Kaon physics

XXVI Physics in Collision Buzios, Brasil 6-9 July 2006

> Barbara Sciascia INFN - Frascati

Outline

Plenty of new results on kaon physics since PIC05:

KLOE:

- BR(K_L $\rightarrow \pi^+\pi^-)$
- K_Le3 form factors
- BR(K_S $\rightarrow \pi ev$) and A_S
- $\Gamma(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{+} \pi^{-}(\gamma)) / \Gamma(\mathbf{K}_{\mathrm{S}} \rightarrow \pi^{0} \pi^{0})$
- BR(K⁺ $\rightarrow \mu^+ \nu$)
- K[±] semileptonic decays
- K[±] lifetime

NA48:

- CP violation in
- $K^{\pm} \rightarrow 3\pi$
- $\pi\pi$ scattering
- lengths from
- $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$
- $K_s \rightarrow \pi^+ \pi^- \pi^0$
- $\Gamma(K_{e2}^{\pm})/\Gamma(K_{\mu2}^{\pm})$

KTEV:

• BR(K_L $\rightarrow \pi^+\pi^-\gamma)$

• Hadronic radiative decays of K_L with virtual photons $(K_L \rightarrow \pi\pi\gamma^*)$ and $K_L \rightarrow \pi\pi\gamma^*$)

In this talk focus on:

• Direct CP violation in charged decays and (totally unexpected) $\pi\pi$ scattering lengths from $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ decays

- V_{us} measurement and unitarity test of CKM matrix.
- Determination of CP and CPT violation parameters using the Bell-Steinberger relation.
- μ /e universality in $K^{\pm}_{\ell 2}$ decays
- Status of rare K decays (K $\rightarrow \pi \nu \nu$) measurements.

Direct CP violation in $K^{\pm}_{3\pi}$ decays

- Compare the Dalitz plot density for K⁺ and K⁻, in the K[±]3 π decay modes: BR(K[±] $\rightarrow \pi^{\pm}\pi^{+}\pi^{-}$)=5.57% (charged) BR(K[±] $\rightarrow \pi^{\pm}\pi^{0}\pi^{0}$)=1.73%. (neutral)
- Matrix element:
 - $|M(u,v)|^{2} \sim 1 + gu + hu^{2} + kv^{2}$ $g_{ch} = -0.2154 \pm 0.0035$ $g_{n} = +0.638 \pm 0.020.$ |h| and |k| (~10⁻²) negligible wrt g
- The slope asymmetry is the direct CPviolation quantity: $A_g = (g_+-g_-)/(g_++g_-) \neq 0$
- SM estimates vary within an order of magnitude (few 10⁻⁶...8x10⁻⁵). Models beyond SM predict substantial enhancement.
- Data-taking 2003:
 - 1.61×10^9 events selected.

Lorentz-invariants: $s_i = (P_K - P_{\pi i})^2$, i=1,2,3 (3=odd π); $s_0 = (s_1 + s_2 + s_3)/3$; π_1 even $u = (s_3 - s_0)/m_{\pi}^2$; $v = (s_2 - s_1)/m_{\pi}^2$. Kaon rest frame: π_2 even $u = 2m_K \cdot (m_K/3 - E_{odd})/m_{\pi}^2$; $v = 2m_K \cdot (E_1 - E_2)/m_{\pi}^2$.

- •Careful control of detector (Δg_{LR}) and of beamline (Δg_{UD}) asymmetries.
- $BR(K^{\pm} \rightarrow \pi^{\pm} \pi^{+} \pi^{-})$
- Slope difference: $\Delta g = (-0.7 \pm 1.0) \times 10^{-4}$
- Charge asymmetry: $A_g = (1.7 \pm 2.9) \times 10^{-4}$
- BR($K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$): small BR and acceptance, larger slope.
- Slope difference: $\Delta g = (2.2 \pm 3.1) \times 10^{-4}$
- Charge asymmetry (using $g_0=0.638$): $A_g^0 = (1.8 \pm 2.6) \times 10^{-4}$
- Errors dominated by statistics
- Order of magnitude improvement hep-ex/0602014; PLB 634 (2006)

5

Cusp-like effect in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ decays

The high resolution of the NA48/2 experiment has allowed to observe –for the first time– a subtle and interesting phenomenon in $K^{\pm} \rightarrow 3\pi$ decays: anomaly in the $\pi^0\pi^0$ (M²₀₀) invariant mass distribution in the region M₀₀=2m_{$\pi\pm$}.

The origin of this discontinuity is due to the following interference/re-scattering effect:

 $\frac{\pi^{+}}{\pi^{0}} + \frac{\pi^{+}}{\pi^{-}} + \frac{\pi^{+}}{\pi^{-}} + \frac{\pi^{0}}{\pi^{0}} + \frac{\pi^{+}}{\pi^{-}} + \frac{\pi^{0}}{\pi^{0}} + \frac{\pi^{0}}{\pi^{0}} + \frac{\pi^{-}}{\pi^{0}} + \frac{\pi^{0}}{\pi^{0}} + \frac{\pi^{-}}{\pi^{0}} + \frac{\pi^{0}}{\pi^{0}} + \frac{\pi^{-}}{\pi^{0}} + \frac{\pi^{0}}{\pi^{0}} + \frac{\pi^{0}}{$

Cusp-like effect in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ decays

0.05

Δ

 $\Delta = (Data-MC)/Data$

[┙]╫╫_┙╝╬╫╢┨╽╘╶╺╊╚[┿]╗[╞]╫┪_╘┉╔┙┿╘[╏]┙╡╖[╏]┙╡[╏]╝┙╡╚╝┙┥┥╗╛╖┥┙┑╕╛╖

- Without the re-scattering effect: $\chi^2=13$ 574/148 d.o.f
- With re-scattering plus pionium: $\chi^2 = 141/139 \text{ d.o.f}$

• Universality of weak interactions + 3 generations:

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

• Most precise **test of unitarity** possible at present comes from 1^{st} row:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$$

Can test if $\Delta = 0$ at 10⁻³ level:

from super-allowed nuclear β-decays: $2|V_{ud}|\delta V_{ud} = 0.0005$ from semileptonic kaon decays: $2|V_{us}|\delta V_{us} = 0.0009$

• Extract |V_{us}| from K₁₃ decays (e.m. effects must be included):

$$\Gamma(K \to \pi \ell \nu(\gamma)) \propto V_{us} f_{+}^{K0\pi}(0) |^{2} I(\lambda_{t}) S_{EW}(1 + \delta_{EM} + \delta_{SU(2)})$$

