3rd International Symposium on Lepton Moments June 19-22, 2006 Cape Cod

The Measurement of the Hadronic Cross Section using Radiative Return at KLOE

Achim Denig Universität Karlsruhe for the KLOE collaboration

The Radiative Return

Achim Denig

Cross Section Measurements Worldwide

Achim Denig

Radiative Return - How?

Modern particle factories, such as **DA** Φ **NE or PEP-II/KEK-B are designed** for a fixed center-of-mass energy: $\sqrt{s} = m_{\phi} = 1.02$ GeV in the case of DA Φ NE,

Υ(4s) in case of B-factories: **Energy-scan not possible!**

New and completely complementary ansatz: Consider events with Initial State Radiation (ISR)

S. Binner, J.H. Kühn, K. Melnikov, Phys.Lett. B459 (1999) 279

'Radiative Return' to $\rho(\omega)$ **-resonance**: $e^+ e^- \rightarrow \rho(\omega) + \gamma \rightarrow \pi^+ \pi^- + \gamma$

$$\frac{d\sigma_{\text{hadr}+\gamma}}{dM_{\text{hadr}}^2} = \frac{d\sigma(e^+ e^- \rightarrow \text{hadr}+\gamma_{\text{ISR}})}{dM_{\text{hadr}}^2}$$

for $(2m_{\pi})^2 < M_{\text{hadr}}^2 < s$

Extract the Non-Radiative Cross Section

Achim Denig

Pros & Contras

Energy Scan seems the natural way to measure hadronic cross sections, experience at DAΦNE/PEP-II has shown that the **Radiative Return** has to be considered as a complementary approach

Advantages:

- Data comes as a **by-product** of the standard program of the machine, no dedicated runs necessary
- Overall energy scale $\sqrt{s=m_{\phi}}$ is well known and applies to all values of $M_{\pi\pi}$
- Systematic errors from luminosity, √s, rad. corrections... enter only once and do not have to be studied for each point of s

Issues:

- Requires a precise theoretical calculation of the radiator function
- Requires good suppression (or under= standing) of Final State Radiation (FSR);
- appropriate selection cuts very effective
- test model of scalar QED in data (charge asymmetry)
- Needs high integrated luminosity; for 2-Pion-channel at DAΦNE no problem, but more critical for channels with higher multiplicities with much lower cross sections, which are under study at PEP-II

Radiative Return at Particle Factories

Using the method of the **Radiative Return** one can study the entire energy region below ca. 4...5 GeV \rightarrow this is the relevant region for $(g-2)_{\mu}$!

Connection to the Muon Anomaly

• Hadronic contribution a_{μ}^{hadr} is limiting the standard model prediction for $(g-2)_{\mu}!$

- Threshold region σ_{ππ} < 600 MeV now equally important as ρ-peak region in the error for a_μ^{hadr} even so absolute contribution much smaller
 → needs to be measured with better accuracy (this talk!)
- Also region between 1.4 2.0 GeV contributes significantly to error
 - \rightarrow radiative return at PEP-II with BaBar

9

KLOE Measurement of the Pion Formfacor

(i) Untagged analysis with 2001 data Phys. Lett. B606 (2005) 12

(ii) Untagged analysis with 2002 data

(iii) Tagged analysis with 2002 data

KLOE @ *DA*Φ*NE*

Electron-Positron-Collider with $\sqrt{s} = m_{\phi} = 1.0194 \text{ GeV}$ **Detectors KLOE** and FINUDA/DEAR

Main focus on KAON physics

- CPT test: **semileptonic** K_s K_L charge asymm.
- V_{us} , kaon form factors from semileptonic $K_{S,L}$, K^{\pm} decays, K_L and K^{\pm} lifetimes
- Rare $K_{S,L}$ decays ($K_S \rightarrow 3\pi^0, \pi^+\pi^-\pi^0, K_L \rightarrow \pi^+\pi^-, K_L \rightarrow \gamma\gamma...$)

