

Highlights from KLOE

Roberto Versaci *

on behalf of the KLOE collaboration

* Laboratori Nazionali di Frascati - INFN

Roberto Versaci

- CKM and Vus
- KLOE and $DA\Phi NE$
- Neutral kaons
- Charged kaons
- Hadronic physics
- Future plans

CKM matrix and V_{us}

$$V_{CKM} = \begin{bmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{bmatrix}$$

Unitarity of the CKM matrix is a test of the Standard Model The lack of unitarity is a hint of new physics

The most precise test comes from the 1st row: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 = 1 - \Delta$

V_{ud} from super-allowed nuclear β decays V_{us} from kaon decays V_{ub} from B meson decays $O(10^{-3})$

Experimental inputs:

- branching ratios
- K lifetime
- K mass
- form factor (t dependence)

Theoretical inputs:

- form factors at t=0
- phase-space integral
- SU(2), em, ew corrections

Hadronic matrix element:

 $\langle \pi | J_{\alpha} | K \rangle = f(0) \times [f_{+}(t)(P+p)_{\alpha} + f_{-}(t)(P-p)_{\alpha}]$

 $f_{\mu 3}$ term only important for $K_{\mu 3}$ For $K_{\mu 3}$ use $f_{\mu 3}$ and $f_{0}(t) = f_{\mu}(t) + f_{\mu}(t) \times t / (m_{\kappa}^{2} - m_{\pi}^{2})$

Form factor expansion:

$$f_{+}(t) = 1 + \lambda_{+} [t/m_{\pi}^{2}]$$

$$f_{+}(t) = 1 + \lambda_{+}' [t/m_{\pi}^{2}] + \frac{1}{2} \lambda_{+}'' [t/m_{\pi}^{2}]^{2}$$

Polar expansion:
$$f_+(t) = \frac{M^2}{M^2 - t}$$
 $\lambda_+' = (m_\pi/M)^2$
 $\lambda_+'' = 2\lambda_+'^2$

Double Annular ring For Nice Experiments

Roberto Versaci

electron-positron collider $\sqrt{s} = m_{\phi} = 1.019 \text{ GeV}$ $\sigma(\phi) \approx 3 \,\mu b$ 2 rings to minimize beam-beam interactions 12.5 mrad crossing angle 2 interaction regions (KLOE - DEAR/FINUDA)

Roberto Versaci

DA Φ NE 24h performance in topping-up mode, december 05

K LOng Experiment

Spherical *beam pipe*

10 cm \emptyset , 0.5 mm thick in Be-Al alloy to minimize regeneration, scattering and γ conversion

Large volume <u>drift chamber</u> 4 cm \emptyset , L=3.4 m, carbon-fiber frame, ^{7 m} low density gas (90% He – 10% C₄H₁₀), 12582 all stereo squared cells, tungsten and aluminium wires (52140)

 $\sim 4\pi \ \underline{calorimeter}$, 4880 cells 15X₀ thick, 0.5 mm lead 1mm \emptyset scintillating fibers

Superconducting coil B = 0.52 T

Remind: $\lambda_L = 3.5m$

$$σ_{r_{\phi}} = 150 \ \mu m$$

 $σ_z = 2 \ mm$
 $σ_p / p ~ 4 \ x \ 10^{-3}$
 $σ_{vertex} ~ 3 \ mm$
 $σ(m_{\pi\pi}) ~ 1 \ MeV$

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

KLOE - EM Calorimeter

Roberto Versaci

Tracking in the DC

0.2101E+05

0.7009E-02

10

193 123.6 135.3

0.9075

254.5

15

drift chamber resolution $\sigma_{r_0} \approx 150 \,\mu m$ $K_s \rightarrow \pi^+ \pi^-$ events ້⊎ ⊻ 10000 ຊິ χ*/nd Bhabha scattering events Norm Mean Síama $\sigma_{M} = 1 \text{ MeV}$ Const $\sigma_{\rm p}$ / p $\approx 0.3\%$ 4000 σ_p [MeV/c] $45^\circ < \theta < 135^\circ$ 2000 0_<u>L</u>_____ -10-5 n 5 $\Delta M(K_{\varsigma})$ [MeV] 5 0.1 MeV $K_{I} \rightarrow \pi^{+}\pi^{-}\pi^{0}$ events 3 2 $M(\pi^0) = 135.3 \pm 0.1 \text{ MeV}$ 0 60 80 100 Polar angle [degrees] 132 134 136 $M(\pi^0)$ [MeV]

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

Measuring photons

The trigger

bunch crossing period is 2.7 ns L/c of prompt photon \approx 7 ns, L/ β c of $K \approx$ 30 ns

- Based on EMC energy deposit (≥2 isolated clusters) and DC multiplicity (≥15 cells within 250 ns)
- Bhabha veto (downscaled sample)
- Cosmic ray veto (rate 3kHz ; downscaled sample)
- 3rd level trigger (recover wrong CR vetoed events)

Typical data acquistion rate ≈ 2.5 kHz

- 1/2 machine background
- 1/4 cosmic rays
- 1/4 e⁺e⁻ collisions

The ϕ decay at rest provides monochromatic and pure kaon beams

The detection of a K guarantees the presence of the \overline{K} with known momentum \Rightarrow **Tag mechanism**

Normalization to the number of tags allows a precise measurement of <u>absolute BRs</u>

$$\begin{array}{c} K^{\pm} \rightarrow \mu \, \nu_{\mu} \\ K^{\pm} \rightarrow \pi \, \pi^{0} \end{array} \begin{array}{c} K^{+} K^{+} \\ 1.5 \times 10^{6} / \text{pb}^{-1} \\ p^{*} = 127 \text{ MeV/c} \\ \lambda_{\pm} = 95 \text{ cm} \end{array} \begin{array}{c} K_{L} K_{S} \\ 10^{6} / \text{pb}^{-1} \\ p^{*} = 110 \text{ MeV/c} \\ \lambda_{S} = 6 \text{ mm} \\ \lambda_{L} = 3.4 \text{ m} \end{array} \begin{array}{c} K_{S} \rightarrow \pi^{+} \pi^{-} \\ K_{L} \text{ interacts} \\ \text{in EMC} \end{array} \right.$$

Roberto Versaci

Neutral kaons

- Main K_L branching ratios
- K_L lifetime
- $K_L \rightarrow \pi e \nu_e$ form factor
- $K_L \rightarrow \pi^+ \pi^-$ (γ)
- K $_{\rm S} \rightarrow ~\pi^+ ~\pi^-$ (γ) / K $_{\rm S} \rightarrow ~\pi^0 ~\pi^0$
- $\textbf{K}_{s} \rightarrow \, \pi \, \textbf{e} \, \nu_{_{e}} \,$; $\, \textbf{A}_{s} \,$; form factor
- $K_s \rightarrow \pi \mu \nu_e$
- $\mathbf{K}_{s} \rightarrow \pi^{0} \pi^{0} \pi^{0}$
- QM, CP and CPT tests