Relative uncertainty: $\frac{\delta |V_{us}|}{|V_{us}|} = 0.5 \frac{\delta \Gamma}{\Gamma} \oplus 0.5 \frac{\delta I(\lambda_{t})}{I(\lambda_{t})} \oplus \frac{\delta f_{+}^{K0\pi}(0)}{f_{+}^{K0\pi}(0)}$

B.Sciascia – Kaon Physics – PIC06

Details on the V_{us} extraction

$$\Gamma_{K\ell 3} = \frac{G_F^2 M_K^5}{192\pi^3} S_{EW} (1 + \delta_K^\ell) C^2 |V_{us}|^2 f_+^2 (0) I_K^\ell$$

Theoretical inputs

• $f_+(0)$ form factor at zero momentum transfer: pure theory calculation (χ_{PT} , lattice) presently known at 1% level.

- S_{EW} short distance corrections (1.0232)
- $C = 1 (2^{-\frac{1}{2}})$ for neutral (charged) kaon decays
- δ_{K}^{ℓ} electromagnetic and isospin breaking (K[±] only) effects presently known at the 0.1% level.

Experimental inputs

• $I_{K}^{\ell} = I(\lambda_{+}, \lambda_{0}, 0)$ phase space integral; depends on the decay mode $K^{\pm,0}(e3)$, $K^{\pm,0}(\mu 3)$

- λ_+, λ_0 slopes (momentum dependence of the vector and scalar form factors)
- $\Gamma_{K\ell 3}$ (BR and lifetime)
- Measure all inputs: branching ratios, lifetimes, and form factors.

8

Experimental inputs for V_{us}: 2003-2006

Brookhaven National Laboratory

 $BR(K^{\pm} \rightarrow \pi^0 ev)$

 K_L dominant BR's K_L semileptonic form factor slopes

 $\begin{array}{l} BR(K_L \rightarrow \pi e \nu) \\ K_L \text{ semileptonic form factor slopes} \\ BR(K^{\pm} \rightarrow \pi^0 e^{\pm} \nu) \end{array}$

BR($K_S \rightarrow \pi e v$) K_L dominant BR's K_L lifetime $K_L e3$ form factor slopes K^{\pm} semileptonic BR's BR($K^{+} \rightarrow \mu^{+}\nu(\gamma)$) K^{\pm} lifetime

BR(K⁻ $\rightarrow \pi^0 e\nu$) K⁻ semileptonic form factor slopes B.Sciascia – Kaon Physics – PIC06

K physics at KLOE - tagging

Kaon physics at a ϕ -factory has some peculiar characteristics:

• $K_{S}K_{L}$ (K⁺K⁻) produced from ϕ are in a pure $J^{PC} = 1^{--}$ state:

$$K_{S}, K^{+} \longleftarrow \phi \longrightarrow K_{L}, K^{-}$$
$$\frac{1}{\sqrt{2}} (|K_{L}, \mathbf{p}\rangle| K_{S}, -\mathbf{p}\rangle - |K_{L}, -\mathbf{p}\rangle| K_{S}, \mathbf{p}\rangle)$$

- Allows interference measurements of $K_{S}K_{L}$ system
- Observation of $K_{S,L}$ signals presence of K_{LS} ; $K^{+,-}$ signals $K^{-,+}$
- Allow absolute branching ratio measurement, by means of a tag technique.
- Pure K_s beam
- $K_{S,L}$ momentum measured from tag kaon ($K_{L,S}$):

 $K_{S,L}$ angular resolution: ~ 1°; $K_{S,L}$ momentum resolution: ~ 1 MeV

• Kaon momentum ($p_L \sim 110$ MeV, $p_+ \sim 127$ MeV) is an excellent lever arm for lifetime measurements (acceptance about 0.5 λ). 10 _

B.Sciascia – Kaon Physics – PIC06

<pre>ø decay mode</pre>	BR
K+K-	49.1%
K _S K _L	34.1%

K[±] lifetime

WEIGHTED AVERAGE

• τ_{\pm} PDG entries: discrepancies between in-flight and at-rest measurements; discrepancies between different stoppers in at-rest measurements.

Tag events with $K^{\pm} \rightarrow \mu^{\pm} \nu$ decay Identify a kaon decay vertex on the opposite side

• 1st method: obtain τ_{\pm} from the K decay length Measure the kaon decay length taking into account the energy loss: $\tau_{K} = \sum_{i} \Delta L_{i} / (\beta_{i} \gamma_{i} c)$

$$\frac{\tau_{\pm} = 12.367 \pm 0.044_{stat} \pm 0.065_{syst} \text{ ns}}{(preliminary)}$$

• 2nd method: obtain τ_{\pm} from the K decay time Use only $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ decays Measure the kaon decay time: $\tau_{K} = (t_{\gamma} - R_{\gamma}/c)/\gamma_{K}$, using the π^{0} (*in progress*).

Comparison of the two methods allows to keep systematics under control B.Sciascia – Kaon Physics – PIC06

11

NOLIX KLOE

12

Dominant K_L BR's and K_L lifetime

• Using also the constraint $\sum BR(K_L) = 1$:

 $\begin{aligned} & \mathsf{BR}(\mathsf{K}_{\mathrm{L}} \to \pi \mathrm{ev}(\gamma) \) = 0.4007 \pm 0.0006_{\mathrm{stat}} \pm 0.0014_{\mathrm{syst}} \\ & \overline{\mathsf{BR}(\mathsf{K}_{\mathrm{L}} \to \pi \mu \nu(\gamma) \) = 0.2698 \pm 0.0006_{\mathrm{stat}} \pm 0.0014_{\mathrm{syst}}} \\ & \overline{\mathsf{BR}(\mathsf{K}_{\mathrm{L}} \to 3\pi^{0}) \ = 0.1997 \pm 0.0005_{\mathrm{stat}} \pm 0.0019_{\mathrm{syst}}} \\ & \overline{\mathsf{BR}(\mathsf{K}_{\mathrm{L}} \to \pi^{+}\pi^{-}\pi^{0}(\gamma) \) = 0.1263 \pm 0.0005_{\mathrm{stat}} \pm 0.0011_{\mathrm{syst}}} \end{aligned}$

 $\tau_{I} = 50.72 \pm 0.17 \pm 0.33$ ns

• Direct measurement of K_L lifetime using $K_L \rightarrow \pi^0 \pi^0 \pi^0$ decays:

 $\tau_L = 50.92 \pm 0.17 \pm 0.25$ ns

• Average of KLOE results:

 $\tau_L = 50.84 \pm 0.23$ ns

• cf .Vosburg'72: $\tau_L = 51.54 \pm 0.44$ ns, a factor ×2 better

K_L semileptonic branching ratios

KTeV measured 5 K_L decay ratios of 6 decay modes which account for 99.93% of K_L decays
The ratios can be combined to extract BRs of the 6

main K_L decay modes. (PRD 70 (2004))

- Preliminary result (HEP2005) with 6×10^6 K_{e3} events.
- Measure ratio of BRs:

 $BR(K_{L} \rightarrow \pi e\nu)/BR(2 \text{ track}) = 0.4978 \pm 0.0035$ BR(2 track) \approx 1-BR(K_{L} \rightarrow 3\pi^{0})

Using PDG-KTeV average for BR($K_L 3\pi^0$) = 0.1992(70) BR($K_L \rightarrow \pi ev$) = 0.4010 ± 0.0028_{exp} ± 0.0035_{norm}

NA48 preliminary measurement of $BR(K_L \rightarrow 3\pi^0)$ Extracted from $BR(K_L \rightarrow 3\pi^0)/BR(K_S \rightarrow 2\pi^0)$ $BR(K_L \rightarrow 3\pi^0) = 0.1966 \pm 0.0006 \pm 0.0033$ (PDG value for $BR(K_S \rightarrow 2\pi^0)$)

$BR(K^{\pm} \rightarrow \pi^{0} \ell^{\pm} v)$ preliminary results

KLOE preliminary:

• Absolute BR measurement of both $K^{\pm} \rightarrow \pi^{0} e^{\pm} v$ and $K^{\pm} \rightarrow \pi^{0} \mu^{\pm} v$ decay modes.

- BR(K[±] $\rightarrow \pi^0 e^{\pm} v) = (5.047 \pm 0.019_{stat} \pm 0.039_{syst})\%$
- BR($K^{\pm} \rightarrow \pi^{0} \mu^{\pm} \nu$) = (3.310±0.016_{stat} ±0.045_{syst})%

PDG (pre E865) (4.87±0.06)% E865(2003) (5.13±0.10)%

NA48 preliminary:

- Measurement of BR($K^{\pm} \rightarrow \pi^{0} e \nu$)/BR($K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$)
- BR(K[±] $\rightarrow \pi^0 ev$) = (5.14±0.02_{stat}±0.06_{syst})%

ISTRA+ preliminary:

- Measurement of BR(K⁻ $\rightarrow \pi^0 e^- \nu$)/BR(K⁻ $\rightarrow \pi^- \pi^0$)
- BR(K⁻ $\rightarrow \pi^0 ev) = (5.22 \pm 0.11)\%$

<u>Note</u>: NA48/2 and ISTRA+ values depend on BR($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$). Post-PDG'04 results for Ke3 (E865) and Kµ2 (KLOE) decrease BR($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$) by ~1% from global fit to K^{\pm} BRs

 K_{ℓ_3} form factor slopes

Linear: $1 + \lambda_{+}t$ Quadratic: $1 + \lambda'_{+}t/m^{2}_{\pi^{+}} + 1/2 \lambda''_{+}(t/m^{2}_{\pi^{+}})^{2}$ Pole model: $M_{V}^{2}/(M_{V}^{2}-t)$,

Taylor exp. with $\lambda'_{+} = (\mathbf{m}_{\pi}/\mathbf{M}_{V})^{2}$, $\lambda''_{+} = 2 \lambda'_{+}^{2}$

Fit of momentum transfer spectrum with different

e

KLOE Published PLB 636 (2006) 166

In the extraction of V_{us} : needed for evaluation of phase-space integrals I^{ℓ}_{K}

• 328 pb⁻¹, 2×10⁶ Ke3 decays

hypothesis on form factor $f_{+}(t)/f_{+}(0)$:

- Momentum transfer **t measured** from π and K_L momenta: $\sigma_t/m_{\pi}^2 \sim 0.3$.
- Separate measurement for each charge state $(e^{-}\pi^{+}, e^{+}\pi^{-})$ to check systematics.

Quadratic: $\lambda'_{+} = (25.5 \pm 1.5 \pm 1.0) \times 10^{-3}$ $\lambda''_{+} = (1.4 \pm 0.7 \pm 0.4) \times 10^{-3}$ $\rho(\lambda'_{+}, \lambda''_{+}) = -0.95$

Pole model:

$$m_V = (870 \pm 7) \text{ MeV}$$

K_{Le3} form factor slopes

18

V_{us} from all results

Measurement of $BR(K^+ \rightarrow \mu^+ \nu(\gamma))$

- The ratio $|V_{us}|/|V_{ud}|$ can be extract from the ratio of μ^2 decays of kaons and pions: $\Gamma(K \rightarrow \mu \nu(\gamma))/\Gamma(\pi \rightarrow \mu \nu(\gamma)) \propto |V_{us}|^2/|V_{ud}|^2 f_K^2/f_\pi^2$
- From lattice calculations: $f_{\rm K}/f_{\pi} = 1.198(3)(^{+16}_{-5})$ (MILC Coll. PoS (LAT2005) 025)
- K ℓ 3-independent V_{us} determination

Tag from K⁻→μ⁻ν. Subtraction of π⁺π⁰, π⁰*l*⁺ν background.
Count events in (225,400) MeV window of the momentum distribution in K rest frame.

The $V_{us} - V_{ud}$ plane

• Using $f_{\rm K}/f_{\pi} = 1.198(3)(^{+16}_{-5})$ from MILC Coll. (2005) and KLOE BR(K⁺ $\rightarrow \mu^+ \nu$) we get $V_{\rm us}/V_{\rm ud} = 0.2294 \pm 0.0026$

B.Sciascia – Kaon Physics – PIC06

• CPT symmetry is linked to the basic mathematical tools that we use in particle physics: QFT + Lorentz invariance + Locality \rightarrow CPT

- These tools have intrinsic limitations (we are not able to include gravity in a consistent way) and we should expect CPT violation at some level
- It's hard to define a reference scale/size for CPT violation (no consistent and predictive theory without these tools)
- Phenomenologically driven search i.e. reference scale set by the most significant experimental bounds
- The neutral kaon system is an ideal testing ground:
 - Charge asymmetries of the semileptonic decays.
 - The unitarity (Bell-Steinberger) relation.