Non Kaon Physics

- radiative ϕ decays (scalars, pseudoscalars)
- hadronic cross section
- η physics and rare η decays

Selection $\pi^+\pi^-\gamma_{ISR}$

Drift chamber

 $\sigma_{r\phi} = 150 \text{ mm}$, $\sigma_z = 2 \text{ mm}$ $\sigma_p / p = 0.4\%$ (for 90° Tracks) *Excellent momentum resolution*

Full stereo geometry, 4m diameter, 52.140 wires 90% Helium, 10% iC₄H₁₀

The KLOE Detector

11

Selection $\pi^+\pi^-\gamma_{ISR}$

Electromagnetic Calorimeter

Achim Denig

Selection $\pi^+\pi^-\gamma_{ISR}$

Pion tracks at large angles $50^{\circ} < \theta_{\pi} < 130^{\circ}$

a) Photons at small angles

- $\theta_{\gamma} < 15^{o}$ and $\theta_{\gamma} > 165^{o}$
- → No photon tagging

$$\vec{p}_{\gamma} = -\vec{p}_{\text{miss}} = -(\vec{p}_{+} + \vec{p}_{-})$$

- High statistics for *ISR* photons
- Negligible contribution of *FSR*
- Reduced background

b) Photons at large angles

- $50^{\circ} < \theta_{\gamma} < 130^{\circ}$ \rightarrow Photon tagging possible
- Measurement of threshold region
- Increased contribution of FSR
- Contribution $\phi \rightarrow f_0(980) \gamma \rightarrow \pi^+\pi^-\gamma$

The KLOE Detector

- Experimental challenge: fight background from φ → π⁺π⁻π⁰ μ⁺μ⁻γ and e⁺e⁻γ, reduced by means of kinematic cuts (trackmass), and likelihood function (e-π-separation)
- Normalization to integrated luminosity, which is obtained from large-angle-Bhabha events (clean exp. selection)
- Background from LO-FSR negligible (reduced by acceptance cuts: small Θ_γ), NLO-FSR not reduced and not a background, efficiency has to be known

Statistical error negligible (1.5 Million events)

Acceptance	0.3%	
Trigger	0.3%	
Tracking	0.3%	
Vertex	0.3%	
Offline reconstruction filter	0.6%	
Particle ID	0.1%	
Trackmass cut	0.2%	
Background	0.3%	
Unfolding effects	0.2%	
Total experim. systematics 0.9%		
Luminosity (LA Bhabhas)	0.6%	
Vacuum polarization	0.2%	
FSR corrections	0.3%	
Radiator function	0.5%	
Total theoretical Error	0.9%	
TOTAL ERROR KLOE 1.3%		
(CMD-2: 0.9%, SND 1.3%)		

Achim Denig

Comparison with recent e^+e^- *- and* τ *- Data*

→ All recent e+e- experiments see large deviations with τ-data above ρ peak → Some disagreement btw. KLOE and SND (and CMD-2?) seen at low and high masses → All recent e+e- experiments agree now within 0.5σ in the 2π-contribution to a_{μ}^{had}

Achim Denig

(ii) Untagged analysis with 2002 data

Achim Denig

Small Angle Analysis with 2002 Data

A new analysis is carried out at small photon angles using 2002 data (240pb⁻¹) with improved machine background conditions and calibration conditions Goals: - reduction of the total systematic error <1% (was 1.3% for exp.+theory)

- measure the R-Ratio= $\sigma_{\pi\pi}/\sigma_{\mu\mu}$

Acceptance	0.3%	
Trigger	0.3%	
Tracking * s. tagged analysis	0.3%	
Vertex * s. tagged analysis	0.3%	
Offline reconstruction filter —	0.6%	_
Particle ID	0.1%	
Trackmass cut	0.2%	
Background *	0.3%	
Unfolding effects	0.2%	
Exp. System. with 2001 data: 0.9%		

Error was limited by cosmic veto filter,
 which caused up to 30% inefficiency
 CURED by introducing L3-Filter,
 no cosmic veto inefficiency anymore

Main syst. experimental error due machine background dependence of an offline-event filter
 CURED by changing reconstruction filter, error reduces to <0.1%

* Reduction of error, larger data set allows more precise determination → see later large angle analysis!

