

Recent results from KLOE

<u>A. De Santis</u>

Univ. "Sapienza" & sez. INFN Roma on behalf of The KLOE collaboration

Rencontres de Moriond QCD and High Energy Interactions La Thuile 8/15 March 2008

Outline

- Pseudoscalars
 - $^-\eta$ mass
 - ⁻ $\eta \rightarrow \pi \pi \pi \pi$ dynamics
 - $\ \ \eta \to \pi^{\,\scriptscriptstyle +} \pi^{\,\scriptscriptstyle -} \, e^{\,\scriptscriptstyle +} e^{\,\scriptscriptstyle -} \, {
 m decay}$
 - $-\eta/\eta'$ mixing
- Scalars
 - $\begin{array}{l} \ \phi \rightarrow f_{o} \gamma \\ \ \phi \rightarrow a_{o} \gamma \\ \ \phi \rightarrow \ \overline{K_{o}} K_{o} \gamma \end{array}$
- $e^+e^- \rightarrow \omega \pi^0$

The KLOE experiment at $DA \Phi NE$

^{8/15} March 2008 A. De Santis - Rencontres de Moriond QCD and High Energy Interactions

Pseudoscalars

η mass

Before 2006: two precise and incompatible values

During 07: new precise measurements

So JA KLOE

$\eta \rightarrow \pi^0 \pi^0 \pi^0$

KLOE preliminary arXiv 0707.4137

+0.004

-0.006

Dalitz plot density described with a single variable

z (η mass dependent)

$$z = \frac{2}{3} \sum_{i} \left(\frac{3E_{i} - m_{\eta}}{m_{\eta} - 3m_{\pi^{0}}} \right)^{2} = \frac{\rho^{2}}{\rho_{MAX}^{2}}$$

E : Energy of the pion in η rest frame

 $- |A_{n \to 3\pi^0}(z)|^2 \sim 1 + 2 \alpha z (M_{\eta})$

 -0.027 ± 0.004

ho : Distance from the Dalitz plot center

CX KLOF

 $\rho_{\rm MAX}$: Maximum value of ρ

0.05

0.025

The slope α is evaluated normalizing data to Montecarlo density ($\alpha = 0$; $M_{\eta} = M(\eta)_{\text{KLOE}}$)

^{8/15} March 2008 A. De Santis - Rencontres de Moriond QCD and High Energy Interactions

$$\eta \rightarrow \pi^+ \pi^- \pi^0$$

KLOE arXiv 0801.2642 accepted by JHEP

 A_{o}

 A_{ς}

450 pb⁻¹ of L_{int} (~ 20x10⁶
$$\eta$$
 produced) \rightarrow **1.34** ×**10⁶ event**
 $\eta \rightarrow \pi^{+}\pi^{-}\pi^{0}$ Dalitz plot analysis

- •Left-Right C
- **Quadrant** \overline{C} ($\Delta I=2$)
- •Sextant \overline{C} ($\Delta I=1$)

$$= (0.09 \pm 0.10^{+0.09}_{-0.14}) \times 10^{-2}$$

$$= (-0.05 \pm 0.10^{+0.03}_{-0.05}) \times 10^{-2}$$

$$= (0.08 \pm 0.10^{+0.08}_{-0.13}) \times 10^{-2}$$

PDG06

 $=(-0.17\pm0.17)\times10^{-2}$

 $= (0.18 \pm 0.4) \times 10^{-2}$

Efficiency evaluated for each sector according to MC and Data/MC correction. "Raw" asymmetry, calculated after background subtraction, rescaled according to sector efficiency. $A_{LR} = (0.09 \pm 0.17) \times 10^{-2}$

A

$BR(\eta \rightarrow \pi^+\pi^-e^+e^-)$

BR predicted by ChPT and VMD models (~3 × 10^{-4}) Linked to η structure *Plane asymmetry: beyond SM CP violation* [1]

Up to now only seen (4 events CMD-2, 16 events CELSIUS-WASA)

In the whole KLOE dataset **3×10**⁴ events are expected

622 pb^{-1} of L_{int} used for this result

⁸Eventchsefection: De Santis - Rencontres de Moriond QCD and High Energy Interactions

$BR(\eta \rightarrow \pi^+\pi^-e^+e^-)$

350

250

200

150

100

50

400

450

500

550

Fit to the invariant mass (signal + background) 733+62 signal events (Total efficiency 11.7%) (error accounts for statistics and MC shapes)

$$\mathsf{BR}(\eta \to \pi^+ \pi^- e^+ e^-) = (2.4 \pm 0.2 \pm 0.4) \times 10^{-4}$$

