KLOE: Analysis news and near

future expectations

Stefan E. Müller Laboratori Nazionali di Frascati

(for the KLOE collaboration)

LNF Scientific Committee

Frascati, 27-28 November 2006

MC production for 04/05 data:

- Simulation at scale 1:1 of 2004/05 data (2000 pb⁻¹).
- Simulates backgrounds and run conditions of the data taking (on run-by-run basis)
- Big work devoted to improve the MC simulation:
- Map of 2004-2005 machine energy and trigger conditions ready
- New IR geometry in simulation
- Better parameterizations of EmC response: t, E resolution; cluster efficiency
- Improved simulation of nuclear interactions in DC wall and beam pipe
- New event generators: $K_S \rightarrow \pi^+\pi^- e^+ e^-$; $\pi \rightarrow e\nu$, $\pi \rightarrow e^+ e^-$; $e^+ e^- \rightarrow \omega \pi^0$
- Simulation of dE/dx measurement in DC
- Machine background from events acquired with random trigger
- Correlated noise in charged kaon tracking

This "preparation" work ended in June 06

MC production for 04/05 data:

Status of the production

- Pre-production test on a sample of 350 pb⁻¹ successfully completed.
- Real production started in August (on 214 B80 CPU).

- 800 pb⁻¹ $\phi \rightarrow all$ events (LSF 1:1) done

Dedicated work on data throughput. We are now using 280
 B80 CPU for the MC

Offline plans:

• Reprocessing of 2004 data set (~700 pb⁻¹) which were reconstructed with bad wire maps.

• We think to complete the MC simulation of 2004/05 data and the reprocessing of 2004 data by May 2007

Recent Kaon analysis:

$K_{S} K_{L} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi$	Quantum Interference	PLB 642 (2006) 315	
CP and CPT violation	Bell-Steinberger rel. + KLOE data	Accepted by JHEP	
$K_S \rightarrow \pi^0 \pi^0 \pi^0$ $K_S \rightarrow \pi e ∨$ $K_S \rightarrow \pi^+ \pi^-, \pi^0 \pi^0$	UL on BR at 10 ⁻⁷ BR to 1.3%, form factor slope, charge asymmetry $\Gamma(\pi^+\pi^-)/\Gamma(\pi^0\pi^0)$ to ~0.25%	PLB 619 (2005) 61 PLB 636 (2006) 173 Accepted by EPJC	PDG06 PDG06 PDG06
K_L →π $lν$, πππ	Absolute BR's to ~ 0.5% K_L lifetime from $\Sigma(BR)=1$	PLB 632 (2006) 43	PDG06
K _L lifetime	from $K_L \rightarrow \pi^0 \pi^0 \pi^0$ to ~ 0.5%	PLB 626 (2005) 15	PDG06
$K_{L}^{-} \rightarrow \pi e \nu$	Form factor slopes	PLB 636 (2006) 166	PDG06
$K_L \rightarrow \pi e \nu \gamma$	BR to $\sim 2 \%$	Preliminary	
$K_L \rightarrow \pi^+ \pi^-$	BR to 1.1%	PLB 638 (2006) 140	PDG06
$K_L \rightarrow \gamma \gamma$	$\Gamma(\gamma \gamma)/\Gamma(\pi^0 \pi^0 \pi^0)$ to 1.1%	PLB 566 (2003) 61	
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	BR to 1.4%	PLB 597 (2004) 139	
$K^+ \rightarrow \mu^+ \nu$	Absolute BR to $\sim 0.27\%$	PLB 632 (2006) 76	PDG06
$K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$	Absolute BR's to $\sim 1.5\%$	Preliminary	
K [±] lifetime	two independent measurements	Preliminary	
etc			

V_{us} from semileptonic decays:

Unitarity of the CKM quark mixing matrix (or lack thereof) allows to test for the existence of new physics not described by the Standard Model.

Unitarity condition from 1st row:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \cong |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$$

 $|V_{ud}|$ from superallowed 0⁺ → 0⁺ beta decays $|V_{ud}| = 0.97377(27)$ (Marciano, Sirlin 2006)

One can extract $|f_{+}(0) \cdot V_{us}|^2$ from K semileptonic decays via

 $\Gamma(\mathbf{K} \rightarrow \pi l \mathbf{v}(\mathbf{\gamma})) \propto |f_{+}(0) \cdot \mathbf{V}_{us}|^{2} \mathbf{I}(\lambda_{+}) (1 + \Delta \mathbf{I}(\lambda_{+})/2 + \delta_{EM})^{2} \cdot \mathbf{S}_{ew}$ Measurement $\mathbf{V}_{us} \cdot \mathbf{form \ factor} \ Slope \qquad rad. \ corrections \\ factor \qquad factor \qquad rad. \ corrections$

 $I(\lambda_+)$ is the integral of the phase space density after factorizing out $f_+(0)$ and radiative corrections. λ_+ describes the dependence of the vector and scalar form factor on momentum transferred t (slopes $\lambda_{+'}$, λ_{+} '').