Data sample between 200 and 400 pb⁻¹

Tagging neutral kaons

$\rm K_L$ tagged by $\rm K_S \rightarrow \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$

$K_{\scriptscriptstyle S}$ tagged by $K_{\scriptscriptstyle L}$ interaction

 $\epsilon \sim 70\%$ geom. & vertex $\epsilon \sim 30\%$ geom. & energy cut $\sigma_{\theta}(K_{L}) \sim 1^{\circ}$; $\sigma_{p}(K_{L}) \sim 1 \text{ MeV}$ $\sigma_{\theta}(K_{S}) \sim 1^{\circ}$; $\sigma_{p}(K_{S}) \sim 1 \text{ MeV}$

K_L decays

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

- $\pi^0\pi^0\pi^0$
- energy-clusters vertex reconstructed by TOF
- $\epsilon_{\rm rec}$ = 99%, background < 1%

 $\pi ev, \pi \mu v, \pi^+ \pi^- \pi^0$

- two-tracks vertex in the fiducial volume
- PID using shower shape, TOF and decay kinematics
- best discriminating variable: lesser of p_{miss} - E_{miss} in π - μ or μ - π hypothesis
- fit the MonteCarlo distribution including radiative processes

PLB 632 (2006) 43 Main K, BRS

Error dominated by error in $\tau_{\rm \tiny L}$, needed for geometrical acceptance

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

PLB 632 (2006) 43

Normalize $\Sigma_x BR(K_{\perp} \rightarrow x) = 1$ and solve for τ_{\perp} taking KLOE BRs & BR($\pi^+\pi^- + \pi^0\pi^0 + \gamma\gamma$) from PDG'04

BR $(K_L \to \pi e v_e) = 0.4007 \pm 0.0006 \pm 0.0014$ 800k evtsBR $(K_L \to \pi \mu v_{\mu}) = 0.2698 \pm 0.0006 \pm 0.0014$ 500k evtsBR $(K_L \to \pi^0 \pi^0 \pi^0) = 0.1997 \pm 0.0005 \pm 0.0019$ 700k evtsBR $(K_L \to \pi^+ \pi^- \pi^0) = 0.1263 \pm 0.0005 \pm 0.0011$ 200k evts

$\tau_{\rm L}$ = (50.72 ± 0.17 ± 0.33) ns

Average with KLOE direct measurement PLB 626 (2005) 15 :

 $\tau_{_L}$ = (50.84 \pm 0.23) ns

PLB 632 (2006) 43

Main K_L BRs

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

PLB 626 (2005) 15

Roberto Versaci

Form factor expansion:

PLB 636 (2006) 166

- linear $f_{+}(t) = 1 + \lambda_{+} [t/m_{\pi}^{2}]$
- quadratic $f_{+}(t) = 1 + \lambda_{+}' [t/m_{\pi}^{2}] + \frac{1}{2} \lambda_{+}'' [t/m_{\pi}^{2}]^{2}$

$$\lambda_{+} = (28.6 \pm 0.5 \pm 0.4) \times 10^{-3}$$

 χ^2 / dof = 330 / 363 P(χ^2) = 0.89
$$\begin{split} \lambda_{+}' &= (\ 25.5 \pm 1.5 \pm 1.0 \) \times 10^{-3} \\ \lambda_{+}'' &= (\ 1.4 \pm 0.7 \pm 0.4 \) \times 10^{-3} \\ \chi^{2} \ / \ dof &= \ 325 \ / \ 362 \\ P(\chi^{2}) &= \ 0.92 \end{split}$$

Roberto Versaci

 $K_{,} \rightarrow \pi^{+}\pi^{-}(\gamma)$

PLB 638 (2006) 140

- Measurement of the ratio BR ($K_L \rightarrow \pi^+\pi^-$) / BR ($K_L \rightarrow \pi \mu \nu_\mu$)
- Select all K_{L} decays
 - $\sqrt{(E^2_{miss} + p^2_{miss})}$ best discriminating variable for $K_L \rightarrow \pi^+ \pi^-$
- Fit the distribution with MC shapes
- BR ($K_L \rightarrow \pi \,\mu \,\nu_{\mu}$) taken from KLOE measurement
- Normalize to the decay $K_{L} \rightarrow \pi \mu v$

reduces systematics due to tag bias

BR ($K_{L} \rightarrow \pi^{+}\pi^{-}$) = = (1.963 ± 0.012_{stat} ± 0.017_{syst}) x 10⁻³

 $|\epsilon| = (2.216 \pm 0.013) \times 10^{-3}$

Roberto Versaci

Roberto Versaci

K_s decays

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

 $BR(K_{s} \rightarrow \pi^{+}\pi^{-}(\gamma))/BR(K_{s} \rightarrow \pi^{0}\pi^{0})$

$K_{_{S}} \rightarrow \pi^{_{+}}\pi^{_{-}}(\gamma)$:

- 2 tracks from the IP
- opposite curvature
- vertex
- 120 < p < 300 MeV/c
- $30^{\circ} < \theta < 150^{\circ}$

 $K_{s} \rightarrow \pi^{0}\pi^{0}$:

• 4 photons from the IP • E > 20 MeV • $25^{\circ} < \theta < 155^{\circ}$ • $|t - r/c| < 5\sigma_{+}$

Data sample: 410 pb⁻¹

Hep-ex/0601025 EPJC in press

Roberto Versaci

PLB 636 (2006) 173

- two tracks with opposite curvature
- that form a vertex close to the interaction region
- $M_{\pi\pi}$ < 490 MeV assigning the π mass
- $e-\pi$ identification by time-of-flight
- fit the distribution of $E_{\rm miss}(\pi e)$ $p_{\rm miss}$

normalization to $K_s \rightarrow \pi^+\pi^-(\gamma)$

$$BR(K_{s} \rightarrow \pi ev_{e}) = (7.082 \pm 0.092) \times 10^{-4}$$

Linear slope of the form factor

$$\lambda_{\scriptscriptstyle +}$$
 = (33.9 \pm 4.1) x 10^{-3}

PLB 636 (2006) 173

Allows test of CP, CPT and $\Delta S = \Delta Q$ rule

 $BR(K_{s} \rightarrow \pi^{-} e^{+} v_{e}) = (3.528 \pm 0.062) \times 10^{-4}$ $BR(K_{s} \rightarrow \pi^{+} e^{-} v_{e}) = (3.517 \pm 0.058) \times 10^{-4}$

$$A_{s} = \frac{\Gamma (K_{s} \to \pi^{-} e^{+} v_{e}) - \Gamma (K_{s} \to \pi^{+} e^{-} v_{e})}{\Gamma (K_{s} \to \pi^{-} e^{+} v_{e}) + \Gamma (K_{s} \to \pi^{+} e^{-} v_{e})} = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3}$$

