

T. Spadaro, LNF INFN for the KLOE collaboration

ICHEP 06 Conference Moscow, 27th July, 2006 Data taking for KLOE experiment, years 2001-2005, now run completed ~2.5 fb⁻¹ integrated @ $\sqrt{s}=M(\phi)$, corresponding to 2.5 10⁹ K_sK_L pairs

Kaon physics at KLOE

- $K_s K_L$ pairs emitted ~back to back, p ~ 110 MeV
- Identification of $K_{S}(K_{L})$ decay (interaction) tags presence of $K_{L}(K_{S})$
- Almost pure K_{L,S} beams of known momentum + PID (kinematics & TOF):
 - Access to absolute BR's
- Precise measurements of $K_{_{Le3}}$ ff's and $K_{_{L}}, K^{_+}$ lifetimes (accept ~0.5 $\tau_{_L}, \tau_{_+})$
- Above points crucial for Vus determination: see M. Antonelli's talk

K's are in a coherent state: access to quantum-interference t distributions

The picture from K⁰ decays and CPT

C, P, and T symmetries are violated, separately and in bilinear combinations

CPT conservation relies on Lorentz invariance, locality, unitarity

But: violations of CPT symmetry are expected, due to QG

At present no consistent and predictive theory of QG, energy scale for CPT violations unknown

Search for CPT violations is driven by phenomenology

The most precise test of CPT violation comes from K⁰ decay amplitudes:

$$\left. \frac{m_{K^0} - m_{\bar{K}^0}}{m_{K^0}} \right| \approx 3 \times 10^{-18}$$

The relation in the kaon system between total transition rates and decay widths gives the most precise test of CPT violation at present

From time evolution to unitarity relation

Time evolution (Weisskopf-Wigner), i $\frac{d}{dt} \begin{bmatrix} K^0 \\ \overline{K^0} \end{bmatrix} = [M - i \Gamma/2] \begin{bmatrix} K^0 \\ \overline{K^0} \end{bmatrix}$

with diagonal states: $\begin{aligned} |\mathbf{K}_{S}\rangle &= N_{S} \left[\begin{array}{c} |\mathbf{K}_{+}\rangle + \boldsymbol{\varepsilon}_{S} |\mathbf{K}_{-}\rangle \end{array} \right] \\ |\mathbf{K}_{L}\rangle &= N_{L} \left[\begin{array}{c} |\mathbf{K}_{-}\rangle + \boldsymbol{\varepsilon}_{L} |\mathbf{K}_{+}\rangle \end{array} \right] \\ \mathbf{\varepsilon}_{L,S} &= \boldsymbol{\varepsilon} \pm \boldsymbol{\delta} \end{aligned}$

The parameter
$$\delta = \frac{i(m_{K^0} - m_{\bar{K}^0}) + \frac{1}{2}(\Gamma_{K^0} - \Gamma_{\bar{K}^0})}{\Gamma_S - \Gamma_L} \cos \phi_{SW} e^{i\phi_{SW}}$$

describes \mathcal{CPT} in mass or decay matrices: e.g., assuming $\Gamma_{K^0} - \Gamma_{\bar{K}^0} = 0$, $\left| \frac{m_{K^0} - m_{\bar{K}^0}}{m_{K^0}} \right| \approx 3 \times 10^{-14} \left| \text{Im}(\delta) \right|$

CON KLOE

Only assumption is conservation of probability (unitarity),

 $\Gamma_{ij} = \sum_{f} A_i(f) A_j(f)^*$, valid if summing over all possible final states fOne obtains (Bell-Steinberger relation):

Outputs of the relation: $Re(\varepsilon)$ and $Im(\delta)$

Advantage of the K⁰ system: few final states contribute significantly

The unitarity relation: size of the α 's

Expression of α_{f} 's in terms of measurable quantities (for Re $\epsilon = 1.6 \ 10^{-3}$):

