EuroFlavour '07, 14-16 November 2007 Univ. Paris-Sud 11, Orsay

KLOE results

on

Hadronic Cross Section

Paolo Beltrame

Institut für Experimentelle Kernphysik University of Karlsruhe

for the KLOE Collaboration

Muon Anomaly & Hadronic Cross Section

High Precision Test of the Standard Model \Rightarrow Fine structure constant at Z⁰-mass $\alpha_{QED}(M_Z)$ \Rightarrow Anomalous magnetic moment of the muon *Muon anomaly* $a_{\mu} = (g_{\mu}-2)/2 = \alpha/2\pi + ...$

$$a_{\mu}^{\text{theo}} = a_{\mu}^{\text{QED}} + (a_{\mu}^{\text{hadr}}) + a_{\mu}^{\text{EW}} + a_{\mu}^{\text{New Phys}}$$

 2^{nd} largest contribution, pQCD not applicable

Error on hadronic contribution dominates total error on a_{μ}^{theo}

 a^{hadr} can be expressed in terms of (e⁺e⁻ \rightarrow hadrons) by the use of a *dispersion integral*:

$$a_{\mu}^{\text{hadr}} = \frac{1}{4 \pi^3} \left(\int_{4m_{\pi}^2}^{E_{\text{Cut}}^2} \text{ds} \sigma^{\text{hadr, exp}}(s) K(s) + \int_{E_{\text{Cut}}^2}^{\infty} \text{ds} \sigma^{\text{hadr, } pQCD}(s) K(s) \right) \qquad \sigma_{\pi\pi} = (e^+e^- \to \pi^+\pi^-)$$
gives >70% contribution
to a^{had}

- E_{cut} is the threshold energy above which pQCD is applicable
- s is the c.m.-energy squared of the hadronic system
- K(s) is a monotonous function that goes with 1/s, enhancing low energy contributions of $\sigma^{Hadr}(s)$

Alternative: spectral function from decay $\tau \rightarrow v_{\tau}$ hadrons

 μ^+

R-field

 u^+

Radiative Return

Particle factories, as **DA** Φ **NE** (or PEP-II, KEK-B), **designed for a fixed center-of-mass energy**: $\sqrt{s} = m_{\phi} = 1.02$ GeV in the case of DA Φ NE **Energy-scan not possible**

New and completely complementary ansatz:

Consider events with Initial State Radiation (ISR)

S. Binner, J.H. Kühn, K. Melnikov, Phys.Lett. B459 (1999) 279

"Radiative Return" to $\rho(\omega)$ -resonance:

 $e^+e^- \rightarrow \rho(\omega) + \gamma \rightarrow \pi^+\pi^- + \gamma$

Measure cross section as a function

of the 2π -invariant mass $s_{\pi} = M_{\pi\pi}^2$

For ISR events

 $M_{\pi\pi}^2 \frac{d\sigma_{\pi\pi\gamma}}{dM^2} = \sigma_{\pi\pi}(s) \times H(s)$

⇒ EVA + PHOKHARA MC generator

S. Binner, J.H. Kühn, K. Melnikov, Phys. Lett. B 459, 1999 H. Czyż, A. Grzelińska, J.H. Kühn, G. Rodrigo, Eur. Phys. J. C 27, 2003

P. Beltrame (KLOE coll.), EuroFlavour '07, Orsay 14-16.11.07

Measurements of the Pion Form Factor at KLOE

Pion tracks at *large angle*

 $50^\circ < \theta_{\pi} < 130^\circ$

a) Photon at small angle $\theta_{\pi} < 15^{\circ}, 165^{\circ} < \theta_{\pi}$

- No photon tagging $\vec{p}_{v} = \vec{p}_{miss} = -(\vec{p}_{1} + \vec{p}_{2})$

- High statistics for *ISR* photons

- Negligible contribution of *FSR*
- Reduced background

b) Photon at *large angle* $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

- Photon tagging possible
- Increased contribution of FSR
- Contribution from $\phi \rightarrow f_0(980)\gamma \rightarrow \pi^+\pi^-\gamma$