V_{us} from semileptonic decays :

KLOE results for $f_{+}(0)|V_{us}|$:

Slopes used in the evaluation:

 $\lambda'_{+} = 0.02542(31)$ $\lambda''_{+} = 0.00129(3)$ (Pole model: KLOE, KTeV and NA48 av.)

 $\lambda_0 = 0.01587(95)$ (KTeV and ISTRA+ av.)

Parameters for V_{US} from Unitarity:

 $V_{ud} = 0.97377(27)$ (Marciano, Sirlin 2006) $f_{+}(0) = 0.9610(80)$ (Leutwyler, Roos 1984)

f₊(0) = 0.9680(16) (UKQCD/RBC coll. 2006)

$V_{us} - V_{ud}$ plane from $K_{\mu 2}$:

Using $BR(K^+ \rightarrow \mu^+ \nu)$ from KLOE and $f_K / f_\pi = 1.208(2)(^{+7}_{-14})$ from MILC Coll. (2006) one can obtain $V_{us}/V_{ud} = 0.2286(^{+20}_{-11})$ from

CPT tests using unitarity:

Exploiting unitarity in the kaon system allows to write

• Quantum Interference in $\phi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$:

$$I(t_1, t_2, \zeta) \propto e^{-\Gamma_{\mathrm{L}} t_1 - \Gamma_{\mathrm{S}} t_2} + e^{-\Gamma_{\mathrm{S}} t_1 - \Gamma_{\mathrm{L}} t_2}$$
$$- 2 \left(1 - \zeta\right) e^{-(\Gamma_{\mathrm{S}} + \Gamma_{\mathrm{L}})(t_1 + t_2)/2} \cos(\Delta \mathrm{m} \Delta t)$$

Decoherence parameter $\zeta \neq 0 \iff$ Violation of Quantum Mechanics

• Admixture of small C-even component in the initial state:

$$|i\rangle \propto (K_S K_L - K_L K_S) + \omega (K_S K_S - K_L K_L)$$
 $\omega = |\omega| e^{i\Omega}$

$K_S \rightarrow \gamma \gamma$

Test of O(p^6) ChPT correction (BR(K_S $\rightarrow \gamma\gamma)$) = 2.1 X 10⁶ at O(p^4) ChPT)

- Tag K_S with K_L interacting in Calorimeter \rightarrow pure K_S beam
- Main background: $K_S \rightarrow 2\pi^0$ with two lost photons

 $N_{signal} = 607 \pm 40 \text{ events}$ (from 1.7 pb⁻¹)

Expected statistical precision of 5%

KLOE result can confirm or disprove result from NA48:

BR(K_S
$$\rightarrow \gamma \gamma$$
) = 2.78(6)(4) X 10⁶
PLB 551 (2003)

$K_L \rightarrow \pi e v \gamma$:

Test of ChPT at O(p⁶) [Gasser et al. 2005]

Observable:

$$R = \frac{BR(K_{L} \rightarrow \pi e \nu \gamma; E_{\gamma} > 30 \text{ MeV}; \theta_{Lep-\gamma} > 20^{0})}{BR(K_{L} \rightarrow \pi e \nu(\gamma))}$$

- Reduced syst. effects in the ratio
- Selection of inclusive sample:
 - 328pb⁻¹ from 2001/2002 data
 - •~2E6 K_{e3}
- Selection of radiative subsample
 ~6E3 signal events

Preliminary KLOE results: $R = 0.92 \pm 0.02_{stat} \pm 0.02_{sys}$

• Systematics under evaluation

Kaon Physics Summary:

- Many $K_{S}\text{-}K_{L}$ decay channels have been measured with precision $\sim 1\%$ or better
- Best limit on $K_S \rightarrow \pi^0 \pi^0 \pi^0$
- K_S-K_L interferometry
- First measurement of K_S semileptonic charge asymmetry
- Close to final results for K charged semileptonic
- BR($K_L \rightarrow \pi e \nu \gamma$) with $E_{\gamma} > 30$ MeV
- Scalar form factor λ_0 of $K_L \rightarrow \pi \mu \nu$ decay
- First measurement of $K_S \rightarrow \pi \mu \nu$
- Measurement of BR($K_S \rightarrow \gamma \gamma$)
- Measurement of BR($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$)
- Measurement of BR(K_S $\rightarrow \pi^+\pi^-\pi^0$), BR(K_S $\rightarrow \pi^+\pi^-e^+e^-$)
- Improve on UL($K_S \rightarrow \pi^0 \pi^0 \pi^0$), UL($K_S \rightarrow e^+e^-$)
- Improve on semileptonic BRs, lifetimes and form factors
- BR(K_L $\rightarrow \pi\pi$) to few 10⁻³

• ...