Channel	Espression	$10^5 \times SM$ value of α_f
ππ decays:	$\alpha_{+} = \eta_{+} BR(K_{S} \rightarrow \pi^{+}\pi^{-}(\gamma))$	111 + <i>i</i> 105
	$\alpha_{00} = \eta_{00} \operatorname{BR}(\mathrm{K}_{\mathrm{S}} \to \pi^0 \pi^0)$	49 + <i>i</i> 47
πππ decays:	$\alpha_{+-0} = \tau_{\rm S}^{\rm I} / \tau_{\rm L}^{\rm I} \eta_{+-0}^{\rm *} BR(K_{\rm L}^{\rm I} \rightarrow \pi^+ \pi^- \pi^0)$	0.04 + <i>i</i> 0.04
	$\alpha_{000} = \tau_{\rm S}^{\rm I} / \tau_{\rm L}^{\rm I} \eta_{000}^{\rm *} BR(K_{\rm L}^{\rm I} \to \pi^0 \pi^0 \pi^0)$	0.00 + <i>i</i> 0.00
πlv decays:	$\alpha_{kl3} = 2 \tau_{S}^{\prime} / \tau_{L} \eta_{000}^{*} BR(K_{L} \rightarrow \pi l \nu) \times$	$0.4 + i \ 0.0$
	× [Re (ϵ) – Re (y) – <i>i</i> Im (δ) + <i>i</i> Im (x ₊)]	

CP and **CPT** violation parameters are at both sides of B-S relation...

Test via unitarity: state of the art in 2001

Before last generation of K experiments, precision *CPT* tests by CPLEAR

• Measurements @ CPLEAR of time distributions of S-tagged K₁₃ decays,

$$R_{\pm}(\tau) = R \left[K^0 \to e^{\pm} \pi^{\mp} \nu(\overline{\nu})_{t=\tau} \right], \ \overline{R}_{\mp}(\tau) = R \left[\overline{K}^0 \to e^{\mp} \pi^{\pm} \overline{\nu}(\nu)_{t=\tau} \right]$$

• combined as $\left\{ \overline{R}_{\pm} - R_{\mp} \left[1 + 4 \operatorname{Re}(\varepsilon_L) \right] \right\} / \left\{ \overline{R}_{\pm} + R_{\mp} \left[1 + 4 \operatorname{Re}(\varepsilon_L) \right] \right\},$

and fit with the constraint of the unitarity relation, yield:

$$Im(x_{+}) = (-2.0 \pm 2.6) \times 10^{-3}$$

$$Re(y) = (-0.3 \pm 3.0) \times 10^{-3}$$

$$Re(\delta) = (-2.4 \pm 2.7) \times 10^{-4}$$
 and
$$Re(\epsilon) = (164.9 \pm 2.5) \times 10^{-5}$$

$$Im(\delta) = (-2.4 \pm 5.0) \times 10^{-5}$$

$$Re(x_{-}) = (-0.5 \pm 3.0) \times 10^{-3}$$

Limiting factors for the errors: the knowledge of $\pi e v$ (perform a 6parameter fit) and of $\pi \pi \pi$ amplitudes

Impact of KLOE: K_s semileptonic decays

Sensitivity to CPT violating effects through charge asymmetry:

$$A_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^{-}e^{+}\nu) - \Gamma(K_{S,L} \to \pi^{+}e^{-}\nu)}{\Gamma(K_{S,L} \to \pi^{-}e^{+}\nu) + \Gamma(K_{S,L} \to \pi^{+}e^{-}\nu)} \begin{cases} A_{S} - A_{L} = 4 \left[\operatorname{Re} \left(\delta \right) + \operatorname{Re} \left(x_{L} \right) \right] \\ A_{S} + A_{L} = 4 \left[\operatorname{Re} \left(\epsilon \right) - \operatorname{Re} \left(y \right) \right] \end{cases}$$

If CPT holds, $A_s = A_L$

 $A_s \neq A_L$ signals CPT violation in mixing and/or decay with $\Delta S \neq \Delta Q$

Γ and A_s never measured before:

- Can extract $|V_{us}|$ by measuring $BR(K_s \rightarrow \pi e\nu) \rightarrow$ See Antonelli's talk
- Completes set of measurements of Ke3 inputs to B-S relation: now,

$$\alpha_{\pi l\nu} = 2 \frac{\tau_{K_S}}{\tau_{K_L}} BR(K_L \to \pi l\nu) \left[(A_S + A_L)/4 - i \operatorname{Im}(x_+) \right]$$