Normalization to Muon - Pairs

-Luminosity (LA Bhabhas)	0.6%	
Vacuum polarization	0.2%	
FSR corrections	0.3%	
Radiator function	0.5%	
Theory Error 2001 data:	0.9%	

These contributions to the theoretical error drop in case the R-ratio is measured <u>BUT</u>: requires to select $\mu\mu\gamma$ events with similar precision as $\pi\pi\gamma$!

Achim Denig

Test of the Radiator-Function

 Compare μμγ–yield in data with Monte-Carlo simulation (PHOKHARA generator), which is using identical radiative ISR-corrections as for the F_π analysis (radiator function)

Important cross check of radiator function; preliminary comparison gives agreement with an accuracy <2%; Previous comparison with KKMC event generator gave <0.5% agreement

(iii) Tagged analysis with 2002 data

Achim Denig

Analysis 2002 Data: Large Photon Angles

Threshold region non-trivial

due to irreducible FSR-effects, which have to be cut from MC using phenomenological models (interference effects unknown)

Achim Denig

The Radiative Return @ KLOE

Background $\phi \rightarrow \pi^+ \pi^- \pi^0$

Dedicated selection cuts :

- Exploit tagging, i.e. kinematic closure of the event
 - \rightarrow Angle Ω btw. ISR-photon and missing momentum

• Kinematic fit in $\pi^+\pi^-\pi^0$ hypothesis using 4-momentum

and π^0 -mass as contstraints \rightarrow cut on $\chi^2_{\pi\pi\pi}$ reduces background while having high efficiency (>98%) for signal events; allows also to test MC reliability for bkg. events

Reducible backgroundπ+π-π⁰ (and also μ+μ-γ)very well simulatedby Monte-Carlo!

Achim Denig

Spectrum $\pi^+\pi^-\gamma(a)$ Large Photon Angles

- **Background** $\pi\pi\pi$, $\mu\mu\gamma$ subtracted according to MC-simulation
- (N)LO-FSR from PHOKHARA
- Efficiencies taken from (red=MC, blue=data):
 - Acceptance
 - Trackmass-Cut
 - Ω -Cut
 - $\chi^2_{\pi\pi\pi}$ -Cut
 - FILFO (offline rec. filter)
 - Cosmic Veto
 - Trigger
 - Tracking
 - Vertex
- Missing for final result • Correction for f₀(980) bkg. !

Achim Denig

Trigger Efficiency

- **Trigger-requirement**: \geq 2 energy releases (2 trigger sectors) above threshold in EmC
- **Strategy**: tagged $\pi^+\pi^-\gamma$ analysis has 3 particles in final state
 - → use 2 out of 3 particles to trigger the event and obtain trigger sector efficiency of third particle
 - → measure efficiencies as a function of p and Θ

• Results:

- good agreement btw. data and simulation
- efficiencies very high, above
 95% for most bins

Trigger inefficiency < 10⁻³ in agreement with MC prediction (was 0.3%!)

Tracking Efficiency

- **Strategy**: use $\pi^+\pi^-\pi^0$ control sample, which is selected via kinematic fit
 - → Use 1st measured track, 2 γ's and missing moment as input for fit
 - → additional PID-cuts and others to suppress machine background
 - → look for presence of 2^{nd} track with $\rho_{PCA} < 8$ cm, $|z|_{PCA} < 12$ cm, $\rho_{FirstHit} < 50$ cm

Tracking efficiency (97...99)% 0.4% disagreement with MC Systematic error: ~0.2% prel. (was 0.3%!)