• $\Gamma(\mathbf{K}^{\pm} \rightarrow e^{\pm} \mathbf{v}) / \Gamma(\mathbf{K}^{\pm} \rightarrow \mu^{\pm} \mathbf{v})$ to few 10⁻²

Recent results

Advanced status

$$2.5 \, fb^{-1}$$

Hadronic Physics:

$\phi \rightarrow \pi^+ \pi^- \pi^0$	Dalitz plot analysis	PLB 561(2003) 65
$\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$	f_0 coupling to φ, ππ, KK	PLB 634(2006) 148
$\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma$	BR($\phi \rightarrow \pi^0 \pi^0 \gamma$) to 5%	PLB 537(2002) 21
	Dalitz plot analysis, stat/syst improvements	accepted by EPJ
$\phi \rightarrow \omega \pi^{\circ} \rightarrow \pi^{\circ} \pi^{\circ} \gamma$	Dependence of $\sigma_{\rm vis}$ on $\sqrt{\rm s}$	Preliminary
φ → η π ⁰ γ	BR($\phi \rightarrow a_0(980) \gamma$) to 10%	PLB 536(2002) 209
	stat/syst improvements	Preliminary
φ→η'γ (ηγ)	$\Gamma(\phi \rightarrow \eta' \gamma) / \Gamma(\phi \rightarrow \eta \gamma)$ to 12%, mixing angle to 5%	PLB 541(2002) 45
	stat/syst improvements	Preliminary
η → γγ	η mass measurement	Preliminary
$\eta \rightarrow \pi^+ \pi^+ \pi^0$	η mass measurement, Dalitz plot analysis	Preliminary
$\eta \rightarrow \pi^0 \pi^0 \pi^0$	Dalitz plot analysis	Preliminary
$η \rightarrow π^0$ γγ	BR, $m_{\gamma\gamma}$ spectrum	Preliminary
$\eta \rightarrow \pi^+\pi^-$	UL on BR at 10 ⁻⁵	PLB 606(2005) 276
$η \rightarrow \gamma \gamma \gamma$	UL on BR at 10 ⁻⁵	PLB 591(2004) 49
$e^+e^- \rightarrow \pi^+\pi^- \gamma$	$a_{\mu \text{ had}} (0.35 \le s_{\pi} \le 0.95 \text{ GeV}^2) \text{ to } \sim 1\%$	PLB 606(2005) 12
	$a_{\mu \mid had}$ down to threshold, $\mu\mu\gamma$ normalization	Preliminary
$e^+e^- \rightarrow e^+e^- (\mu^+\mu^-)$	$\Gamma_{lept}(\phi)$ to 1.5% and lepton universality test	PLB 608(2005) 199
etc		

$Br(\phi \rightarrow \eta' \gamma)/Br(\phi \rightarrow \eta \gamma)$

CON CON

Final Result: KLOE Note and draft written

$$R = \frac{BR(\phi \rightarrow \eta' \gamma)}{BR(\phi \rightarrow \eta \gamma)} = (4.79 \pm 0.09_{stat} \pm 0.20_{sys}) \cdot 10^{-3}$$

$$BR(\phi \rightarrow \eta' \gamma) = (6.24 \pm 0.12 \pm 0.28) \cdot 10^{-5}$$

With PDG

$$BR(\phi \rightarrow \eta \gamma)$$

Using the approach by Bramon et al. [Eur. Phys. J. C7, 271(1999)] and introducing a possible gluonium content via $\cos^2\phi_G$ one can extract the η - η ' mixing angle φ_P :

$$R_{\phi} = \cot^2 \varphi_P \cdot \cos^2 \phi_G \left(1 - \frac{m_s}{\overline{m}} \cdot \frac{C_{NS}}{C_S} \cdot \frac{\tan \varphi_V}{\sin 2\varphi_P} \right)^2 \cdot \left(\frac{p_{\eta'}}{p_{\eta}} \right)^3$$

KLOE prelim.

$$\varphi_P = (39.7 \pm 0.7_{tot})^0$$

 $|\phi_G| = (22 \pm 3)^0$

Combined analysis to evaluate possible gluonium content of η' (4 constraints in X-Y-plane) $\eta' = X \frac{1}{\sqrt{2}} | u\overline{u} + d\overline{d} > +Y | s\overline{s} > +Z | glue >$ $X^2 + Y^2 + Z^2 = 1$ $X^{2} = 0.14 \pm 0.04$

Results on $f_0(980)$:

Experimental distributions have been fitted with predictions from Kaon-Loop and direct scalar coupling to vector mesons, taking into account all the contributions to the final states.

Data can be described by both the models.