Impact of KLOE: K_s semileptonic decays

- Precise identification of charge state, discriminating e from π using TOF
- Count number of $K_s \rightarrow \pi ev$ events fitting multiple kinematical variables
- Correct for selection efficiency by charge and measure (450 pb⁻¹ of data)

$$A_S = (1.5 \pm 9.6_{\text{stat}} \pm 2.9_{\text{syst}}) \times 10^{-3}$$

Using $A_L = (3.34 \pm 0.07) \ 10^{-3}$ from KTeV, From $A_S - A_L$, evaluate $Re x_- + Re \delta = (-0.5 \pm 2.5) \times 10^{-3}$ use Re (δ) from CPLEAR, ×5 improvement for error on Re (x_-) From $A_S + A_L$: $Re \epsilon - Re y = (1.2 \pm 2.5) \times 10^{-3}$

determine for the first time Re (y) independently of B-S relation

Other exp'tl improvements from KLOE

$\pi\pi$ decays:

 $B(K_{s} \rightarrow \pi^{+}\pi^{-})/B(K_{s} \rightarrow \pi^{0}\pi^{0})=2.2549\pm0.0059$

 $B(K_L \rightarrow \pi^+\pi^-) = (1.930 \pm 0.017) 10^{-3}$

 $B(K_L \rightarrow \pi^0 \pi^0) = (9.32 \pm 0.12)10^{-4}$

 $\phi^{+-}=0.757 \pm 0.012$

 $\phi^{00} = 0.762 \pm 0.014$

πππ decays:

 $B(K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (3.2 \pm 1.2) 10^{-7}$ $B(K_{L} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = 0.1263 \pm 0.0012$ $B(K_{S} \rightarrow \pi^{0}\pi^{0}\pi^{0}) < 1.2 \ 10^{-7}$ $B(K_{I} \rightarrow \pi^{0}\pi^{0}\pi^{0}) = 0.1997 \pm 0.0020$ K lifetimes: $\tau_{s} = 0.08958 \pm 0.00006 \text{ ns}$ $\tau_{L} = 50.84 \pm 0.23 \text{ ns}$

\pilv decays: B(K_L $\rightarrow\pi$ lv)=0.6705±0.0022 B(K_S $\rightarrow\pi$ lv)=(11.77±0.15)10⁻⁴ A_L=(3.32±0.06)10⁻³ A_S=(1.5±10.0)10⁻³

Impact of KLOE: K_c BR's

Measurement inclusive with respect to photon radiation

Careful check of systematic uncertainties:

- Ratio of selection efficiencies for $\pi^+\pi^-(\gamma)$ and $\pi^0\pi^0$
- Dependence of tagging efficiency on decay mode
- Dependence of **R** on level of machine background, stability studies

Combine R with ratio of Ke3 BR's measured at ~1%:

$$R_{e+} \equiv \frac{\Gamma(K_S \to \pi^- e^+ \nu)}{\Gamma(K_S \to \pi^+ \pi^-)} = (5.099 \pm 0.082_{\text{stat}} \pm 0.039_{\text{syst}}) \times 10^{-4}$$
$$R_{e-} \equiv \frac{\Gamma(K_S \to \pi^+ e^- \bar{\nu})}{\Gamma(K_S \to \pi^+ \pi^-)} = (5.083 \pm 0.073_{\text{stat}} \pm 0.042_{\text{syst}}) \times 10^{-4}$$

Obtain:

 $BR(K_S \to \pi^+ \pi^-) = (69.196 \pm 0.051) \times 10^{-2}$ $BR(K_S \to \pi^0 \pi^0) = (30.687 \pm 0.051) \times 10^{-2}$ $BR(K_S \to \pi^- e^+ \nu) = (3.528 \pm 0.062) \times 10^{-4}$ $BR(K_S \to \pi^+ e^- \bar{\nu}) = (3.517 \pm 0.058) \times 10^{-4}$

Comparing $\Gamma(K_s \rightarrow \pi e \nu)$ to $\Gamma(K_L \rightarrow \pi e \nu)$, test $\Delta S = \Delta Q$:

×2 improvement in precision on $\operatorname{Re} x_{+} = (-0.5 \pm 3.6) \times 10^{-3}$

Impact of KLOE: $\pi\pi(\gamma)$ amplitudes

BR(K_L $\rightarrow \pi\pi(\gamma)$) measured @ 1%: (1.963 ± 0.012_{stat} ± 0.017_{syst}) × 10⁻³