 $\Gamma_{s} vs \Gamma_{L}$: test of $\Delta S = \Delta Q$ ruleWith full statistics (5x) $A_{s} vs A_{L}$: tests of CP and CPT $A_{s} to 3 \times 10^{-3}$ $A_{s} - A_{L} = 4$ (Re $\delta + \text{Re } x_{-}$) $\text{Re } x_{+} = (-1.2 \pm 3.6) \times 10^{-3}$ $A_{s} + A_{L} = 4$ (Re ε - Re y) $\text{Re } x_{-} = (-0.8 \pm 2.5) \times 10^{-3}$ $2 \text{ Re } x_{+} = (\Gamma_{s} - \Gamma_{L}) / (\Gamma_{s} + \Gamma_{L})$ $\text{Re } y = (0.4 \pm 2.5) \times 10^{-3}$

 $K_{s} \rightarrow \pi \mu \nu_{\mu}(\gamma)$

- two tracks with opposite curvature
- that form a vertex close to the interaction region
- $\mu-\pi$ identification by time-of-flight
- fit the distribution of $E_{\rm miss}(\pi\mu)$ $p_{\rm miss}$

work in progress should reach $\approx 3\%$ statistical error with 410 pb⁻¹

Roberto Versaci

PLB 619 (2005) 61

Job JA KLOK

- K_{L} crash and 6 photons
- Kinematic fit
- Reject events with tracks from the IP
- Cuts using 4 vs 6 photons pairing
- Main background source:

CP violation

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

QM, CP and CPT tests

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

QM and CPT tests PLB 642 (2006) 315

Using quantum interfence in $\phi \to K_s K_1 \to \pi^+ \pi^- \pi^+ \pi^-$

$$I(t1,t2,\zeta) \propto \exp(-\Gamma_{L}t_{1}-\Gamma_{S}t_{1}) + \exp(-\Gamma_{S}t_{1}-\Gamma_{L}t_{2})$$
$$- 2(1-\zeta) \exp(-(\Gamma_{S}+\Gamma_{L})(t_{1}+t_{2})) / 2\cos(\Delta m\Delta t)$$

Decoherence parameter depends on the basis: ζ_{00} , ζ_{51} Loss of coherence $\zeta \neq 0 \Rightarrow QM$

Quantum gravity may result in QM and CPT (effect in $K^{0}\overline{K^{0}}$)

$$\begin{split} I(t_1, t_2, \gamma) & \gamma \sim O(m_K^2/M_P) \neq 0 \\ I(t_1, t_2, \omega) & \omega = |\omega| e^{i\Omega} \neq 0 \end{split}$$

Roberto Versaci

To be published

To be published PLB 642 (2006) 315 **QM and CPT tests**

Roberto Versaci
Bell-Steinberger relation

CPT test in the kaons system Assumes the unitarity (i.e. probability conservation)

$$\tan \phi_{sw} = \frac{2(m_{L}-m_{s})}{\Gamma_{s}-\Gamma_{L}}$$

$$\left|\frac{\Gamma_{S} + \Gamma_{L}}{\Gamma_{S} - \Gamma_{L}} + i \tan(\phi_{SW})\right| \frac{\Re(\epsilon) - i\Im(\delta)}{1 + |\epsilon^{2}|} = \frac{1}{\Gamma_{S} - \Gamma_{L}} \sum A_{L}(f) A_{S}^{*}(f)$$

$$\delta$$
 parametrize CPT violation

$$\delta = \frac{i(m_{K^0} - m_{\bar{K}^0}) + \frac{1}{2}(\Gamma_{K^0} - \Gamma_{\bar{K}^0})}{\Gamma_{S} - \Gamma_{L}} \cos \phi_{SW} e^{i\phi_{SW}} [1 + O(\epsilon)]$$

 δ can be used to constrain $\Delta m_{_{\! K\!0}}$ and $\Delta \Gamma$

Using the Bell-Steinberger relation

 $\Re(\epsilon) = (159.6 \pm 1.3) \times 10^{-5}$ $\Im(\delta) = (0.4 \pm 2.1) \times 10^{-5}$

 $-5.3 \times 10^{\text{-19}} \text{ GeV} < m_{\text{\tiny K0}} \text{-}m_{\overline{\text{\tiny K0}}} < 6.3 \times 10^{\text{-19}} \text{ GeV} \qquad @ 95\% \text{ C.L.}$

Roberto Versaci

Lifetime

Semileptonic decays

•
$$\mathbf{K}^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}(\gamma)$$

Data sample between 200 and 400 pb⁻¹

Roberto Versaci

Tagging charged kaons

- two tracks of the same curvature
- secondary vertex in the fiducial volume
- two-body decay kinematics in the K frame
- tagging efficiency $\approx 36\%$

K[±] lifetime

$\tau_{_{PDG}} = (12.385 \pm 0.025) \text{ ns}$

Given the tag, look for the decay vertex of the second kaon

• Method #1: fit t^{*} distribution from decay length Measure the kaon decay length taking into account the energy loss: $\tau^* = \sum_i \Delta L_i / \beta_i \gamma_i c$

$$\tau_{\pm} = (12.367 \pm 0.044_{stat} \pm 0.065_{syst}) \text{ ns}$$
 Preliminary

• Method #2: Directly measure decay time (in progress) Use $K \rightarrow \pi \pi^0$ decay to reconstruct decay time from π^0 cluster time

Two methods allow cross check of systematics

K[±] semileptonic decays

- Fit of the charged secondary square mass spectrum m²_{lept}
- Mass of charged secondary from p and TOF measurement
- π^0 reconstruction from 2 neutral clusters in EMC
- Separate measurements for each charge and each tag
 4 independent normalization samples

Preliminary

$$\begin{aligned} \mathsf{BR}(\mathsf{K}^{\pm} \to \pi^{0} \: \mathsf{e}^{\pm} \: \mathsf{v}_{\mathsf{e}}^{}) &= (5.047 \pm 0.019 \pm 0.039) \times 10^{\text{-2}} \\ \mathsf{BR}(\mathsf{K}^{\pm} \to \pi^{0} \: \mu^{\pm} \: \mathsf{v}_{\mu}^{}) &= (3.310 \pm 0.016 \pm 0.045) \times 10^{\text{-2}} \end{aligned}$$

- Fit of the momentum distribution of the charged secondary, p*
- Background subtraction, π^0 in the final state

BR $(K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}(\gamma))$

- Efficiency evaluated directly on data using uncorrelated sample selected using EMC info
- 8 x 10⁵ events

PLB 632(2006) 76

• Total accuracy 0.27%

BR($K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu} (\gamma)$) = 0.6366 \pm 0.009 \pm 0.015

V_{us} **Summary**

 $\lambda'_{+} = 0.02542(31)$ $\lambda''_{+} = 0.00129(3)$ (Pole model: KLOE, KTeV and NA48 av.)

 $\lambda_0 = 0.01587(95)$ (KTeV and ISTRA+ av.)