To fit the $\pi^0\pi^0\gamma$ spectrum with predictions from Kaon-loop model, a $\sigma(600)$ contribution must be included. The KK coupling, in the model with direct scalar coupling to vector mesons results weaker from $\pi^0\pi^0\gamma$ analysis than in the $\pi^+\pi^-\gamma$ study.

Outlook: Combined fit to charged and neutral final states

$$e^+e^- \rightarrow \omega \pi^0 \rightarrow \pi^0 \pi^0 \gamma$$

KLOE can measure the inteference between the non-resonant process and the resonant ϕ decays ($\phi \rightarrow \omega \pi / \rho \pi / f_0 \gamma$) with the same final state:

Results of the fit (01/02):

$$\sigma_0^{vis} = 0.747 \pm 0.028^{+0.001}_{-0.015} \ nb$$
$$\Re(Z) = 0.040 \pm 0.020^{+0.009}_{-0.001}$$
$$i \ (Z) = -0.160 \pm 0.022^{+0.001}_{-0.004}$$

Next steps:

- include 2005/2006 scan data in fit
- evaluation of systematics

Measurement of $d\sigma_{\pi\pi\gamma}/dM_{\pi\pi}^2$:

A new analysis is carried out at small photon angles using 2002 data (240pb⁻¹) with improved machine background and calibration conditions. This alone should allow for a reduction of the total systematic error on $\sigma_{\pi\pi}$ to <1%.

In addition, one can extract $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ by performing a normalization with muon events:

$$\sigma_{\pi\pi}^{Born}(s') \approx \frac{d\sigma_{\pi\pi\gamma}^{obs} / ds'}{d\sigma_{\mu\mu\gamma}^{obs} / ds'} \sigma_{\mu\mu}^{Born}(s')$$

- many effects cancel in the ratio:
 - Vacuum Polarisation
 - Luminosity
 - Radiator function
- Pions and muons are separated by a cut in the *trackmass* variable
- Selection of muons has to have similar precision as pion selection
- Comparing μμγ-yield in data with Monte- ¹⁰ Carlo simulation allows cross check of radiative corrections in MC!

Measurement of $d\sigma_{\pi\pi\gamma}/dM_{\pi\pi}^2$:

Analysis with photons detected at large angle allows to access the 2-pionthreshold region.

- Analysis is well advanced, evaluation of efficiencies and reducible background is finished.
- Main limitation is caused by the contribution from model dependent effects of ϕ decays $(\phi \rightarrow f_0 \gamma, \phi \rightarrow \rho \pi)$ and Final State Radiation from pions.
- Estimate these effects from MC:
 - PHOKHARA [EPJ C47(2006) 617]
 - Pancheri/Shekhovtsova/Venanzoni [PLB 642 (2006) 342]

"Working Group on Rad. Corr. And MC Generators for Low Energy" M_{ππ²}(GeV²)
 1st Meeting held in Frascati, Oct.16-17 2006

Hadron Physics Summary:

- $\Gamma(\phi \rightarrow \eta' \gamma) / \Gamma(\phi \rightarrow \eta \gamma)$ with precision of 4% • Extensive study of $f_0(980)$ properties **Recent results** • via $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$ process both in $\pi^+\pi^-$ invariant mass and in the forward-backward asymmetry • Dalitz plot analysis in the $\pi^0 \pi^0$ final state • Improved measurement for $\sigma_{\pi\pi}$ • Large-Angle Photon analysis • Normalisation with $\mu\mu\gamma$ events • n mass measurement • Dalitz Plot of $\eta \rightarrow \pi\pi\pi$ • Upper Limit for BR($\eta \rightarrow \pi^0 \pi^0$) • Study of $a_0(980)$ • Measurement of $\sigma_{\pi\pi}$ without resonant background from ϕ Determination of f₀ and FSR parameters • $\sigma(e^+e^- \rightarrow \omega \pi^0)$ vs. \sqrt{s}
 - Search for $\sigma(600)$ with off-peak data using the reaction $\gamma\gamma \rightarrow \pi^0 \pi^0$
 - Combined fit of both charged and neutral $\pi\pi\gamma$ final states and searches for $f_0/a_0 \rightarrow KK$
 - Single and Double Dalitz η decays, $\eta \rightarrow \pi^0 \gamma \gamma$, η' decays
 - etc.

advanced status

Off-Peak Data

 $2.5 \, fb^{-1}$

Conclusions:

- End of KLOE data taking and Roll-Out of the detector in May 2006 do not mean the end of KLOE activities
- Many analysis are in progress, a considerable amount of them is in an advanced state and close to publication
- Computing farms are busier than ever producing 2004/2005 MC samples

We are now harvesting the fruits from (almost) 6 years of KLOE data taking!

The Fruits:

KLOE Physics Papers