The unitarity and the Bell-Steinberger relation

Even if CPT is violated, we can assume that unitarity (i.e. the conservation of the probability) is conserved.

Expressing the neutral kaon decay amplitudes in the K_L-K_S basis: $K_S \propto K_+ + (\epsilon - \delta)K_-$; $K_L \propto K_- + (\epsilon + \delta)K_+$, ϵ and δ : CP and CPT violation parameters

$$\Gamma_{K^{0}} = \Gamma_{11} = \sum_{f} \mathcal{A}(K^{0} \to f) \mathcal{A}(K^{0} \to f)^{*}$$

$$\Gamma_{\bar{K}^{0}} = \Gamma_{22} = \sum_{f} \mathcal{A}(\bar{K}^{0} \to f) \mathcal{A}(\bar{K}^{0} \to f)^{*}$$

$$\Gamma_{12} = \sum_{f} \mathcal{A}(K^{0} \to f) \mathcal{A}(\bar{K}^{0} \to f)^{*}$$

$$\Gamma_{21} = \sum_{f} \mathcal{A}(\bar{K}^{0} \to f) \mathcal{A}(\bar{K} \to f)^{*}$$

 $\left[\frac{\Gamma_{S}+\Gamma_{L}}{\Gamma_{S}-\Gamma_{L}}+i\tan\phi_{SW}\right]\frac{Re(\epsilon)-iIm(\delta)}{1+|\epsilon^{2}|}=\frac{1}{\Gamma_{S}-\Gamma_{L}}\sum A_{L}(f)A_{S}^{*}(f)=\sum_{f}\,\alpha_{f}$

This is an exact relation: phase convention independent, no approximations in the CPT limit (δ treated as small parameter and expanded to 1st non trivial order).

Experimental inputs: Γ_S, Γ_L, m_S, m_L, and α_f.
Two physical outputs: *Re* ε and *Im* δ:

$$\phi_{SW} = \arctan\left[\frac{2(m_{\rm L} - m_{\rm S})}{\Gamma_{S} - \Gamma_{L}}\right] \approx 43.4^{\circ}$$

If $Im \delta \neq 0$: CPT violation, unitarity violation, new exotic invisible final sates.

$$\delta = \frac{i(m_{K_0} - m_{\overline{K}_0}) + \frac{1}{2}(\Gamma_{K_0} - \Gamma_{\overline{K}_0})}{\Gamma_S - \Gamma_L} \cos \phi_{SW} e^{i\phi_{SW}} [1 + O(\epsilon)]$$

• If $\Delta\Gamma=0$ (CPT conserved in the decay): $|\Delta m/m_{K0}| \approx 3 \times 10^{-14} |Im \delta|$

Details on definition of decay amplitudes

$$\left[\frac{\Gamma_{S}+\Gamma_{L}}{\Gamma_{S}-\Gamma_{L}}+i\tan\phi_{SW}\right]\frac{Re(\epsilon)-iIm(\delta)}{1+|\epsilon^{2}|}=\sum_{f}\ \alpha_{f}$$

$$\frac{\pi\pi \text{ decays:}}{\alpha_{+-}} = \eta_{+-} \operatorname{Br}(\mathbf{K}_{\mathrm{S}} \to \pi^{+}\pi^{-})$$

$$\alpha_{00} = \eta_{00} \operatorname{Br}(\mathbf{K}_{\mathrm{S}} \to \pi^{0}\pi^{0})$$

$$\alpha_{+-\gamma} = \eta_{+-\gamma} \operatorname{Br}(\mathbf{K}_{\mathrm{S}} \to \pi^{+}\pi^{-}\gamma)$$

$$\frac{\pi\pi\pi \text{ decays:}}{\alpha_{+-0}} \approx \frac{\tau_{S}}{\tau_{L}} \eta_{+-0} \text{ Br}(K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}) \qquad \text{CPT-violation in decay}$$

$$\frac{\sigma_{000}}{\sigma_{000}} \approx \frac{\tau_{S}}{\tau_{L}} \eta_{000} \text{ Br}(K_{L} \rightarrow \pi^{0}\pi^{0}\pi^{0}) \qquad \text{CPT-violation in decay}$$

$$\frac{\sigma_{000}}{\sigma_{000}} \approx \frac{\tau_{S}}{\tau_{L}} \frac{\tau_{S$$

Other decays contribute less than 10-6

Inputs to B-S relation

input	value	Used sources	
τ_S	$0.08958 \pm 0.00006 \ \mathrm{ns}$	PDG (*) [3]	
τ_L	$50.84\pm0.23~{ m ns}$	KLOE [4,5]	
$\Gamma(K_S \to \pi^+ \pi^-) / \Gamma(K_S \to \pi^0 \pi^0)$	2.2549 ± 0.0054	KLOE [6]	
$BR(K_L \rightarrow \pi^+ \pi^-)$	$(1.965 \pm 0.010) \times 10^{-3}$	KLOE [7], KTeV [8]	
$BR(K_L \rightarrow \pi^0 \pi^0)$	$(0.865\pm0.010)\times10^{-3}$	KTeV [8]	
$BR(K_S \to \pi^+ \pi^- \gamma)_{DE}$	$< 1.8 imes 10^{-4} \ 95\% { m CL}$	E731 [11]	
$BR(K_L \to \pi^+ \pi^- \gamma)_{DE}$	$(31 \pm 1) \times 10^{-6}$	KTeV [10]	
$BR(K_L \to \pi l \nu)$	0.6705 ± 0.0022	KLOE [5]	
η+-0	$(-2 \pm 7)10^{-3} + i(-2 \pm 9)10^{-3}$	CPLEAR [13]	
$BR(K_L \rightarrow \pi^+ \pi^- \pi^0)$	0.1263 ± 0.0012	KLOE [5]	
$BR(K_S \rightarrow 3\pi^0)$	$< 1.2 \ 10^{-7} \ 90\% CL$	KLOE [12]	
$BR(K_L \rightarrow 3\pi^0)$	0.1997 ± 0.0020	KLOE [5]	
Φ+-	(43.4±0.7)°	PDG (*) [3]	
Φ ₀₀	(43.7±0.8)°	PDG (*) [3]	
Φ_{SW}	$(43.51 \pm 0.06)^{\circ}$	PDG [3]	
$\Phi^{000}, \Phi^{+-\gamma}$	$[0, 2\pi]$		
A_L	$(3.32 \pm 0.06) \times 10^{-3}$	PDG [3]	
A_S	$(1.5 \pm 10.0) \times 10^{-3}$	KLOE [14]	
$Im(x_+)$	$(0.8 \pm 0.7) \times 10^{-3}$	CPLEAR [13], KLOE [14], PDG [3]	

• 2006 results

• Quantities evaluated without assuming CPT invariance.