From unitarity

$$V_{us} \times f_{+}(0) = 0.2187(22)$$

V_{ud} - V_{us} plane

$$\begin{aligned} |V_{us}/V_{ud}| \text{ can be extracted from the ratio: } & \frac{\Gamma(K \to \mu v_{\mu}(\gamma))}{\Gamma(\pi \to \mu v_{\mu}(\gamma))} \propto \frac{|V_{us}|^2 f_K}{|V_{ud}|^2 f_\pi} \\ & \frac{f_K}{f_\pi} = 1.208(2)(^{+7}{}_{-14}) \quad \text{from lattice MILC Coll. PoS LAT2006} \\ \hline & V_{us}/V_{ud} = 0.2286(^{+20}{}_{-11}) \\ & \bullet \\ \hline & V_{us} = 0.2246(^{+9}{}_{-13}) \\ v_{ud} = 0.97377(27) \\ v_{ud} = 0.97420(16) \\ v_{2}^2/dof = 0.046/2 \\ P(\chi^2) = 0.97 \end{aligned}$$

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

Hadronic physics

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

η and η' at KLOE

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

Results on η/η'

- η - η ' mixing angle
- Dynamics of $\eta \to \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}\pi^{\scriptscriptstyle 0}$
- Upper limit on $\eta \to \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$
- Upper limit on $\eta \rightarrow \gamma \gamma$
- BR($\eta \rightarrow \pi^0 \gamma \gamma$)

1.1

1

 GeV^2

η mass

select
$$\phi \rightarrow \eta \gamma$$
 ; $\eta \rightarrow \gamma \gamma$

kinematic fit constraint:

• t – r / c of clusters

4-momenutm conservation

 $BR(\phi \rightarrow \eta' \gamma)/BR(\phi \rightarrow \eta \gamma)$

Updated of already published result (3γ in the final state) **PLB 541(2002)**

Process: $\phi \rightarrow \eta' \gamma$ with $\pi^+ \pi^- 7 \gamma$:

- $\eta' \rightarrow \eta \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \text{ and } \eta \rightarrow \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0}$
- $\eta' {\rightarrow} \eta \pi^{\scriptscriptstyle 0} \pi^{\scriptscriptstyle 0} \, \text{and} \, \eta {\rightarrow} \pi^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \pi^{\scriptscriptstyle 0}$

Normalization to $\phi \rightarrow \eta \gamma$ with $\eta \rightarrow \pi^0 \pi^0 \pi^0$ Very small physical background Syst. different w.r.t. published result

> Dominated by uncertainties on the intermediate BRs

TO BE SUBMITTED

 $R = \frac{BR(\phi \rightarrow \eta' \gamma)}{BR(\phi \rightarrow \eta \gamma)} = (4.77 \pm 0.09 \pm 0.19) \cdot 10^{-3}$

With PDG BR($\phi \rightarrow \eta \gamma$): BR($\phi \rightarrow \eta' \gamma$) = (6.20 ± 0.11 ± 0.25) · 10⁻⁵

 $|\eta\rangle = \cos \phi_{P} |q \overline{q}\rangle + \sin \phi_{P} |s \overline{s}\rangle$ $|\eta'\rangle = -\sin \phi_{P} |q \overline{q}\rangle + \cos \phi_{P} |s \overline{s}\rangle$

$$\phi_{P} = (41.4 \pm 0.3_{stat} \pm 0.7_{syst} \pm 0.6_{th})^{\circ}$$

 $BR(\phi \rightarrow \eta' \gamma)/BR(\phi \rightarrow \eta \gamma)$

Using the approach by Bramon et al. [Eur. Phys. J. C7, 271(1999)] it is possible to evaluate the η' gluonium content via $cos^2\phi_G$

$$R_{\phi} = \cot^{2} \varphi_{P} \cos^{2} \phi_{G} \left(1 - \frac{m_{s}}{\bar{m}} \frac{C_{NS}}{C_{S}} \frac{\tan \varphi_{V}}{\sin 2\varphi_{P}} \right)^{2} \left(\frac{p_{\eta'}}{p_{\eta}} \right)^{3}$$

$$\eta' > = X_{\eta'} |q \bar{q} > + Y_{\eta'} |s \bar{s} > + Z_{\eta'} |gluon >$$

$$I_{\eta'} = 0.14 \pm 0.04$$

$$\phi_{p} = (39.7 \pm 0.7)^{\circ}$$

$$I_{0} = \frac{\varphi_{P}}{\varphi_{P}} = \frac{\varphi_{P}}{\varphi_{P$$

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

Dynamics of $\eta \rightarrow \pi^+\pi^-\pi^0$

$$\Gamma(\eta \to 3\pi) \propto |A|^2 \propto Q^{-4}$$

$$A(s,t,u) = \frac{1}{Q^2} \frac{m_K^2}{m_\pi^2} (m_\pi^2 - m_K^2) \frac{M(s,t,u)}{3\sqrt{3}F_\pi^2}$$

With:
$$Q^2 = \frac{m_s^2 - \hat{m}^2}{m_d^2 - m_u^2}$$

And, at l.o.

$$M(s,t,u) = \frac{3s - 4m_{\pi}^2}{m_{\eta}^2 - m_{\pi}^2}$$

 $|A(X,Y)|^2 = 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3$

$$X = \sqrt{3} \frac{T_{+} - T_{-}}{Q_{\eta}} = \frac{\sqrt{3}}{2M_{\eta}Q_{\eta}} (u - t)$$

$$Y = \frac{3T_{0}}{Q_{\eta}} - 1 = \frac{3}{2m_{\eta}Q_{\eta}} \{ (m_{\eta} - m_{\pi^{0}})^{2} - s \} - 1$$

$$P(\chi^{2}) = 0.75$$
d.o.f. = 149
$$A = -1.090 \pm 0.005 \pm 0.005 \pm 0.008$$

$$B = 0.124 \pm 0.006 \pm 0.001$$

$$C = 0.002 \pm 0.003 \pm 0.001$$

$$d = 0.057 \pm 0.006 \pm 0.007 \pm 0.006 \pm 0.007 \pm 0.003$$

$$F = 0.14 \pm 0.01 \pm 0.02$$

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

More results on η decays

A CON CON

Upper limit on $\eta \to \pi\,{}^{\scriptscriptstyle +}\!\pi\,{}^{\scriptscriptstyle -}$

BR < 1.3 10⁻⁵ @90% C.L.

P and CP violating decay SM prediction BR ~ 10⁻²⁷ ÷ 10⁻²⁴ PLB 606(2005) 276

Upper limit on
$$\eta \rightarrow \gamma \gamma \gamma$$

3R < 1.6 10⁻⁵ @90% C.L.