Systematics conservatively estimated (reconstruction efficiency corrections +

relative background normalization)

In progress: improve rejection of background

Data

MC fit

 $M(\pi\pi ee)MeV$

600

650

8/15 March 2008 A. De Santis - Rencontres de Moriond QCD and High Energy Interactions 700

η/η' mixing

KLOE PLB 648 (2007)

- $\phi \rightarrow \eta' \gamma \quad \eta' \rightarrow \pi^+ \pi^- \eta \quad \eta \rightarrow 3\pi^0$
- $\phi \rightarrow \eta' \gamma \quad \eta' \rightarrow \pi^{0} \pi^{0} \eta \quad \eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$
- $\phi \rightarrow \eta \gamma$ $\eta \rightarrow 3\pi^{0}$

Allowing also for gluonium content in η' we fit the following ratios of BR:

$$R_{\phi} = \frac{BR(\phi \to \eta' \gamma)}{BR(\phi \to \eta \gamma)} = 4.77 \pm 0.09 \pm 0.19$$

$$|\eta'\rangle = X_{\eta'} \frac{1}{\sqrt{2}} |u\bar{u} + d\bar{d}\rangle + Y_{\eta'} |s\bar{s}\rangle + Z_{\eta'} |glue\rangle$$
$$|\eta\rangle = \cos\varphi_{P} \frac{1}{\sqrt{2}} |u\bar{u} + d\bar{d}\rangle + \sin\varphi_{P} |s\bar{s}\rangle$$

$$\frac{\Gamma(\eta' \to \rho\gamma)}{\Gamma(\omega \to \pi^{0}\gamma)} = C_{M2} \mathbf{Z}_{NS} \left(\sin(\boldsymbol{\varphi}_{G}) \cos(\boldsymbol{\varphi}_{P}) \right)^{2} \qquad X_{\eta'} = \cos \boldsymbol{\varphi}_{G} \cos \boldsymbol{\varphi}_{P}$$

$$R_{\phi} = \cot^{2}(\boldsymbol{\varphi}_{P}) \cos^{2}(\boldsymbol{\varphi}_{G}) \left(1 - C_{v} \frac{\mathbf{Z}_{NS}}{\mathbf{Z}_{N}} \frac{1}{\sin(2\,\boldsymbol{\varphi}_{P})} \right)^{2} \left(\frac{P_{\eta'}}{P_{\eta}} \right)^{3} \qquad Y_{\eta'} = \cos \boldsymbol{\varphi}_{G} \sin \boldsymbol{\varphi}_{P}$$

$$\mathbf{Z}_{\eta'} = \sin \boldsymbol{\varphi}_{G} \iff \mathbf{Gluonium \ content}$$

$$\frac{\Gamma(\eta' \to \gamma\gamma)}{\Gamma(\pi^{0} \to \gamma\gamma)} = C_{MI} \left(5\cos(\boldsymbol{\varphi}_{G})\sin(\boldsymbol{\varphi}_{P}) + \sqrt{2} \frac{f_{q}}{f_{s}}\cos(\boldsymbol{\varphi}_{G})\cos(\boldsymbol{\varphi}_{P}) \right)^{2} \qquad C_{MI} \left(5\cos(\boldsymbol{\varphi}_{G})\sin(\boldsymbol{\varphi}_{P}) + \sqrt{2} \frac{f_{q}}{f_{s}}\cos(\boldsymbol{\varphi}_{G})\cos(\boldsymbol{\varphi}_{P}) \right)^{2} \qquad C_{MI} \left(\sum_{NS} \sin(\boldsymbol{\varphi}_{G})\cos(\boldsymbol{\varphi}_{P}) + 2C_{V}\mathbf{Z}_{S}\sin(\boldsymbol{\varphi}_{G})\sin(\boldsymbol{\varphi}_{P}) \right)^{2} \qquad C_{MI} \left(\sum_{NS} \frac{3}{\sin(\boldsymbol{\varphi}_{G})}\cos(\boldsymbol{\varphi}_{P}) + 2C_{V}\mathbf{Z}_{S}\sin(\boldsymbol{\varphi}_{G})\sin(\boldsymbol{\varphi}_{P}) \right)^{2} \right)$$

Gluonium in η'

KLOE PLB 648 (2007)

Using as input for the experimental quantity PDG values and our value R

 $\varphi_P = (39.7 \pm 0.7)^\circ$ $Z^2_G = 0.14 \pm 0.04$ Results obtained with $(Z_N Z_{NS})$ evaluated assuming $\underline{Z}^2_{G} = 0$ [1].