• $Im x_{+} = (1.2\pm2.2)\times10^{-2}$ by CPLEAR. A combined fit of CPLEAR data with KLOE-KTeV (A_S-A_L) gives a ×3 improvement $Im x_{+} = (0.8\pm0.7)\times10^{-2}$

$BR(K_S \rightarrow \pi^+\pi^-(\gamma))/BR(K_S \rightarrow \pi^0\pi^0)$

• Fixes BR(K_S $\rightarrow \pi^+\pi^-(\gamma)$), used to normalize BR(K_S $\rightarrow \pi e\nu$)

 $R_{\pi\pi} = 2.2549 \pm 0.0054$ (hep-ex/0601025, subm. EPJC) Fractional error 0.24%

$BR(K_{S} \rightarrow \pi^{\pm} e^{\pm} \nu) / BR(K_{S} \rightarrow \pi^{+} \pi^{-} (\gamma))$

- TOF e/ π identification, fit to E_{miss} - P_{miss} spectrum
- Normalize to $\pi^+\pi^-$ counts in the same dataset.
- Separate measurement for each charge state ($e^{-\pi^{+}}, e^{+\pi^{-}}$)

BR(πev) = (7.046±0.077±0.049)×10⁻⁴ Fractional error 1.3% = $1.1\%_{STAT} \oplus 0.7\%_{SYST}$ K_{Se3} form factor slope: λ_+ = (33.9±4.1)×10⁻³ First measurement, compatible with K_L

$$K_S$$
 physics

CPT test from A_S and A_L

• Sensitivity to CPT violating effects through charge asymmetry of the semileptonic neutral kaon decays:

$$A_{S,L} = \frac{\Gamma(\mathbf{K}_{S,L} \to \pi^{-} e^{+} \nu) - \Gamma(\mathbf{K}_{S,L} \to \pi^{+} e^{-} \overline{\nu})}{\Gamma(\mathbf{K}_{S,L} \to \pi^{-} e^{+} \nu) + \Gamma(\mathbf{K}_{S,L} \to \pi^{+} e^{-} \overline{\nu})} \qquad A_{S} = 2(\operatorname{Re} \varepsilon + \operatorname{Re} \delta - \operatorname{Re} y + \operatorname{Re} x_{-}) \\A_{L} = 2(\operatorname{Re} \varepsilon - \operatorname{Re} \delta - \operatorname{Re} y - \operatorname{Re} x_{-})$$

- A_L already measured by KTeV (2002): $A_L = (3.322 \pm 0.058 \pm 0.047) \ 10^{-3}$
- A_S measured for the first time by KLOE (2006): A_S = (1.5 ± 9.6 ± 2.9) 10^{-3}

measurement: CPLEAR, $\sigma = 1.3 \times 10^{-2}$

• $A_s + A_L = 4(\text{Re }\epsilon - \text{Re }y) \neq 0$ implies CPT violation Re ϵ from PDG not assuming CPT Re $y = (0.4 \pm 2.5) \ 10^{-3}$

Comparable with best result: CPLEAR from unitarity, $\sigma = 3.1 \times 10^{-3}$.

 $BR(K_L \rightarrow \pi^+\pi^-(\gamma_{IB+DE}))$

KLOE: PID using decay kinematics.

Normalize to $K_L \mu 3$ events

BR(K_L→π⁺π⁻(γ_{IB+DE})) = (1.963±0.021)×10⁻³ PLB638 Fractional error 1.1% = 0.6%_{STAT} ⊕ 0.9%_{SYST} In agreement with KTeV 2004 BR = 1.975(12)×10⁻³ It confirms the 4σ discrepancy with PDG04 $|η_{+-}| = (2.216 \pm 0.013) \times 10^{-3}$ BR(K_S→ ππ) and τ_L from KLOE, τ_S from PDG04

$$BR(K_L \to \pi^+ \pi^-(\gamma_{DE}))$$

- 1997 dataset of E832 (collected during ϵ'/ϵ data taking)
- After all analysis cuts 112.1×10^3 candidates with an estimated background of 671 events, mostly K_Lµ3 and K_Le3 decays.

• $BR(K_L^0 \to \pi^+\pi^-(\gamma_{DE})) = (29\pm 1) \times 10^{-6}$; hep-ex/0604035 (subm. PLB)

 $K_S \rightarrow \pi^0 \pi^0 \pi^0 decays$

Observation of $K_S \rightarrow 3\pi^0$ signals CP violation in mixing and/or decay: SM prediction: $\Gamma_S = \Gamma_L |\eta|^2$, giving $BR(K_S \rightarrow 3\pi^0) = 1.9 \times 10^{-9}$

NA48: Measures directly η_{000} through the K $\rightarrow 3\pi^0$ rate as a function of the proper time.

•
$$\eta_{000} = (-0.002 \pm 0.019) + i(-0.003 \pm 0.021)$$

KLOE:

- Direct search for $K_S \rightarrow 3\pi^0$ decays
- Normalize to the $K_S \rightarrow 2\pi^0$ in the same data sample
- BR(K_S $\rightarrow 3\pi^0) \le 1.2 \times 10^{-7}$, 90% C.L.
- $\eta_{000} \leq 0.018$

 $\alpha_{000} = \tau_{\rm S} / \tau_{\rm L} \eta_{000}^{*} B(K_{\rm L} \rightarrow \pi^0 \pi^0 \pi^0) \le 0.010, 95\% \text{ C.L.}$

B.Sciascia – Kaon Physics – PIC06

CPT test from unitarity: result

$$\left[\frac{\Gamma_{S}+\Gamma_{L}}{\Gamma_{S}-\Gamma_{L}}+i\tan\phi_{SW}\right]\frac{Re(\epsilon)-iIm(\delta)}{1+|\epsilon^{2}|} = \sum_{f} \,\, \alpha_{\rm f}$$

• Before, the accuracy on $\operatorname{Re}\epsilon$ and $\operatorname{Im}\delta$ was dominated by the poor knowledge of η_{000}

• Thanks to the KLOE measurements of η_{000} and A_s , the accuracy on $\text{Re }\epsilon$ and $\text{Im}\delta$ improved of a factor ~2.5.