C violating decay

PLB 591(2004) 49

PreliminaryA window on p⁶ ChPTBR($\eta \rightarrow \pi^0 \gamma \gamma$) = (8.4 ± 2.7 ± 1.4) · 10⁻⁵

KLOE measures $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ using the radiative return

No photon detection (small angle emission) Measurement of differential cross section $d\sigma_{\pi\pi\gamma}/dM_{\pi\pi}^2$ s obtained using the raditor function $H(m_{\pi\pi}^2,s)$

$$\sigma(e^+e^- \to \pi^+\pi^-) H(m_{\pi\pi}^2, s) = m_{\pi\pi}^2 \left[\frac{d\sigma(\pi^+\pi^-\gamma)}{dm_{\pi\pi}^2} \right]_{ISB}$$

FSR accounted

statistical error negligible

syst. error is 1.3%: 0.9% from measurement ; 0.9% from theory Evaluation of the hadronic contribution to the muon magnetic moment

$$a_{\mu}^{had} = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{\infty} \sigma_{e^+e^- \to had}(s) K(s) ds$$

Kernel function K(s) $\sim 1/s$

1000	200 pb ⁻¹
1010	10 pb ⁻¹
1018	10 pb ⁻¹
1023	10 pb ⁻¹
1030	10 pb ⁻¹

New analyses ongoing using:

- photon detection (large angle emission)
- 2002 data (published using only 2001)
- normalization to $\mu\mu\gamma$ events
- off-peak data

Since the end of 2005 DA Φ NE has been running at $\sqrt{s} < m(\phi)$ collecting 240 pb⁻¹

Results on f0

KLOE has studied the $f_0(980)$ through the decay chains

 $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$ PLB 634 (2006) 148 $\phi \rightarrow f_0 \gamma \rightarrow \pi^0 \pi^0 \gamma$ Acc. by EPJ

Data fitted with predictions from both Kaon-Loop model and direct scalar coupling to vector mesons (No-Structure) Data can be described by both the models.

To fit the $\pi^0\pi^0\gamma$ spectrum with predictions from Kaon-loop model, a $\sigma(600)$ contribution must be included.

What's next?

Stay tuned!

A lot of analyses are on going

The analyses of data collected in 2004 and 2005 ~2 fb⁻¹ are just begun

A short preview...

What's next?

Kaon physics

- Close to final results for K charged semileptonic
- BR($K_L \rightarrow \pi e v \gamma$) with $E_{\gamma} > 30 \text{ MeV}$
- Scalar form factor λ_0 of $K_L \rightarrow \pi \mu \nu$ decay
- First measurement of $K_s \rightarrow \pi \mu v$
- Measurement of BR($K_s \rightarrow \gamma \gamma$)
- Measurement of BR($K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$)
- Measurement of BR($K_S \rightarrow \pi^+ \pi^- \pi^0$), BR($K_S \rightarrow \pi^+ \pi^- e^+ e^-$)
- Improve on UL($K_S \rightarrow \pi^0 \pi^0 \pi^0$), UL($K_S \rightarrow e^+ e^-$)
- Improve on semileptonic BRs, lifetimes and form factors
- BR(K_L $\rightarrow \pi\pi$) to few 10⁻³

•
$$\Gamma(K^{\pm} \rightarrow e^{\pm}v)/\Gamma(K^{\pm} \rightarrow \mu^{\pm}v)$$
 to few 10⁻²

2 fb⁻¹

Hadronic physics

- Improved measurement for $\sigma_{\!\scriptscriptstyle \pi\!\pi}$
 - Large-Angle Photon analysis
 - Normalisation with $\mu\mu\gamma$ events
- η mass measurement
- Dalitz Plot of $\eta \to \pi\pi\pi$
- Upper Limit for $BR(\eta \rightarrow \pi^0 \pi^0)$
- Study of a₀(980)
- Measurement of $\sigma_{\pi\pi}$ without resonant background from ϕ
- \bullet Determination of $f_{\scriptscriptstyle 0}$ and FSR parameters
- σ(e+e-→ωπ⁰) vs. √s

Off-peak data

2 fb⁻¹

- Search for $\sigma(600)$ with off-peak data using the reaction $\gamma\gamma \rightarrow \pi^0 \pi^0$
- Combined fit of both charged and neutral $\pi\pi\gamma$ final states

and searches for $f_0/a_0 \rightarrow KK$

• Single and Double Dalitz η decays, $\eta \rightarrow \pi^0 \gamma \gamma$, η' decays

 \mathbf{O}

What's next? KLOE2

DA ME will run in 2006-07 for two other experiments: FINUDA and SIDDHARTA

A new scheme to increase DA Φ NE luminosity by a factor O(5) has been proposed by P.Raimondi (*crab waist collisions*)

It will be tested in autumn 2007 before the SIDDHARTA data taking

What's next? KLOE2

In autumn 2007 a modified optics according the new scheme will be tested

If successful a new round of measurements with an improved KLOE detector could start in 2009

In the meantime the design of a higher energy machine $(\sqrt{s} \text{ up to } 2.4 \text{ GeV})$ is continuing

The new machine will allow measurements of R, nucleon form factors, $\gamma\gamma$ physics, meson spectroscopy

Expressions of interest presented at the Laboratory this spring: continuation of KLOE physics program at DAΦNE upgraded in luminosity and in energy

What's next? KLOE2

Time evolution of entangled kaon states, reach the sensitivity to the Planck scale: tests of CPT-symmetry and quantum mechanics

e– μ **universality** (K \rightarrow ev / K \rightarrow $\mu\nu$) and the **mass of the muon neutrino**

universality of the weak coupling to leptons and quarks, CKM matrix unitarity

rare K_s decays (semileptonic charge asymmetry, $K_s \rightarrow \pi^+\pi^-\pi^0$, $K_s \rightarrow \pi^0\pi^0\pi^0$)

light mesons: structure of scalars (via $\gamma\gamma$ interaction), rare decays of pseudoscalars

 $\sigma(e^+e^- \rightarrow hadrons)$, muon anomaly, evolution of α_{em}

baryon electromagnetic form factors, $e^+e^- \rightarrow pp$, nn, $\Lambda\Lambda$

... and more

the KLOE detector has proven to well face the challenge, nevertheless **something can be improved**

- add an inner tracker
- add a tagging system for $e^+e^- \to e^+e^-\gamma\gamma$
- increase the EMC read-out granularity
- Update / upgrade the data acquisition

a new exciting challenge, who wants to join is welcome

Roberto Versaci

Spare slides

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

Kaon physics

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

Measuring the BRs we must take into account a correction due to the bias on the signal sample induced by the tag selection <u>Tag bias</u>

The correction C_{TB} is evaluated from MC and is given by:

 $C_{TB} = BR_{MC}$ (with tag) / BR_{MC} (without tag)

K_L selection

- 328 pb⁻¹ split in 14 samples
- Tag given by $K_{_S} \rightarrow \pi^+\pi^- \epsilon_{_{Tag}} \sim 63\%$
- K_L kinematic from K_s
- Best separation using $P_{miss} E_{miss}$
- $K_{_{e3}}\,K_{_{\mu3}}$ separation using TOF & energy deposit in EMC
- 2γ invariant mass and timing