Further checks:

- Value stable w.r.t. Z_N / Z_{NS}
- Using parameters Z_N / Z_{NS} from [2] 0.4 (evaluated allowing for gluonium 0.3 content $Z_G^2 \neq 0$) we obtain $Z_G^2 = 0.12$ with 0.2 same accuracy (still 3 σ evidence). 0.1
- A global fit with all parameters is in progress

Scalars

Dipole transition ($\propto E_{\gamma}^{3}$) damped by the kaon loop function g(m²). The scalar propagator takes into account the finite width corrections.

Dipole transition ($\propto E_{\gamma}^{3}$) damped by a polynomial term (a_{0} and a_{1} complex) The scalar is a BW with energy-dependent width, taking into account the opening of S \rightarrow KK thresholds.

$\phi \rightarrow f_{\alpha}\gamma$: toward a combined fit 450 pb⁻¹ of L_{int}

Charged with $M\pi\pi$ spectra fit

Old analysis Neutral with Dalitz plot density analysis Need for $\sigma(600)$ in neutral, charged not sensitive

Marginal agreement between f_0 parameters

(KL) New σ coupling used for both channels (PRD 74 2006 (E))

 $\phi \rightarrow a_0 \gamma$ with $a_0 \rightarrow \eta \pi^0$

450 pb⁻¹ of L_{int}

Two decay channels for intermediate η meson:

- $\eta \rightarrow \gamma \gamma$ (1)
- $\eta \rightarrow \pi^+ \pi^- \pi^0$ (2)

 $BR(\phi \rightarrow \eta \pi^{0} \gamma) = (6.92 \pm 0.10 \pm 0.20) \times 10^{-5} (1)$ BR(\phi \rightarrow \eta \pi \text{2}) = (7.19 \pm 0.17 \pm 0.24) \text{10}^{-5} (2)

Combined fit:

Parameter	Kaon Loop	No Structure
M _{a0} (MeV)	983 ± 1	983 (fixed)
g _{a0KK} (GeV)	2.16 ± 0.04	1.57 ± 0.13
g _{a0ηπ} (GeV)	2.8 ± 0.1	2.2 ± 0.1
g _{qa0y} (GeV ⁻¹)	-	1.61 ± 0.05
$BR(\phi \rightarrow \rho \pi \rightarrow \eta \pi \gamma) \times 10^{6}$	0.9 ± 0.4	4.1 (fixed)
BR(η→γγ)/BR(η→πππ)	1.69 ± 0.04	1.69 ± 0.04

KLOE Preliminary arXiv: 0707.4609

8/15 March 2008 A. De Santis - Rencontres de Moriond QCD and High Energy Interactions

G06

$e^+e^- \rightarrow \omega \pi^0$

$e^+e^- \rightarrow \omega \pi^0$ cross section

600 pb⁻¹ of L_{int} with CoM energy ranging from <u>1000</u> to <u>1030</u> MeV Two differents ω decay channels used: $\omega \rightarrow \pi^{+}\pi^{-}\pi^{0}$ (1)

 $\omega \rightarrow \pi^{0} \gamma$ (2)

The cross section is described as [1]:

$$\sigma_{vis}(E) = \sigma_{nr}^{f}(E) \times \left(1 - Z_{f} \frac{M_{\phi} \Gamma_{\phi}}{D_{\phi}(E)}\right)^{2}$$

 σ_{nr} and Z depend on the final state considered

$$\sigma_{nr} = \sigma_0 + \sigma' (E - M_{\phi})$$

[1] JETP 90 (2000)

Efficiency and radiative corrections are included in the fit

 $\sigma^{4\pi}(\sqrt{s})$ (nb)

 $σ^{ππγ}(\sqrt{s})$ (nb)

Conclusions

- 450 pb⁻¹ of data almost completely analyzed Many good and interesting results obtained (10 published papers, 6 more almost completed)
- Analysis with full statistics (2500 pb⁻¹) started, some preliminary results presented here
- Further studies on rare decays will follow
- KLOE and DA Φ NE are going to be upgraded

KLOE-2 at upgraded DA ΦNE

Proposals to upgrade DA Φ NE in luminosity:

Crabbed waist scheme at DA Φ NE (proposal by P. Raimondi)

- increase L by a factor O(5) Experimental test at DA Φ NE are running
- requires minor modifications- If successful KLOE-2 data taking could start already in 2009
- relatively low cost

KLOE-2 Physics issues:

Neutral kaon interferometry, CPT symmetry & QM tests

Kaon physics, rare K_s decays

η,η' physics

Light scalars, $\gamma\gamma$ physics

Hadron cross section at low energy, muon anomaly

```
KLOE-2 Detector upgrade issues:
Step 0
FEE maintenance and upgrade
Computing and networking update
Step 1
Inner tracker
Calorimeter, high quantum efficiency PM's
\gamma\gamma tagging system
Improved vetos QCAL
```


SPARE

η mass

• ABDEL-BARY (GEM) PLB 533 (05) missing mass in pd \rightarrow X(η) 3He+

- LAI (NA48) PB 533 (02) measurement using the $h \rightarrow 3\pi^0$ decay;
- **KRUSCHE (MAMI**) ZPA351 (95) Determination of the threshold of the reaction $\gamma p \rightarrow \eta p$
- **PLOUIN (SATURNE)** PLB 276 (92)

same of GEM

• **DUANE (Ruther. Lab)** PRL 32 (74)

Missing mass measurement in the reaction π -p \rightarrow η n

η mass: method

simply using the clusters positions

 $\mathbf{m}_{\gamma\gamma}$

8/15 March 2008 A. De Santis - Rencontres de Moriond QCD and High Energy Interactions MeV/

η mass: \sqrt{s} scale

$$m_{\phi}(KLOE) = 1019.329 \pm 0.011 MeV$$

KK lineshape fit (ISR included)

$$m_{\phi}(CMD-2) = 1019.483 \pm 0.027 \, MeV$$

Beam depolarization: independent from absolute scale effect

(error dominated by systematics of 25 keV)

Correction for \sqrt{s} scale

$$\Delta \sqrt{s} = 154 \pm 11_{KLOEstat} \pm 11_{CMD-2stat} \pm 25_{CMD-2syst} \, keV$$

η mass systematics

Systematic effect	$m_\eta \ { m keV}$	$m_{\pi^0}~{ m keV}$	R $\times 10^5$
Vertex position	4	6	19
Calorimeter energy scale	4	1	6
Calorimeter non-linearity	4	11	31
θ angular uniformity	10	44	120
ϕ angular uniformity	15	12	37
χ^2 cut	<1	4	13
Line cut in the Dalitz plot	17	4	18
ISR emission	8	9	28
Total	27	49	136

$\eta \rightarrow \pi^+ \pi^- \pi^0$ analysis

- Two tracks from IP (r = 4 cm h = 8 cm) & Tree photons on calorimeter (21 ° < θ_{γ} < 159 ° E_{γ} > 10 MeV)
- Sum of photon energy below threshold ($\Sigma E_{\gamma} < 800 \text{ MeV}$)
- Global kinematic fit (P(χ^2) > 1%) [γ ToF's + 4-momenta]
- One tagging photons for $\phi \rightarrow \eta \gamma$ (320 < E_{γ} < 400 MeV)
- Charged pions energy below threshold (E₊ + E₋ < 550 MeV)
- Reconstructed π^0 mass (110 < m_{π} <160 MeV)

Dalitz plot (X,Y) fitted with polynomial expansion of density distribution

$\eta \rightarrow \pi^+ \pi^- \pi^0$: parameters correlation

In the Dalitz plot fit several combination of parameters has been checked.

In all possible parametrizations coefficients for term odd in X are compatible with zero. In the final results we have dropped it into the fit to get better accuracy.

Without cubic term the CL is O(10⁻⁶). All cubic term has been inserted in the fit resulting to be negligible except the Y³ coefficient.