- The limiting quantities are $Im x_{+}$ and ϕ_{+-} for $Im \delta$ η_{+-} and η_{00} for Re.
- The semileptonic sector contributes by 15% and induces a small correlation between $Re \varepsilon$ and $Im \delta$.

CPT test: $\Delta \Gamma vs \Delta m$

Assuming no CPT violation in the decay ($\Delta\Gamma = 0$) obtain the limit on the neutral kaon mass difference:

$$-4 \times 10^{-19} \text{ GeV} \le m_{K0} - m_{\overline{K0}} \le 7 \times 10^{-19} \text{ GeV}$$

 $R_{K} = \Gamma(K^{+} \rightarrow e^{+} \nu) / \Gamma(K^{+} \rightarrow \mu^{+} \nu)$

- Present measurement come from 3 experiments of '70. Low energy K⁺ beam stopped in a target, decay at rest.
- 2003 data set

 K_{e2}^{\pm} signature: E/p=1 & $m_v^2=0$ N_{TOT} = 5329 (73); Bkg = 659 (26) N_{SIG} = 4670 (77)(⁺²⁹₋₈)_{SYST}

• Preliminary (EPS05) NA48/2 measurement.

	R _K ×10 ⁵
PDG average	2.45 (11)
SM prediction	2.472 (1)
NA48/2 (2003)	2.416 (43) _{STAT} (24) _{SYST}

<u>Future</u>:

- NA48/2 2004 statistics: about ×2 of 2003
- **KLOE** complete data set (2.5 fb⁻¹)
- Slight discrepancy between R_K measurement and the SM predcition
- 2–body K decays are suppressed (helicity) in SM but generally unsuppressed in SM–extensions (hep-ph/0511289): $\Gamma(K \rightarrow ev_{o})_{SM}$

$$R_{K} = (1 + \Delta r^{e-\mu}_{NP}) \frac{\Gamma(K \rightarrow e\nu_{e})_{SM}}{\Gamma(K \rightarrow \mu\nu_{\mu})_{SM}}$$

CKM unitarity and $K \rightarrow \pi \nu \nu$ *decays*

• "Golden-plated decays": BR($K \rightarrow \pi \nu \nu$) can be predicted in the SM framework with very high theoretical accuracy and may provide grounds for precision tests of the flavor structure of the SM

• $\mathbf{K}^{0}_{L} \rightarrow \pi^{0} \mathbf{v} \mathbf{v}$ and $\mathbf{K}^{+} \rightarrow \pi^{+} \mathbf{v} \mathbf{v}$ completely determine the Unitarity Triangle.

• Comparison with Unitarity Triangle from B sector could provides decisive tests in the flavor physics: new physics may differentiate between K and B measurement

• The *a priori* unknown hadronic matrix element obtained from $K \rightarrow \pi e v$ decays.

• SM predictions:

 $\begin{aligned} & \textbf{Br}(\textbf{K}^{+} \rightarrow \pi^{+} \nu \nu) \approx (1.6 \times 10^{-5}) |V_{cb}|^{4} (\rho \eta^{2} + (\rho_{c} - \rho)^{2}) \rightarrow (\textbf{8.0} \pm \textbf{1.1}) \times \textbf{10}^{-11} \\ & \textbf{Br}(\textbf{K}^{0}_{L} \rightarrow \pi^{0} \nu \nu) \approx (7.6 \times 10^{-5}) |V_{cb}|^{4} \eta^{2} \rightarrow (\textbf{3.0} \pm \textbf{0.6}) \times \textbf{10}^{-11} \end{aligned}$

• Combined $K \rightarrow \pi \nu \nu$ measurement determine $(\sin 2\beta)_K$ without being affected by the $|V_{cb}|$ uncertainty.

$K_L \rightarrow \pi^0 vv$: reminder and outlook

KEK-E391a Upper Limit

No events in the signal box; S.E.S.= 1.17×10^{-7} BR(K⁰_L $\rightarrow \pi^{0}vv$)<2.86×10⁻⁷ 90%CL Preliminary (KAON2005) ×6 improvement over KTeV one day special run

×2 improvement over published limit (KTeV Dalitz technique)

KOPIO @ BNL stopped

In Japan a step by step approach is followed: **KEK**:

E391a has completed data taking (three runs).

They aim to reach the Grossman-Nir bound from the accumulated data. **J-PARC**:

A proposal is being prepared for the new J-PARC hadron facility:

Step I: move the E391a detector at J-PARC

Step II: build a new detector and a dedicated beamline to be able reach about 100 SM events

$K^+ \rightarrow \pi^+ vv$: reminder and outlook

BNL-E787/E949: Stopped K⁺, ~0.1% acceptance BR(K⁺ $\rightarrow \pi^+\nu\nu$) = 1.47^{+1.30}_{-0.89} 10⁻¹⁰ hep-ex/0403036 PRL93 (2004)

n

100 events

BR = SM

0.8

0.4

02

P326 (a.k.a. NA48/3)

• Proposal to measure the rare decay **BR(K⁺\rightarrow \pi^+\nu\nu)** at the CERN SPS (CERN-SPS-2005-013, SPSC-P-326)

• Aims to receive full approval by end of 2006... to be able to start data taking some time in 2009-2010

- Kinematic rejection (m^2_{MISS}) +photon veto+PID.
- To reject K⁺→ππ⁰ events: 10⁻⁸ π⁰ rejection.
 (require single photon rejection 10⁻⁵ for E_γ>1 GeV)
 GIGA-tracker.
- Expect ~100 events in two year with ~10% of background.

$K^+ \rightarrow \pi^+ \nu \nu$: outlook

Region I: 0 < m²_{miss} < 0.01 GeV² **Region II:** 0.026 < m²_{miss} < 0.068 GeV²

Plenty of new results in kaon physics since PIC05.

- Totally unexpected $\pi\pi$ scattering length measurement from $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ decays
- Precise bounds on direct CP-violation measured in $K \rightarrow 3\pi$ charged kaons decays.
- New V_{us} world average. Unitarity of CKM matrix tested at 1σ level.
- New determination of CP and CPT parameters: the accuracy on $Re \varepsilon$ and $Im \delta$ improved of a factor ~2.5.
- Renewed interest in $K^{\pm} \rightarrow \ell^{\pm} \nu$ decays as new physics probe.
- Status and perspectives of the $K \rightarrow \pi \nu \nu$ measurements.

