3 The
√

s dependence of e
+

e
− → π

+
π

−

π
0
π

0/π
0
π

0
γ cross sections

As mentioned before, in the energy region below 1.4 GeV the π+π−π0π0/π0π0γ
production cross sections are dominated by the non-resonant process
e+e− → ρ/ρ′ → ωπ0. At

√
s ∼ Mφ, the decay φ → ωπ0 also contributes

and interferes with the other processes. In the neutral channel there are also
contributions from φ→ Sγ and φ→ ρπ0. The dependence of the cross section
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on the center of mass energy can be parametrized in the form [8]:

σ(
√
s) = σ0(

√
s) ·

∣

∣

∣

∣

∣

1 − Z
MφΓφ

Dφ

∣

∣

∣

∣

∣

(1)

where σ0(
√
s) is the bare cross section for the non-resonant process, Z is the

complex interference parameter (i.e. the ratio between the φ decay amplitude
and the non resonant processes), while Mφ, Γφ and Dφ are the mass, the width
and the inverse propagator of the φmeson respectively. The non-resonant cross
section in this energy range increases linearly with

√
s. A model independent

parametrization 2will be used in this paper.

σ0(
√
s) = σ0 + σ′(

√
s−Mφ) (2)

4 Data analysis

All the available statistics collected at the φ peak in 2001–2002 data-taking
periods, corresponding to 450 pb−1, has been analyzed. Moreover four scan
points (1010 MeV, 1018 MeV, 1023 MeV and 1030 MeV) of ∼ 10 pb−1 each
and the off-peak data (1000 MeV) acquired in 2005-2006 have been included
in this analysis. All runs are grouped in center of mass energy bins of 100 keV.

4.1 e+e− → ωπ0 → π+π−π0π0

In the π+π−π0π0 analysis, data are filtered by selecting events with the ex-
pected final state signature: two tracks connected to a vertex inside a small
cylindrical fiducial volume around the Interaction Point (IP) and four neu-
tral clusters in the prompt Time Window (TW), defined as |Tγ − Rγ/c| <
MIN(3.5 · σT , 2 ns). To minimize contamination from machine background,
we require also a minimal energy for the clusters (10 MeV) and a minimal
angle with respect to the beam line (∼23◦). A kinematic fit requiring total

Table 1
Background channels for ωπ0→π+π−π0π0. Signal over background ratios after ac-
ceptance selection and χ2

Kfit cut are reported for events collected at
√
s ∼Mφ.

Channel S/B (acc) S/B (χ2
Kfit cut)

KSKL 1 10

K+K− 10 60

ρπ 30 200

ηγ 20 800
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four-momentum conservation and time of flight (TOF) for photons improves
the energy resolution. The resulting χ2 (χ2

Kfit) is used to select a signal enriched
(χ2

Kfit < 50), Sevts , and a background dominated (χ2
Kfit > 50), Bevts, samples.

The signal analysis efficiency in the Sevts sample has been evaluted by Mon-
tecarlo (MC). The resulting value ε ∼ 40% is dominated by the acceptance
requirements and has a small dependence as a function of

√
s.

The background channels are listed in Tab. 1. The main contribution comes
from φ → KSKL → π+π−π0π0 and φ → K+K− with K± → π±π0, which
have the same final state. The first one has also a comparable production cross
section with respect to the signal at the φ peak. The other two background
components (φ → ηγ with η → π+π−π0, and φ → π+π−π0) mimic the final
state signature because of additional clusters due to accidental coincidence of
machine background events and/or shower fragments (splitting). In the signal
enriched region, the expected contamination at

√
s ∼Mφ is ∼ 12%.
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Fig. 1. Data-MC comparison for π+π−π0π0 signal enriched distribution using events
taken at 1019.75 MeV : (a) χ2

Kfit (Ndf=8); (b) cosine of the angle between recon-
structed π0’s; (c) π0 recoil mass. Black dots are data, while hatched and white
histograms are MC signal and background shapes respectively, weighted by our fit
results.

The signal counting on data is performed for each
√
s bin by fitting the re-

constructed π0 recoil mass (Mrec) distribution for both Sevts and Bevts samples
with MC signal and background shapes. The fit procedure is based on a likeli-
hood function which takes into account both data and MC statistics. In Fig. 1,
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data-MC comparison of few relevant distributions for the most populated en-
ergy bin is shown.

The results are summarized in Tab. 2 where the signal counts, the χ2 of the fit
and the visible cross section are reported for all

√
s bins. A preliminary esti-

mate of the systematic error, dominated by tracking and vertexing efficiency,
has been added to the σ4π

vis error.