Correlation matrix

rescattering matrix coefficints are function of the Dalitz plot coordinates

$$\mathbf{R} = 1 + i \begin{pmatrix} \alpha(X, Y) & \beta(X, Y) \\ \alpha'(X, Y) & \beta'(X, Y) \end{pmatrix}$$

KLOE arXiv 0801.2642 accepted by JHEP $\eta \rightarrow \pi^+\pi^-e^+e^-$

$\sum |\vec{P}| \in [450,600] MeV \quad |P_{MAX}^+| + |P_{MAX}^-| \in [270,470] MeV$

$\eta \rightarrow \pi^+\pi^-\gamma$ rejection

Gluonium

KLOE PLB 648 (2007)

$f_0 \rightarrow \pi^+ \pi^-$ analysis

 $e^+e^- \rightarrow \pi^+\pi^-\gamma$ events with the photon at large angle (45°< ϑ_{γ} <135°)

Main contributions: ISR+FS Search for the f_0 signal as a deviation on M($\pi^+\pi^-$) spectrum from the expected ISR + FSR shape

e⁺e⁻ γ bckg events rejected using EMC $\mu^+\mu^-\gamma$ and $\pi^+\pi^-\pi^0$ bckg suppressed by means of kinematics

676,000 events selected (450 pb⁻¹)

KL: *ππ* scattering description

The Kaon Loop model used in the analysis has been parametrized considering KLOE 2000 data for scalars and $\pi\pi$ scattering data.

Use one of the variants proposed by Achasov ensure the correspondence between scalar sector and $\pi\pi$ scattering

In our fit the σ parameters has been fixed. Large spread observed with σ parameters free

PRD 73 (2006)

Changes in KL model

Original Kaon Loop parametrization: Achasov PRD73(2006)054029

Two changes in sign:

- $C_{f0\sigma} = -0.047 \text{ GeV}^2$ (was +0.047 GeV²) [private communication]
- $g_{\sigma\pi\pi} = 2.1 \text{ GeV} \text{ (was -2.1 GeV)}$ [PRD 74 (2006) 059902(E)]

*a*₀-

$\eta \rightarrow \pi^+ \pi^- \pi^0$

- Five prompt photons and two tracks
- Global kinematic fit with mass hp
- Background normalization in sidebands

η→γγ

Five prompt photons Global kinematic fit p and h pairing 2nd Global kinematic fit with mass hp Background normalization in sidebands

After background subtraction BR($\phi \rightarrow a_0 \gamma$) is determined for both channels The two masses spectra for the scalar is fitted together using the ratio of η BR as control parameter

Sig.

Selection cuts Efficiency

- Four tracks + two vertices around IP (r=3cm h=20cm) 45.4%
- Both vertices with K_s invariant mass (ABS(ΛM) = 4 MeV) 28.5%
- Scalar mass (M_{4tracks}<1010 MeV)
- Missing γ [ABS($E_{\gamma}^{2}(miss) P_{\gamma}^{2}(miss)$) < 300 MeV²] 20.6%
- Cluster time energy and position (loose cuts)

DATA/MC normalization checked on sidebands Number of expected signal events evaluated with 8/15 MBay esian eapproache Moriond QCD and High Energy Interactions

$e^+e^- \rightarrow \omega \pi^0$ with $\omega \rightarrow \pi^+\pi^-\pi^0$

- Two tracks from IP (r=4cm h=6cm) and four clusters (E>10 MeV)
- Global kinematic fit (g ToF's and momentum)

Counting is performed by fitting with mc shapes recoil mass for π^0 for two classes of events simultaneously (χ^2 /ndof < 5 & χ^2 /ndof >5) as a function of \sqrt{s}

$e^+e^- \rightarrow \omega \pi^0$ with $\omega \rightarrow \pi^0 \gamma$

- Five prompt clusters (E>7MeV)
- Two kinematic fits with a process independent pairing procedure
- χ^2/N_{dof} <5 cut, the $\pi^0\gamma$ pair providing the $M_{\pi\gamma}$ closest to M_{ω} is chosen

 $\eta \rightarrow \pi^0 \gamma \gamma$

ChPT "golden mode": p² null, p⁴ suppressed, p⁶ dominates

KLOE has presented a 3σ signal (only 1/5 of full statistics)

 $\mathsf{BR}(\eta \rightarrow \pi^{0} \gamma \gamma) = (8.4 \pm 2.7_{\text{stat}} \pm 1.4_{\text{syst}}) \times 10^{-5}$

CB@MAMI-B: BR = $(22.5 \pm 4.6 \pm 1.7) \times 10^{-5}$ CB@AGS: BR = $(22.1 \pm 2.4 \pm 3.8) \times 10^{-5}$

Analysis repeated with 1.5 fb⁻¹ (2005 data):

the signal is confirmed

BR updated result with the full sample will have ~15% error

Hadronic cross section

Absolute measurements: Updated 2001 (140 pb⁻¹) Preliminary of 2002 (240 pb⁻¹)

All are in agreement with published results

Coming soon: $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

 $\sigma(e^+e^- \to \mu^+\mu^-)$