Kaons offer a unique playground to test SM and to shed light on physics beyond SM.

Thanks to G.Isidori and F.Mescia for illuminating discussions in preparing this talk.

Extraction of $\delta_0 - \delta_2$ Cirigliano et al. '04 (EPJC 33 369) Using KLOE '02 result for $\Gamma(\pi^+\pi^-)/\Gamma(\pi^0\pi^0)$: Isospin-conserving treatment: $\chi_0 - \chi_2$ $(48.6 \pm 2.6)^{\circ}$ $\Gamma(K_S \to \pi\pi)$ fully inclusive of $\pi\pi\gamma$ channel Isospin breaking in amplitudes (mainly EM): $\chi_0 - \chi_2$ $(54.6 \pm 2.2_{exp} \pm 0.9_{th})^{\circ}$ $A_I \rightarrow A_I + \delta A_I$ A_0, A_2 amplitudes mixed $\Delta I = 5/2$ component introduced Small contribution from strong isospin breaking $\delta_0 - \delta_2$ Isospin breaking in final state phase shifts: $(60.8 \pm 2.2_{exp} \pm 3.1_{th})^{\circ}$ $\delta_I = \chi_I - \gamma_I$ $\delta_0 - \delta_2 = (-6 \pm 3)^\circ [\chi PT \ O(e^2 p^2)]$ For comparison: $\delta_0 - \delta_2$ $(45 \pm 6)^{\circ}$ χ PT estimate (Gasser & Meissner '91) $\pi\pi$ scattering (Colangelo et al. '01 $a_0-a_2 = 0.265\pm0.004$) $(47.7 \pm 1.5)^{\circ}$ (Peláez & Ynduráin '04 $a_0-a_2 = 0.277\pm0.014$) $(52.9 \pm 1.6)^{\circ}$

Generators for radiative K decays

Generators for neutral kaon decays include radiation, no cutoff energy

- Full O(α) amplitudes (real and virtual contributions) summed to all orders in α by exponentiation (soft-photon approximation)
- Carefully checked against all available data and calculations

$$\begin{split} \frac{BR(K_L \rightarrow \pi e \nu \gamma, E_{\gamma} > 30 \, MeV \, \theta_{e\gamma} > 20^\circ)}{BR(K_L \rightarrow \pi e \nu)} = \\ kTeV & (0.908 \pm 0.015) \times 10^{-2} \\ Bijnens \ et \ al & 0.93 \times 10^{-2} \\ MC & 0.93 \times 10^{-2} \end{split}$$

 $\frac{BR(K_s \to \pi\pi\gamma, E_{\gamma} > 50 \,MeV)}{BR(K_s \to \pi\pi)} = \frac{E731}{MC} \frac{(2.56 \pm 0.09) \times 10^{-3}}{2.6 \times 10^{-3}}$

KLOE Note 194 (http://www.lnf.infn.it/kloe)

$K_S \rightarrow \pi \mu \nu$: first observation

- Measurement never done before
- More difficult than K_{Se3}:
 1) Lower BR: expect 4×10⁻⁴
 2) Background events from K_S → ππ, π → μν: same PIDs of the signal Event counting from the fit to
- Event counting from the fit to $E_{miss}(\pi\mu) - P_{miss}$ distribution
- Efficiency estimate from $K_{L\mu3}$ early decays and from MC + data control samples.
- Selected about 4500 events per charge in ~400 pb⁻¹. (~ 3% stat error)

Apart from unitarity problem, V_{us} seemed to be well understood before the new data has arrived:

- Measured with $K_L e^3 (0.2182 \pm 0.0012_{\text{exp}})$, $K^{\pm} e^3 (0.2208 \pm 0.0016_{\text{exp}})$ and Hyperon decays (0.2176 ± 0.0026) . The most precise measurement came from $K_L e^3$ decays.
- $K_L e^3$ branching fraction is extracted from various measurements of 36 different experiments performed between 1967-1995, they show good internal agreement
- $f_{+}(t)$ form factor is measured by ~ 10 experiments, well described by linear λ^{+} term. The value of λ^{+} is consistent between K^{\pm} (0.028 \pm 0.003) and K_{L} (0.030 \pm 0.002) as well as with theory (chiral QCD) expectations (~ 0.028).
- $f_+(0)$ is calculated by Leutweyler and Roos in 1984, their analysis shows that $K^{\pm}e^3$ and K_Le^3 data are consistent.

The only problem in this picture was BNL E865 determination of V_{us} based on $K^{\pm}e3$ data (PRL **91** 261802, published on 31 Dec 2003) which triggered a lot of new experimental activity.

Absolute BR measurements to 0.5-1%

from '01-'02 data set (328 pb⁻¹)

K_L tagged by $K_S \rightarrow \pi^+ \pi^-$:

- 13×10^6 for the measurement
- 4×10^6 used to evaluate efficiencies **BR's to \pi ev, \pi \mu v, and \pi^+ \pi^- \pi^0**:
- K_L vertex reconstructed in DC
- PID using decay kinematics
- Fit with MC spectra including radiative processes and optimized EmC response to $\mu/\pi/K_L$

BR to $\pi^0\pi^0\pi^0$:

- Photon vertex reconstructed by TOF using EmC (3 clusters)
- $E_{rec} = 99\%$, background < 1%

Direct measurement of K_L lifetime

V_{us}from KLOE results

KTEV $\frac{5}{4}$ $\frac{5}{5}$ $\frac{3}{5}$ Kaons at the Tevatron

• KTeV measures 5 K_L decay ratios of 6 decay modes:

 $\Gamma(e3)/\Gamma(\mu3), \Gamma(\pi^+\pi^-\pi^0)/\Gamma(e3), \Gamma(\pi^0\pi^0\pi^0)/\Gamma(e3), \Gamma(\pi^+\pi^-)/\Gamma(e3), \Gamma(\pi^0\pi^0\pi^0)$

• These 6 decay modes account for 99.93% of K_L decays and the ratio can be combined to extract BR, i.e.:

$$B_{Ke3} = \frac{0.9993}{1 + \frac{\Gamma_{K\mu3}}{\Gamma_{Ke3}} + \frac{\Gamma_{000}}{\Gamma_{Ke3}} + \frac{\Gamma_{+-0}}{\Gamma_{Ke3}} + \frac{\Gamma_{+-}}{\Gamma_{Ke3}} + \frac{\Gamma_{00}}{\Gamma_{Ke3}}} \qquad [PRD \ 70 \ (2004)]$$