Table 2
Signal counting, χ2 of the fit and visible cross section for e+e− → π+π−π0π0 events.
The errors on σ4π

vis contains a relative systematic error contribution of 1.8%.
√
s (MeV) N4π ± δN χ2/ndf σ4π

vis ± δσ

1000.10 199099 ± 1276 1.09 5.75 ± 0.11

1009.90 26379 ± 255 1.08 6.46 ± 0.19

1017.20 16720 ± 184 1.06 5.67 ± 0.12

1018.14 22824 ± 199 0.95 5.76 ± 0.12

1019.19 7851 ± 112 0.88 5.40 ± 0.13

1019.45 59738 ± 460 1.10 5.64 ± 0.11

1019.55 96610 ± 641 1.05 5.81 ± 0.11

1019.65 175734 ± 1261 1.10 5.74 ± 0.11

1019.75 336385 ± 2271 1.04 5.86 ± 0.11

1019.85 264184 ± 2061 1.06 6.05 ± 0.12

1019.95 36999 ± 611 1.00 6.16 ± 0.15

1020.05 18358 ± 433 1.01 6.10 ± 0.18

1020.15 7293 ± 356 0.99 6.06 ± 0.32

1020.41 9067 ± 222 0.92 6.08 ± 0.19

1022.09 19307 ± 242 1.06 7.08 ± 0.16

1022.98 29995 ± 265 0.93 7.52 ± 0.16

1029.97 35125 ± 489 1.01 8.03 ± 0.22

4.2 e+e− → ωπ0 → π0π0γ

The acceptance selection for π0π0γ events requires five neutral clusters with
Eγ ≥ 7 MeV and a polar angle | cos θγ| < 0.92 in the prompt Time Win-
dow. After applying a first kinematic fit (Fit1) imposing total 4-momentum
conservation, photons are paired to π0’s, by minimizing a χ2 built using the
invariant mass of the two γγ pairs. A second kinematic fit (Fit2) imposes also
constraints on the π0 masses.

The background with final state different from π0π0γ is rejected by requiring
χ2

Fit2/Ndf ≤ 5 and ∆Mγγ = |Mγγ − Mπ| ≤ 5 σγγ, where Mγγ and σγγ are
evaluated using the photon momenta from Fit1. After these cuts the remaining
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sample is dominated by e+e− → ωπ0 → π0π0γ and φ → S → π0π0γ events.
Signal is then selected neglecting the interference between the two processes
and cutting on the intermediate state mass. Since Mπγ the closest mass to
Mω of the two π0γ combinations, only events satisfying |Mπγ −Mω| < 3 σMω

are retained. In Tab. 3, the background channels are listed together with the
S/B ratio before and after the application of the whole analysis chain. The
residual 10% background contamination comes predominantly from φ→ ηγ →
π0π0π0γ events where two photons are lost or merged.

In Fig. 2 data-MC comparison for events in the most populated
√
s bin is

shown. The ψ variable is the minimum angle between the photon and the π0’s
in the di-pion rest frame. A good agreement is observed both after acceptance
selection and after applying analysis cuts.

χ2 
Fit2

/ndf

Data
MC
ωπ+Sγ
Bckg

∆Μω/σ

Data
MC
ωπ
Sγ
Bckg

cosΨ

0
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6000

0 2 4 6 8 10 12 14 16 18 20

0

2000

4000

6000

-20 -10 0 10 20
0

500

1000

1500

2000

0 0.2 0.4 0.6 0.8 1

Fig. 2. Data-MC comparison for π0π0γ events taken at 1019.75 MeV. Top: normal-
ized χ2 of the second kinematic fit after acceptance cuts. Bottom: π0γ invariant mass
(left), and cosψ distribution after cutting on Mπγ (right). In the upper panel all the
background is grouped together, while in the lower ones the φ → Sγ contribution
is shown alone.
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The overall analysis efficiency for the identification of the signal is evaluated
by applying the whole analysis chain to signal MC events: εππγ ∼ 40%, almost
flat in

√
s. The value obtained for each bin, together with the corresponding

integrated luminosity, has been applied to the signal counting to obtain the
visible cross section. Results are summarized in Tab. 4; errors include statistics
and background subtraction only.

Table 3
Background channels for e+e− → ωπ0 → π0π0γ. The signal over background ratio
before and after the application of the analysis cuts is reported for events collected
at

√
s ∼Mφ.