PLB 638 (2006) 140

$$|\eta_{+-}| = \sqrt{((\Gamma(K \to \pi^{+}\pi^{-}))/(\Gamma(K \to \pi^{+}\pi^{-})))}$$

$$\eta_{+-} = \varepsilon + \varepsilon' \approx \varepsilon$$

$$\begin{array}{l} |\eta_{+-}| \text{ has been determined using:} \\ \tau_{_{\text{KL}}} \text{ from KLOE} \\ \tau_{_{\text{KS}}} \text{ from PDG'04} \\ \text{BR}(\text{K}_{_{\text{S}}} \rightarrow \pi^{+}\pi^{-}) \text{ from KLOE} \end{array} \\ \end{array}$$

 ϵ has been determined using: Re(ϵ'/ϵ) PDG'04 arg ϵ' = arg ϵ

 $|\epsilon| = (2.216 \pm 0.013) \times 10^{-3}$

PLB 636 (2006) 173

- Normalized to BR(K_S $\rightarrow \pi^{+}\pi^{-}$) 800
- $K_s \rightarrow \pi^+\pi^-$ background rejected using TOF PID
- Signal from fit to

E_{miss} – P_{miss} spectrum

Allows test of CP, CPT and $\Delta S = \Delta Q$ rule

PLB 636 (2006) 173

BR(K_s → $\pi^- e^+ v_e^-$) = (3.528 ± 0.062) × 10⁻⁴ BR(K_s → $\pi^+ e^- v_e^-$) = (3.517 ± 0.058) × 10⁻⁴ Consistent with $\Delta S = \Delta Q$ rule Consistent with $\Delta S = \Delta Q$ rule Charge asymmetry A_s = (1.5 ± 9.6 ± 2.9) × 10-3 With full statistics (5x) KLOE will measure A_s to 3 × 10⁻³

BR(K_s
$$\rightarrow \pi e v_e) = (7.082 \pm 0.092) \times 10^{-4}$$

Linear slope of the form factor

 $\lambda_{\scriptscriptstyle +}$ = (33.9 \pm 4.1) x 10^{-3}

PLB 636 (2006) 173

$$\mathsf{A}_{\mathsf{S}} = \frac{\Gamma\left(\mathsf{K}_{\mathsf{S}} \to \pi^{-}\,\mathsf{e}^{\scriptscriptstyle +}\boldsymbol{v}_{\mathsf{e}}^{}\right) - \Gamma\left(\mathsf{K}_{\mathsf{S}} \to \pi^{\scriptscriptstyle +}\,\mathsf{e}^{\scriptscriptstyle -}\,\boldsymbol{v}_{\mathsf{e}}^{}\right)}{\Gamma\left(\mathsf{K}_{\mathsf{S}} \to \pi^{\scriptscriptstyle -}\,\mathsf{e}^{\scriptscriptstyle +}\,\boldsymbol{v}_{\mathsf{e}}^{}\right) - \Gamma\left(\mathsf{K}_{\mathsf{S}} \to \pi^{\scriptscriptstyle +}\,\mathsf{e}^{\scriptscriptstyle -}\,\boldsymbol{v}_{\mathsf{e}}^{}\right)}$$

Comparison of charge asymeetries $\rm A_s$ and $\rm A_L$ allows tests of CP and CPT

Comparison of decay widths allows test of $\Delta S = \Delta Q$ rule

 $A_{s} - A_{L} = 4 (\text{Re } \delta + \text{Re } x_{-})$ $A_{s} + A_{L} = 4 (\text{Re } \epsilon - \text{Re } y)$ $2 \text{ Re } x_{+} = (\Gamma_{s} - \Gamma_{L}) / (\Gamma_{s} + \Gamma_{L})$

- 4 independent normalization samples (2 tag x 2 charges)
- 410 pb⁻¹ self-triggering tags from 2001 and 2002 data
- Fit of the charged secondary square mass spectrum m²_{lept}
- $K^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$ and $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ rejected cutting on p*(m_{π})
- Efficiency evaluated from MC and corrected for Data/MC ratio

K[±]₁₃ signal selection

- Two tracks vertex in the FV: 40 cm < ρ < 150 cm
- Track of charged secondary extrapolated to EMC
- Two body decays cut: $p^*(m_{\pi}) < 195 \text{ MeV/c}$
- π^0 reconstruction:

2 neutral clusters in EMC with TOF matching the kaon decay vertex

 Mass of charged secondary from TOF measurement

$$t_{\pi^{0}}^{decay} = \frac{(t_{1} - L_{1}/c) + (t_{2} - L_{2}/c)}{2}$$

$$m_{lept}^{2} = p_{lept}^{2} \cdot \left[\frac{c^{2}}{L_{lept}^{2}} (t_{lept} - t_{\pi^{0}}^{decay})^{2} - 1 \right]$$

K[±]₁₃ background (I)

74 / 63

 $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$ with a π^{0} undergoing a Dalitz decay, or with a wrong cluster associated to π^{\pm} , give a m_{I}^{2} under the Ke3 peak

 $I MeV^2$

 \Rightarrow cut requiring

 $(E_{miss} - P_{miss}) < 90 \text{ MeV}$

 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}$ with early $\pi^{\pm} \rightarrow \mu^{\pm}\nu$, $\overset{\mathbb{R}}{\longrightarrow}$ give m_{I}^{2} under the Kµ3 peak \Rightarrow rejected using the missing momentum of the secondary track in the pion rest frame (P*_{sec} < 90 MeV)

The cuts reject \approx 96% of the background events

The efficiency on the signal is \approx 50% for both K_{e3} and K_{µ3}

K[±] semileptonic decays

Fit m_{lept}^{2} spectrum with linear combination of Ke3 , Kµ3 shapes, and bck contribution. Average of the four data samples.

• Fractional accuracy:

0.9% for $K_{_{e3}}$; 1.2% for $K_{_{\mu3}}$

- Systematic error studies to be completed
- Dominated by the knowledge of selection efficiency

BR(K[±]
$$\rightarrow \pi^{0} e^{\pm} v_{e}) = (5.047 \pm 0.019 \pm 0.039) \times 10^{-2}$$

BR(K[±] $\rightarrow \pi^{0} \mu^{\pm} \nu_{\mu}) = (3.310 \pm 0.016 \pm 0.045) \times 10^{-2}$

Hadronic physics

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

78 / 63

Upper limit $\eta \rightarrow \pi^+\pi^-$

P and CP violating decay Standard Model prediction BR ~ $10^{-27} \div 10^{-24}$ Analysis: "by product" of $f_0 \rightarrow \pi^+\pi^-$ analysis

$\eta \rightarrow \pi \pi \pi dynamics$

Why the experimental width is so large (270 eV) w.r.t theoretical calculation (66 eV @ tree level)?

Possible answers:

- Final state interaction
- Scalar intermediate states
- Violation of Dashen theorem

Check the description of the dynamics for both $\pi^+\pi^-\pi^0$ and $3\pi^0$ final states !