Overview Pion Form Factor at KLOE

		Syst. 0.6 <m<sub>ππ<0.95 GeV²</m<sub>	Syst. M _{ππ} <0.6 GeV ²
Analysis	∫Ldt		
γ_{ISR} untagged 2001 data	140 pb-1	1.3 % (published)	(kinematically forbidden)
γ_{ISR} untagged 2002 data	240 pb ⁻¹	1.1 %	(kinematically forbidden)
γ_{ISR} tagged 2002 data	240 pb ⁻¹	0.9 % $\oplus f_0(980)$ contribution	limited by model dependence of irreducible background $\phi \rightarrow f_0(980) \gamma$
<i>Off-Peak</i> 2006 √s = 1.00 GeV	230 pb ⁻¹	<< 1 %	suppressed $f_0(980)$ contribution

Small Angle Analysis
2001 → 2002 DATA

Background:

 $\phi \rightarrow \pi^+ \pi^- \pi^0$, $e^+e^- \rightarrow \mu^+ \mu^- \gamma$ and $e^+e^- \gamma$

reduced by means of

- likelihood function (e- π -separation)

kinematic cuts: missing mass and trackmass
(4-momenta conservation under the hypothesis
of two tracks with the same mass)

$$\left(\sqrt{s} - \sqrt{\vec{p}_{x_1}^2 + M_{\text{trk}}^2} - \sqrt{\vec{p}_{x_2}^2 + M_{\text{trk}}^2}\right)^2 - \left(\vec{p}_{x_1} + \vec{p}_{x_2}\right)^2 = q_y^2 = 0$$

Efficiency:

Whenever possible use DATA, rely on MC only for acceptance and M_{trk}

Luminosity normalization: Measure DAΦNE luminosity with Bhabha events at large polar angles > 55° as normalization process

Phys. Lett. B606 (2005) 12

$2001 \rightarrow 2002$

- Larger DATA set: more refined evaluation of systematic errors associated with selection efficiencies

- DATA less affected by machine background

- Additional online software trigger level: recover cosmic veto inefficiency (30% in 2001)

- Improved offline-event filter: systematic uncertainty to < 0.1% (0.6% in published analysis)

- Trigger efficiency estimate in 2001 data corrected. Mainly low $M_{\pi\pi}$ region, published $a_{\mu}^{\ \pi\pi}$ decreased by 0.4%

New event generator BABAYAGA@NLO (theoretical error of Bhabha effective cross section from 0.5% to 0.1%) Bhabha cross section value lowered by 0.7%, Pion Form Factor decreases by 0.7%
C. M. Calame et al., Nucl. Phys. B758 (2006) 227

Radiative corrections

- Radiator-Function H(s) (ISR):

ISR-Process calculated at NLO-level

PHOKHARA generator (Czyź, Kühn et.al) Precision: 0.5%

- Radiative Corrections:

i) Bare Cross Section

divide by Vacuum Polarization from F. Jegerlehner: http://www-com.physik.hu-berlin.de/~fjeger/

ii) FSR correction

Cross section $\sigma_{\pi\pi}$ must be inclusive for FSR

FSR corrections have to be taken into account up to NLO

Small Angle Result from 2002 DATA $\sigma_{\pi\pi}$ and $a_{\mu}^{\pi\pi}$

2001 updated for trigger efficiency and change in Bhabha-cross section

 $a_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (384.4 \pm 0.8_{\text{stat}} \pm 4.9_{\text{syst}}) \cdot 10^{-10}$

2002 preliminary

 $a_{\mu}^{\pi\pi}(0.35-0.95\text{GeV}^2) = (386.3 \pm 0.6_{\text{stat}} \pm 3.9_{\text{syst}}) \cdot 10^{-10}$

Offline filter	negligible
Background	0.3%
Trackmass/Miss. mass	0.2% (prelim)
$\pi/e - ID$	0.3%
Vertex	0.5%
Tracking	0.4%
Trigger	0.2%
Acceptance (θ_{π})	negligible
$M_{\pi\pi} \rightarrow M_{\gamma*}$ (FSR contr)	0.3% (prelim)
Software Trigger	0.1%
Luminosity	0.3%
Acceptance (θ_{Miss})	0.1%
Radiator H	0.5%
Vacuum Polarization	negligible
SYSTEMATIC ERROR	1.1%