- Comments:
 - inefficiency contains π -decay and nuclear interaction effects
 - difference data MC due to limited description of track splitting in MC

Vertex Efficiency

- Strategy: use π⁺π⁻γ events; measure M_{ππ}-dependence directly
 - → in the offline event selection the requirement of a charged vertex has been removed since 2002
 - → repeat entire analysis (except $\chi^2_{\pi\pi\pi}$ cut) without vertex requirement
 - \rightarrow look for presence of a vertex at I.P.

Vertex efficiency ~99.2% 0.3% disagreement with MC; Systematic error ~0.2% prel. (was 0.3%!)

- Comments:
 - still limited by statistics at low $M_{\pi\pi}{}^2$
 - difference data MC due to limited description of track splitting im MC

Scalar meson f₀(980) produced in radiative *φ*-decays → Very interesting physics in itself with a dedicated publication: !

In radiative \$\phi\$-decays there is a high sensitivity to distinguish btw. different models for the nature of the scalars: not easily interpreted as conventional q\$\overline{q}\$ probably \$\overline{q}\overline{q}\$ q\$\overline{q}\overline{q}\$ (Jaffe '77) \$KK\$ (Weinstein-Isgur '90)

• Can broad $f_0(600)$ " σ " be seen in spectrum?

- Large Angle Analysis with very similar cuts as described before \rightarrow extension to high mass region: $f_0(980)$ signal seen
- Fit : ISR + FSR + scalar $f_0(980)$
 - ± interference (scalar+ FSR)
 - + background ($\rho\pi \rightarrow \pi\pi\gamma$)

fit with 3 models for scalar amplitude

28

Background $\phi \rightarrow f_0(980) \gamma \rightarrow \pi^+\pi^-\gamma$

Results from the $f_0(980)$ fit studies have been used to compute the relative background of scalar events in the large-angle-analysis, destructive interference with FSR is clearly preferred in the fit.

\rightarrow main limitation at threshold due to model dependence in f₀(980) amplitude

Achim Denig

Forward - Backward - Asymmetry

Forward-backward-asymmetry $A_{FB}(M_{\pi\pi}) = \frac{N(\theta^+ > 90^\circ) - N(\theta^+ < 90^\circ)}{N(\theta^+ > 90^\circ) + N(\theta^+ < 90^\circ)} (M_{\pi\pi})$

Asymmetry is a consequence of different C-Parity of $\pi^+\pi^-$ for ISR- and FSR-amplitude

Data
 △ Simulation FSR+ISR
 □ Simulation FSR+ISR+ scalar(KL)

→ Clear signal ~ 980MeV but also huge threshold effect, no $f_0(600)$ needed

On ρ-peak (where scalar amplitude is small) very good agreement btw. data and simulation -> precision test of the model of scalar QED for FSR

Conclusions and Outlook

Achim Denig

Conclusions

- Feasibility of the Radiative Return for high-precision measurements proven at KLOE
- Published analysis without photon tagging (1.3% precision) will be updated with 2002 data; Normalization to muon pairs
- Analysis with photon tagging (large polar angle of ISR-photon) allows to access threshold region; expect result for summer 2006; ρ-peak region with improved precision wrt. published result!

Improve further measurement of Pion Formfactor < 1GeV; together with BaBar program this leads to a substantial improvement of the theoretical knowledge of the muon anomaly

Main limitations due to φ →π⁺π⁻π⁰ and φ →f₀(980)γ
 → dedicated DAΦNE-run off-resonance (√s=1.00 GeV) will allow ultimate precision for pion formfactor @ DAΦNE

Achim Denig

DAΦNE - Run Off - Resonance

- Run at $\sqrt{s} = 1.00$ GeV between Dec. 2005 and March 2006
 - → Good machine performance off-peak:
 ~ 225pb⁻¹ written on tape!
- In addition energy scan around ϕ peak with 4 scan points, 10 pb⁻¹ per point each

Physics Case:

- **background-free Radiative Return** 200pb⁻¹ allow to be statistically competitive with VEPP-2M at threshold
- a φ-scan allows to study the modeldependence in desciption of f₀(980)
- background-free γγ program