• Results are:

 $BR(K_L \rightarrow \pi e\nu) = 0.4067 \pm 0.0011$ $BR(K_L \rightarrow \pi \mu \nu) = 0.2701 \pm 0.0009$ $BR(K_L \rightarrow \pi \pi \pi^0) = 0.1252 \pm 0.0007$ $BR(K_L \rightarrow \pi^0 \pi^0 \pi^0) = 0.1945 \pm 0.0018$ $BR(K_L \rightarrow \pi^+ \pi^-) = (1.975 \pm 0.012) \times 10^{-3}$ $BR(K_L \rightarrow \pi^0 \pi^0) = (0.865 \pm 0.010) \times 10^{-3}$

- Hadronic radiative decays of neutral kaons with real and virtual photons give insight into structure of the kaon
- Summary status of the results presented in La Thuile 2006

Real γ	Virtual $\gamma^* \rightarrow e^+ e^-$
$K_L \rightarrow \pi^0 \pi^0 \gamma$	$K_L ightarrow \pi^0 \pi^0 e^+ e^-$
Preliminary results	Published
$K_L \to \pi^+ \pi^- \gamma$	$K_L ightarrow \pi^+\pi^- e^+e^-$
New Preliminary results	New results, accepted in PRL
$K_L \to \pi^+ \pi^- \pi^0 \gamma$	$K_L \rightarrow \pi^+ \pi^- \pi^0 e^+ e^-$
New Preliminary results	New Preliminary results
$K_L \to \pi^0 \pi^0 \pi^0 \gamma$	$K_L ightarrow \pi^0 \pi^0 \pi^0 e^+ e^-$
Analysis in progress	Analysis in progress

Kaon radiative decays: summary

Hadronic radiative decays of neutral kaons with real and virtual photons give insight into structure of the kaon

 $K^0_L \rightarrow \pi^+ \pi^- \gamma$ $g_{M1} = 1.198 \pm 0.035 \text{ (stat)} \pm 0.086 \text{ (syst)}$ $a_1/a_2 = -0.738 \pm 0.007 \text{ (stat)} \pm 0.018 \text{ (syst)}$ $g_{E1} < 0.21 (90\% CL)$ BR($K^0_I \rightarrow \pi^0 \pi^0 \gamma$) < 2.52 10⁻⁷ 90%CL $BR(K_{L}^{0} \rightarrow \pi eve^{+}e^{-}, M_{ee} \geq 5 \text{ MeV}) = 1.606 \pm 0.012(\text{stat})^{+0.026}(\text{syst}) \pm 0.045(\text{ext.}) \ 10^{-5}$ **BR**($\pi^0 \square e^+e^-, X > 0.95$) = 6.56 ± 0.26(stat) ± 0.23(syst) 10⁻⁸ $K^0_I \rightarrow e^+ e^- \gamma$ $BR(K_{L}^{0} \rightarrow e^{+}e^{-}\gamma) = 9.25 \pm 0.03(stat) \pm 0.07(syst) \pm 0.26 (ext) 10^{-6}$ $C\alpha K^* = -0.517 \pm 0.030$ (fit) ± 0.022 (syst) $\alpha_{\text{DIP}} = -1.729 \pm 0.043$ (fit) ± 0.028 (syst) **BR**($K_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}\gamma$) = 1.70 ± 0.03(stat) ± 0.04(syst)) ± 0.03(norm) 10⁻⁴ $BR(K_{L}^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}e^{+}e^{-}, E_{ee} > 20 \text{ MeV/c}^{2}) = 1.60 \pm 0.18 \text{(stat)} 10^{-7}$

 $BR(K_L \rightarrow \pi^+\pi^-(\gamma_{IB}))$

PID using decay kinematics Normalize to $K_L \rightarrow \pi \mu \nu$ events

BR = $(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$

 $\sigma_{rel}: 1.1\% = 0.6\%_{stat} \oplus 0.9\%_{syst}$

- in agreement with KTeV 2004 BR = $(1.975 \pm 0.012) \times 10^{-3}$
- it confirms the $4-\sigma$ discrepancy with PDG04 = $(2.080 \pm 0.025) \times 10^{-3}$

• we get:

 $|\eta_{+-}| = (2.216 \pm 0.013) \times 10^{-3}$

[BR(K_S $\rightarrow \pi\pi$) and τ_L from

KLOE, τ_S from PDG04]

PDG04: $|\varepsilon| = (2.280 \pm 0.013) \times 10^{-3}$

PLB638 (hep-ex/0603041)

B.Sciascia – Kaon Physics – PIC06

Consistency of BRs and Form Factors results with lepton universality. Compare Γ 's for K_{e3} and $K_{\mu3}$:

$$\left[\frac{\Gamma_{K\mu3}}{\Gamma_{Ke3}}\right]_{MEAS} / \left[\frac{\Gamma_{K\mu3}}{\Gamma_{Ke3}}\right]_{PRED} = 0.9969 \pm 0.0048 = \left(\frac{G_F^{\mu}}{G_F^{e}}\right)$$

Same test with PDG values gives 1.0270 ± 0.0182

B.Sciascia – Kaon Physics – PIC06

Signal & bkg from K decays/year*

	Total	Region I	Region II
Signal (SM)	65	16	49
$K^+ \rightarrow \pi^+ \pi^0$	2.7±0.2	1.7±0.2	1.0±0.1
K _{µ2}	1.2±0.3	1.1±0.3	<0.1
K _{e4}	2±2	negligible	2±2
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$ and other 3-tracks bckg.	1±1	negligible	1±1
$\mathrm{K}_{\pi2}\gamma$	1.3±0.4	negligible	1.3±0.4
$K_{\mu 2} \gamma$	0.4±0.1	0.2±0.1	0.2±0.1
$K_{e3}, K_{\mu3}$,others	negligible	_	_
Total bkg	9±3	3.0±0.2	6±3

*Before taxes. Proposal quotes 40 evt/year @BR=10⁻¹⁰

- SPS used as LHC injector (so it will run in the future)
- No flagrant time overlap with CNGS

• P-326 fully compatible with the rest of CERN fixed target because

P-326 needs only ~1/20 of the SPS protons

• Beam time estimates based on decennial NA48 experience at SPS