Large Angle Analysis 2002 DATA

Pro & Contra

- \checkmark independent analysis and cross check
- \checkmark the threshold region is accessible
- ✓ the ISR photon is detected (4-momentum constraints)
- ✓ lower signal statistics
- ✓ large $\phi \rightarrow \pi^+\pi^-\pi^0$ background contamination (strong analysis cuts needed)
- ✓ large FSR contributions
- ✓ irreducible background from radiative φ decay: $φ → f_0 γ → ππ γ$

Estimated from MC using phenomenological models

- Pion tracks: $50^{\circ} < \theta_{\pi} < 130^{\circ}$
- **Photons:** at least one with $50^{\circ} < \theta_{\gamma} < 130^{\circ}$

and $E_{\gamma} > 50$ MeV. Photon tagging

Exploiting the kinematic closure of the event:

- Kinematic fit in $\pi^+\pi^-\pi^0$ hypothesis using 4-momentum and π^0 -mass as constraints

FSR contribution added back to cross section (estimated from PHOKHARA generator)

Reducible background from $\pi^+\pi^-\pi^0$ and $\mu^+\mu^-\gamma$ well simulated by MC

Dominating uncertainty from model dependence of irreducible background $\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$. Using different models for f_0 -decay and using input from dedicated KLOE $\phi \rightarrow f_0 \gamma$ analyses (with $f_0 \rightarrow \pi^+ \pi^-$ and $f_0 \rightarrow \pi^0 \pi^0$). \Rightarrow Difference between the MC models as systematics

Comparisons, summary, conclusions and outlook

a₁^{ππ} Summary: KLOE Small Angle analyses

Jegerlehner (hep-ph/0703125): $\Delta a_m = a_m^{exp} - a_m^{theo} = (28.7 \pm 9.1) \cdot 10^{-10}$

Using new KLOE result would increase difference from 3.2σ to 3.4σ

a₁^{ππ} Summary: e⁺e⁻ experiments

 $a_{\mu}^{\pi\pi}$ from KLOE, CMD2 and SND in the range 0.630-0.958 GeV

Phys. Lett. B648 (2007) 28

No comparison between spectra since sophisticated unfolding procedure yet to be done. (Negligible effect on $a_{\mu}^{\pi\pi}$)

P. Beltrame (KLOE coll.), EuroFlavour '07, Orsay 14-16.11.07

Using cross section data obtained via the radiative return, $\sigma(\pi^+\pi^-\gamma)$, $a_{\mu}^{\pi\pi}$ determinations have been performed

Two complementary analyses:

1. Small photon polar angle

- the published result from 2001 data (140 pb⁻¹) has been updated with new Babayaga version (-0.7%) and trigger effect (-0.4%)

- the updated 2001 result agrees with the preliminary result from 2002 data (240 pb⁻¹)

2. Large photon polar angle

- results in the range 0.5-0.85 GeV^2 (less sensitive to resonances background) agree with above ones

KLOE results are lower but consistent within one sigma with those from CMD-2 and SND

Outlook

- Refine the **Small Angle** analysis by unfolding for detector resolution and release the $e^+e^- \rightarrow \pi^+\pi^-$ cross section soon
- Improve evaluation of contribution from resonances in the Large Angle analysis
- Normalize $\pi^+\pi^-\gamma$ events to $\mu^+\mu^-\gamma$ events (many systematic effects cancel)
- Obtain Pion Form Factor from data taken in 2006 at $\sqrt{s} = 1000 \text{ MeV}$
- (**Off Peak**, outside the ϕ resonance)
 - \rightarrow suppression of background from $\varphi\text{-decays}$
 - \rightarrow cover threshold region below 600 MeV
 - \rightarrow determination of $f_0(980)$ -parameters

Spares slides

Trigger efficiency correction had to be updated due to a double counting of efficiencies; affects mainly low $M_{\pi\pi}$ region

Impact of update on trigger correction on 2001 cross section:

Changes (decreases) published value on $a_{\mu}^{\pi\pi}$ by 0.4%