• PID using decay kinematics, count Evts/0.5 MeV • Data ~ 45,000 signal events in ~ 328 pb^{-1} • Normalize to $K_L \rightarrow \pi \mu \nu$ counts 300 $\mathbb{K}_{\mathrm{T}} \rightarrow \pi \mathrm{ev}$ • Measurement inclusive of all γ 's $\mathbb{K}_{L} \rightarrow \pi \mu \nu$ Consistency of K_s , $K_L \pi \pi$ amplitudes: 200 $\mathbf{K}_{\mathbf{I}} \rightarrow \pi^{+}\pi^{-}$ • Use BR($K_s \rightarrow \pi\pi(\gamma)$), τ_L from KLOE • Use ε'/ϵ and τ_s from world averages 100 • Subtract DE (from E731) and obtain: **KLOE:** $|\varepsilon| = (2.216 \pm 0.013) \times 10^{-3}$ 0 **KTeV:** $|\varepsilon| = (2.239 \pm 0.012) \times 10^{-3}$ 8 12 16 $\sqrt{E_{miss}^2(\pi\pi)} + p_{miss}^2$ (MeV) **PDG 04:** $|\varepsilon| = (2.284 \pm 0.014) \times 10^{-3}$

Impact of KLOE: πππ amplitudes

Direct search for $K_s \rightarrow 3\pi^0$ decays: $BR(K_s \rightarrow 3\pi^0) \le 1.2 \times 10^{-7} @ 90\%$ CL

- $K_s \rightarrow 3\pi^0$ is CP violating: in SM, $\Gamma_s = \Gamma_L |\eta|^2$, BR($K_s \rightarrow 3\pi^0$) = 1.9×10⁻⁹
- 2 events selected, 2.5 bkg expected in 450 pb⁻¹
- Bkg: $2\pi^0$ + 2 split/accidental clusters
- Normalize to $K_s \rightarrow 2\pi^0$ counts

Contribution of $3\pi^0$ to B-S relation:

- Use τ_L , BR(K_L $\rightarrow 3\pi^0$) from KLOE
- Use τ_s from PDG 2004
- Obtain: $\eta_{000} \le 0.018$ @ 90% CL $|\alpha_{000}| \le 10^{-5}$ @ 95% CL

Improvement with whole data:

× 5 in statistics, × 10 in rejection, expect to reach 10⁻⁸ sensitivity on BR

Impact of KLOE: results (1)

After CPLEAR measurements (2001) After KLOE measurements (2006) $\operatorname{Re}(\epsilon) = (164.9 \pm 2.5) \times 10^{-5}$ $\operatorname{Re}(\epsilon) = (160.2 \pm 1.3) \times 10^{-5}$ $\operatorname{Im}(\delta) = (2.4 \pm 5.0) \times 10^{-5}$ $\operatorname{Im}(\delta) = (1.2 \pm 1.9) \times 10^{-5}$ 10^{-4} $\operatorname{Im}\delta$ 10^{-5} $\operatorname{Im}\delta$ 10^{-5} $\operatorname{I$

Limiting quantities for the error: Im (x_{+}) and ϕ_{+} for Im (δ) , η_{+} and η_{00} for Re (ϵ)

What's next: analysis of $K_{S} \rightarrow \gamma \gamma$

Test of $\chi Pt: BR(K_s \rightarrow \gamma \gamma)$ predicted at $O(p^4)$ as 2.1 10⁻⁶ within few percent

Disagrees with most precise measurement: $(2.78 \pm 0.07) \ 10^{-6} [NA48]$

Data fit to $K_s \rightarrow \gamma \gamma + K_s \rightarrow \pi^0 \pi^0$ background from MC, identify 612 ± 40 signal events in 1.7 fb⁻¹

Statistical error dominated by MC, error @ analysis end will be 5%

Can confirm or disprove discrepancy of NA48 with respect to O(p⁴)

Test of $\chi Pt: R = BR(K_L \rightarrow \pi e \nu \gamma, E_{\gamma} > 30 \text{ MeV}, \theta_{\gamma e} > 20^\circ)/BR(K_L \rightarrow \pi e \nu(\gamma))$

Test for presence of DE terms via fit of γ spectrum:

What's next: analysis of $K_s \rightarrow \pi \mu \nu$

Decay mode has never been observed

New KLOE measurements greatly improve knowledge of K_SK_L system:

Measurements of K_s decays unique to KLOE

From these results:

Test of 1st row CKM matrix unitarity, see M. Antonelli's talk Consistent picture from unitarity relation Improved precision of test of CPT violation accuracy on Re (ε) and Im (δ) improved by a factor ~2.5 Future developments:

Analyses of whole data set for $K_L \rightarrow \pi e \nu \gamma$, $K_S \rightarrow \gamma \gamma$, $K_S \rightarrow \pi \mu \nu$