Background S/B (no cuts) S/B (all cuts)

φ→ Sγ → π0π0γ 1.5 35

φ→ ηπ0γ → γγπ0γ 5.4 120

φ→ ηγ → π0π0π0γ 0.04 15

φ→ ηγ → γγγ 0.04 380

φ→ π0γ 0.13 2840

Table 4
Signal counting and visible cross section for e+e− → π0π0γ events.
√
s (MeV) Nππγ ± δN σππγ

vis ± δσ

1000.10 5523 ± 75 0.540 ± 0.007

1009.90 2445 ± 50 0.607 ± 0.012

1017.15 831 ± 30 0.593 ± 0.020

1017.25 680 ± 28 0.578 ± 0.022

1018.20 2088 ± 50 0.554 ± 0.013

1019.35 273 ± 18 0.547 ± 0.036

1019.45 4911 ± 79 0.514 ± 0.008

1019.55 7693 ± 100 0.510 ± 0.006

1019.65 14788 ± 141 0.532 ± 0.005

1019.75 27556 ± 199 0.530 ± 0.004

1019.85 20927 ± 170 0.529 ± 0.004

1019.95 2869 ± 60 0.528 ± 0.011

1020.05 1475 ± 43 0.536 ± 0.015

1020.15 577 ± 26 0.536 ± 0.024

1020.45 542 ± 26 0.524 ± 0.024

1022.25 996 ± 33 0.639 ± 0.021

1022.35 415 ± 21 0.661 ± 0.034

1022.95 2574 ± 53 0.646 ± 0.013

1029.95 3233 ± 57 0.751 ± 0.013
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5 Fit results and ω branching ratios extraction

The measured values of visible cross section, shown in Tab. 2 and 4, are fitted
with the parametrization (1), convoluted with a radiator function [7]. The free
parameters are: σi

0, ℜ(Zi), ℑ(Zi) and σ′

i, where i is the 4π or ππγ final state.
In Fig. 3 data points with the superimposed fit function are shown for both
channels. The preliminary values for the extracted parameters are reported in
Tabs. 5. The resulting χ2/Ndf are 12.8/15 (P (χ2) = 62%) for the fully neutral
channel and 13.4/13 (P (χ2) = 42%) for the other one.

4
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Fig. 3. Cross section fit results for the e+e− → π+π−π0π0 (top) and e+e− → π0π0γ
(bottom) channels. Black dots are data, solid line is the resulting fit function.
Table 5
Fit results for the e+e− → π+π−π0π0 cross section (left) and for e+e− → π0π0γ
cross section (right).

Parameter (e+e− → π+π−π0π0)

σ4π
0 (nb) 8.12 ± 0.14

ℜ(Z4π) 0.097 ± 0.012

ℑ(Z4π) −0.133 ± 0.009

σ′4π (nb/MeV) 0.072 ± 0.008

Parameter (e+e− → π0π0γ)

σππγ
0 (nb) 0.776 ± 0.012

ℜ(Zππγ) 0.013 ± 0.013

ℑ(Zππγ) −0.155 ± 0.007

σ′ππγ (nb/MeV) 0.0079 ± 0.0006

From the two previous measurements we obtain:

σ0(ω → π0γ)

σ0(ω → π+π−π0)
= 0.0956 ± 0.0022 (3)
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Taking into account the phase space difference between the two decays [8], the
ratio of the partial widths can be extracted:

Γ(ω → π0γ)

Γ(ω → π+π−π0)
= 0.0934 ± 0.0021 (4)

Since these two final states the 98% of the ω decay channels, we use the
Γ(ω → π0γ)/Γ(ω → π+π−π0) ratio and the sum of averages of the existing BR
measurements on rarest decays [9] to extract the main ω branching fractions,
imposing the unitarity relation:

BR(ω → π+π−π0)= (89.94 ± 0.23)% (5)

BR(ω → π0γ)= (8.40 ± 0.19)% (6)

with a correlation of 82%. Comparison between our evaluation and the values
in PDG [9] is shown in Fig. 4.

BR(ω→π0γ) (%)

B
R

(ω
→

π+
π- π0 ) 

(%
)

88.5

89

89.5

90

90.5

8 8.5 9

Fig. 4. Branching fraction for the two main ω decay channels. The black square
is the KLOE fit result, while the black dot is the PDG constrained fit result. The
shaded regions are the 68% C.L.
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6 BR(φ→ ωπ0) evaluation

The measured σ4π
0 and Z4π paramters of the π+π−π0π0 final state are related

to the BR(φ→ωπ0) through the relation:

BR(φ→ ωπ0) =
σ0(mφ)|Z4π|2

σφ

, (7)

where σ0(mφ) is the total cross section of the e+e− → ωπ0 process and σφ is
the peak value of the production cross section for the φ resonance.

Using the parameters obtained from the π+π−π0π0 analysis, the Γee measure-
ment from KLOE [10] for the evaluation of σφ, and our value for BR(ω →
π+π−π0) we extract:

BR(φ→ ωπ0) = (5.63 ± 0.70) × 10−5 (8)

in agreement with the previous measurement from the SND experiment [8].
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