$\eta \rightarrow 3\pi$ at KLOE

At KLOE η is produced in the process $\phi \rightarrow \eta \gamma$. The final state for $\eta \rightarrow \pi^+\pi^-\pi^0$ is thus $\pi^+\pi^-\gamma\gamma\gamma$ and the final state for $\eta \rightarrow \pi^0\pi^0\pi^0$ is 7γ , both with almost no physical background.

$\pi^+\pi^-\pi^0$ selection:

- 2 track vertex+3 γ candidates
- Kinematic fit

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

81 / 63

π⁺π⁻π⁰: resolution and efficiency

$$\begin{aligned} \mathbf{X} &= \sqrt{3} \, \frac{\mathbf{T}_{+} - \mathbf{T}_{-}}{\mathbf{Q}_{\eta}} = \frac{\sqrt{3}}{2M_{\eta}Q_{\eta}} (u - t) \\ Y &= \frac{3T_{0}}{Q_{\eta}} - 1 = \frac{3}{2m_{\eta}Q_{\eta}} \left\{ \left(m_{\eta} - m_{\pi^{0}}\right)^{2} - s \right\} - 1 \end{aligned}$$

Efficiency almost flat, and ~ 35%

Roberto Versaci

$|A(X,Y)|^2 = 1 + aY + bY^2 + cX + dX^2 + eXY + fY^3$

 $a = -1.090 \pm 0.005 (stat)_{-0.019}^{+0.008} (syst)$ $b = 0.124 \pm 0.006 (stat) \pm 0.010 (syst)$ $d = 0.057 \pm 0.006 (stat)_{-0.016}^{+0.007} (syst)$ $f = 0.14 \pm 0.01 (stat) \pm 0.02 (syst)$

 $c = 0.002 \pm 0.003(stat) \pm 0.001(syst)$ $e = -0.006 \pm 0.007(stat)_{-0.003}^{+0.005}(syst)$

Roberto Versaci

Search for $\eta \rightarrow \gamma \gamma$

450

MeV

Violates C BR < 5×10⁻⁴ @95%CL PDG '02 (GAMS2000)

$$\phi \rightarrow \eta \gamma \rightarrow 4\gamma$$

$$\models E_{\text{recoil}} = 363 \text{ MeV}$$

$$\Rightarrow \gamma \gamma \gamma$$

150

100

background

estimate

from the sidebands

PLB 591(2004) 49

Upper limits on $\pi^+\pi^-/\gamma\gamma\gamma$, background limited! They can be improved by a factor $\sqrt{(L_{NEW}/L_{OLD})} \sim 2$

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

 $Br \sim 3.29 \times 10^{-3} \, eV / 1.18 \, keV = 2.8 \times 10^{-6}$

$\eta \rightarrow \pi^{o} \gamma \gamma$: a window on p^{o} ChPT

² L₂ contributions at tree level:

Coupling proportional to the charges, zero also for L_4 @ tree level.

1-loop contributions from L₂ vertices, suppressed by G parity conservation and kaon mass suppression:

86 / 63

the muon anomaly

Roberto Versaci

Graduiertenkolleg Mainz 06-12-2006

87 / 63

 $e^+e^- \rightarrow \pi^+\pi^-\gamma$

measuring $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$

contribution to a_{μ} for $\sqrt{s} < 1$ GeV $\approx 2/3$, mainly $e^+e^- \rightarrow \pi^+\pi^-$ DA Φ NE is tuned at $\sqrt{s} = m_{\phi}$

- **no y tagging**: photons $\theta_y < 15^\circ$ or $\theta_y > 165^\circ$, pions $50^\circ < \theta_\pi < 130^\circ$
- small relative contribution of FSR
- reduced background contamination from $\phi \rightarrow \pi^{+}\pi^{-}\pi^{0}$
- measure differential cross section e⁺e⁻ → π⁺π⁻γ as function of the ππ invariant mass
- extract $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ using the radiator function
- correct for final state radiation

main error in $\sigma(e^+e^- \rightarrow \pi^+\pi)$

$$\sigma(e^+e^- \to \pi^+\pi^-) \left(H(m_{\pi\pi}^2, s) \right) = m_{\pi\pi}^2 \left[\frac{d\sigma(\pi^+\pi^-\gamma)}{dm_{\pi\pi}^2} \right]_{ISR}$$

PHOKARA event generator used as radiator function

Initial State Radiation

 $e^+e^- \rightarrow \pi^+\pi^-$

statistical error of $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ is negligible, systematic error is ±1.3%: 0.9% measurement \oplus 0.9% from H(s_{##},s)

<u>two different methods</u>: CMD-2: energy scan, KLOE: radiative return fair agreement (*but at the peak ?*), good agreement for a^{had}

KLOE:0.35 < s < 0.95 $a_{\mu}^{had} = (3756 \pm 8_{stat} \pm 35_{syst} \pm 35_{theo}) \ 10^{-11}$ VEPP-4MCMD-2:0.37 < s < 0.93 $a_{\mu}^{had} = (3786 \pm 27_{stat} \pm 23_{syst}) \ 10^{-11}$ VEPP-4M

light mesons: qq pairs in the lowest state of angular momentum antisymmetric for interchange of colour, flavour, spin doesn't work for scalar mesons

q_d_

qq

qq

qq

- what is the structure of 0⁺ mesons ?
- why an inverted mass spectrum ?
- do they obey the SU(3)_{flavour} symmetry ?
- do κ and σ really exist ?

models

- bound state of two diquarks
- molecule of two pseudoscalar mesons
- ϕ decays to scalar mesons, $\phi\to f_0\gamma,\ \phi\to a_0\gamma$ they are almost degenerate in mass close to the ss threshold

 f_0 and a_0 should contain some hidden strangeness σ should reveal itself in the $\pi\pi\gamma$ mass spectrum

 $1^- \rightarrow 0^-$ magnetic dipole transition $1^{-} \rightarrow 0^{+}$ electric dipole transition

 $\phi \rightarrow \eta' \gamma; \phi \rightarrow \eta \gamma; \phi \rightarrow \pi^0 \gamma$ $\phi \rightarrow a_0 \gamma$; $\phi \rightarrow f_0 \gamma$; very broad resonances !

a₀ isospin $|1,0\rangle = \frac{|\pi^+\pi^-\rangle - |\pi^-\pi^+\rangle}{\sqrt{2}}$ $\mathbf{f}_{0} \quad |0,0\rangle = \frac{|\pi^{+}\pi^{-}\rangle - |\pi^{0}\pi^{0}\rangle + |\pi^{-}\pi^{+}\rangle}{\sqrt{3}}$

antisymmetric, does not decay $\rightarrow \pi\pi$, but $\rightarrow \eta\pi^0$

decays in the three combinations with equal weight

 $\phi \rightarrow a_0 \gamma$ $a_0 \rightarrow \eta \pi^0$; $\eta \rightarrow \pi^+ \pi^0 \pi^-$ or $\gamma \gamma$; final state: 2 tracks + 5 photons OR 5 photons

- kinematic fit in the hypothesis $\eta \pi^{0} \gamma$.
- fit the $\eta \pi^0$ mass spectrum with the amplitude A($\phi \rightarrow a_0 \gamma$) + A($\phi \rightarrow \rho^0 \pi^0$)

 $\phi \rightarrow f_0 \gamma$ $f_0 \rightarrow \pi^0 \pi^0$; final state: 5 photons

- kinematic fit in the hypothesis $\pi^0\pi^0\gamma$,
- fit the $\pi^0\pi^0$ mass spectrum with the amplitude $A(\phi \rightarrow f_0\gamma) + A(\phi \rightarrow \rho^0\pi^0) + A(\phi \rightarrow \sigma\gamma)$ •

 $f_0 \rightarrow \pi^+\pi^-$; final state: 2 tracks + 1 photon

- large background from ISR $\rho^0 \rightarrow \pi^+\pi^-$
- fit the $\pi^+\pi^-$ mass spectrum with the amplitude $A_{IRS} + A_{FRS} + A_{cont}(\rho\pi\gamma) + A(\phi \rightarrow f_0\gamma) + A(\phi \rightarrow \sigma\gamma)$

scalar mesons

results very model-dependent

 $g_{f_{KK}}^2/4\pi = 2.79 \pm 0.12 \text{ GeV}^2$ $g_{fKK}^2/g_{f\pi\pi}^2 = 4.00 \pm 0.14$ BR($\phi \rightarrow \pi^0 \pi^0 \gamma$) = (1.07 ± 0.07) 10⁻⁴ σ favoured in the fit

 $q_{akk}^2/4\pi = 0.40 \pm 0.04 \text{ GeV}^2$ $g_{aKK}^2/g_{am\pi}^2 = 0.55 \pm 0.07$ $BR(\phi \rightarrow a_0 \gamma) = (0.74 \pm 0.07) \ 10^{-4}$

 $g_{fKK}^2/4\pi = 2.76 \pm 0.13 \text{ GeV}^2$ $g_{fKK}^2/g_{f\pi\pi}^2 = 2.66 \pm 0.10$ σ not needed in the fit

kaon-loop model φ S *K*gskk gs T

BR($\phi \rightarrow \pi^+\pi^-\gamma$) = (2.1 ± 0.4) 10⁻⁴ fit of the $\pi^+\pi^-$ mass spectrum with the kaon-loop model

- a_0 and f_0 strongly coupled to KK, f_0 more than a_0
- branching ratios relatively large
- no evidence for σ meson, neither excluded nor confirmed $\underline{\xi}_{100}$
- results consistent with the description of scalar mesons as bound states of diquarks

$$a^{-} = ds \ \bar{d}\bar{s} \qquad a^{0} = \frac{us \ \bar{u}\bar{s} - ds \ \bar{d}\bar{s}}{\sqrt{2}} \qquad a^{+} = us \ \bar{d}\bar{s}$$
$$f = \frac{us \ \bar{u}\bar{s} + ds \ \bar{d}\bar{s}}{\sqrt{2}}$$
$$\sigma = ud \ \bar{u}\bar{d}$$

2 MeV 22000 0 500 600 700 800 900 m(ππ) (MeV) 1.2 MeV 3000 2500 study 2000 <u></u> 것400 1500 900 950 1000 950 m(ππ) (MeV) m(ππ) (MeV)

Roberto Versaci

pseudoscalar mesons

 $\eta - \eta'$ mixing $|\pi_8\rangle = \frac{u\bar{u} - d\bar{d}}{\sqrt{2}} \qquad |\eta_8\rangle = \frac{u\bar{u} + d\bar{d} - 2s\bar{s}}{\sqrt{6}} \qquad |\eta_0\rangle = \frac{u\bar{u} + d\bar{d} + s\bar{s}}{\sqrt{2}}$ in the SU(3) basis $\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} \cos \theta_{P} & \sin \theta_{P} \\ -\sin \theta_{P} & \cos \theta_{P} \end{pmatrix} \begin{pmatrix} \eta_{8} \\ \eta_{0} \end{pmatrix}$ likely $\pi^0 = |\pi_8\rangle$ with no strange quark and who are π^0 , η , η' ? in the flavour basis $|N\rangle = \frac{u\bar{u} + dd}{\sqrt{2}}$ $|S\rangle = s\bar{s}$ $\phi_{P} = \theta_{P} + atan\sqrt{2}$ measure the decays $\phi \rightarrow \eta' \gamma$ and $\phi \rightarrow \eta \gamma$ selecting the same final state BR($\phi \rightarrow \eta' \gamma$) = (6.19 ± 0.30) 10⁻⁵

flavour basis: $\phi_P = (41.5 \pm 0.7 \pm 0.6_{theo})^\circ$ SU(3) basis: $\theta_P = (-13.2 \pm 0.7 \pm 0.6_{theo})^\circ$

η forbidden decays

Results on f0

KLOE has studied the $f_0(980)$ through the decay chains

 $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$ PLB 634 (2006)

Experimental distributions have been fitted with predictions from Kaon-Loop and direct scalar coupling to vector mesons, taking into account all the contributions to the final states.

Data can be described by both the models.

To fit the $\pi^0\pi^0\gamma$ spectrum with predictions from Kaon-loop model, a $\sigma(600)$ contribution must be included. The KK coupling, in the model with direct scalar coupling to vector mesons results weaker from $\pi^0\pi^0\gamma$ analysis than in the $\pi^+\pi^-\gamma$ study.

KLOE can measure the inteference between the non-resonant process and the resonant ϕ decays ($\phi \to \omega \pi \,/\, \rho \pi \,/\, f_0 \gamma$) with the same final state:

$$\sigma_0^{\varpi_{1}\sigma} = 0.747 \quad 0.028^{+0.001}_{-0.015} \ \nu\beta$$
$$(Z) = 0.040 \quad 0.020^{+0.009}_{-0.001}$$
$$(Z) = -0.160 \quad 0.022^{+0.001}_{-0.004}$$

Next steps:

- include 2005/2006 scan data in fit
- evaluation of systematics

What's next? KLOE2

DAΦNE will run in 2006-07 for two other experiments: SIDDHARTA and FINUDA with periods of machine developments to increase the luminosity and the beam lifetime

plan (to be approved) to start in 2008 building a DA Φ NE-2

- higher luminosity at the ϕ : $\approx 8 \ 10^{32} \text{ cm}^{-2}\text{s}^{-1} \Rightarrow 10 \text{ fb}^{-1} \text{ per year}$
- maximum energy, $\sqrt{s} \approx 2.5 \text{ GeV}$

and start a new physics program in \geq 2011 to reach \approx 40 fb⁻¹

only one interaction region **Continuation of KLOE physics** wiggler magnet bending magnets

expressions of interest presented at the Laboratory this spring:

program at DA_ΦNE upgraded in luminosity and in energy

Measurement of the nucleon form factors in the time-like region

Study of deeply bound kaonic nuclear states at at DA Φ NE-2

