e⁺e⁻ – Hadronic Cross Section measurement at DAΦNE with the KLOE detector

Paolo Beltrame IEKP, Universität Karlsruhe For the KLOE collaboration

5th International Workshop on Chiral Dynamics Durham/Chapel Hill, 18-22 September 2006

Motivation

High precision test of the Standard Model

- Anomalous magnetic moment of the muon
- Fine structure constant at Z^0 mass $\alpha_{QED}(M_Z)$

Anomalous magnetic moment of the muon

Muon anomaly
$$a_{\mu} = (g_{\mu} - 2)/2 = \alpha/2\pi + \dots$$

 $a_{\mu}^{theor} = a_{\mu}^{QED} + a_{\mu}^{had} + a_{\mu}^{weak} + a_{\mu}^{new}$

Second largest contribution, pQCD not applicable Error of hadronic contribution dominates the total error of a_{μ}

Dispersion relation

$$a_{\mu}^{had} = \frac{1}{4\pi^3} \int_{4m_{\pi^2}}^{\infty} K(s) \sigma_{had}(s) ds$$

✓ K(s) analytic kernel function
✓ above tipically 2...5 GeV pQCD is applied

Pion Form Factor $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ below 1 GeV contributes to ~ 70%

Hadronic

polarization

vacuum

Alternative: Spectral function from decay ($\tau \rightarrow \nu_{\tau}$ Hadrons) taking into account isospin breaking corrections

Radiative return at DAΦNE

DA Φ NE is designed for a fixed center-of-mass energy: $\sqrt{s} = M_{\phi} = 1.02 \text{ GeV}$

"Radiative Return" to $\rho(\omega)$ **-resonance**: $e^+e^- \rightarrow \rho(\omega) + \gamma \rightarrow \pi^+\pi^- + \gamma$

MC Generator *PHOKHARA* J. Kühn, H. Czyż, G. Rodrigo **Radiator-Function** *H*(*s*)

1. Experimentally what one gets is: $\frac{d\sigma_{\pi\pi\gamma}}{dM_{\pi\pi}^2} = \frac{d\sigma \left(e^+e^- \rightarrow \pi^+\pi^-\gamma_{\rm ISR}\right)}{dM_{\pi\pi}^2} \quad (2m_{\pi})^2 < M_{\pi\pi}^2 < M_{\phi}^2$... Actually: $\frac{\mathrm{d}\sigma_{\pi\pi\gamma}}{\mathrm{d}M_{\pi\pi}^{2}} = \frac{\Delta N_{\mathrm{Obs}} - \Delta N_{\mathrm{Bkg}}}{\Delta M_{\pi\pi}^{2}} \cdot \frac{1}{\varepsilon_{\mathrm{Sel}}} \cdot \frac{1}{\int \mathrm{L}dt}$ 2. With MC generator: $M^{2}_{\pi\pi} \frac{d\sigma_{\pi\pi\gamma}}{dM^{2}_{\pi\pi}} = \sigma_{\pi\pi} \times H(s) \Longrightarrow \sigma_{\pi\pi} = M^{2}_{\pi\pi} \frac{d\sigma_{\pi\pi\gamma}}{dM^{2}_{\pi\pi}} \cdot \frac{1}{H(s)}$

S. Binner, J.H. Kühn, K. Melnikov, Phys.Lett. B459 (1999) 279

The KLOE detector at the DAΦNE Φ-factory

KLOE: Small Photon Angle analysis

- All the recent e⁺e⁻ experiments see large deviations with τ data above ρ peak
- Some disagreement between KLOE and CMD-2/SND
- All recent e⁺e⁻ experiments agree now within 0.5 σ in the $\pi\pi$ -contribution to a_{μ}^{had}
- Recent preliminary $\tau^{\pm} \rightarrow \pi^{\pm}\pi^{0}\nu$ from BELLE in agreement with e⁺e⁻ (hep-ex/0512071)?!

A new analysis is carried out at small photon angles using 2002 data (240 pb⁻¹) with improved machine background and calibration conditions. Two goals:

1. Reduction of total systematical error, 2. Perform the normalization with $\mu\mu\gamma$ events

1. Reduction of total systematical error < 1%

Acceptance	0.3%	
Trigger	0.3%	
Tracking *	0.3%	
Vertex *	0.3%	
Offline reconstruction filter -	0.6%	
Particle ID	0.1%	
Trackmass cut	0.2%	
Background *	0.3%	
Unfolding effects	0.2%	
Exp. Syst. with 2001 data: 0.9%		,

Precision was limitated by cosmic veto filter which caused up to 30% of inefficiency Cured by introducing L3-Filter, no cosmic veto inefficiency anymore

Main systematic experimental error due to machine background dependence of an offline-event filter Cured by changing reconstruction filter, error reduces to < 0.1%

* Reduction of error, larger data set allows more precise determination

Update on small angle

2. Normalization with μμγ events

The threshold region

Kinematics do not allow to cover events with $M_{\pi\pi}^2 < 0.35 \text{ GeV}^2$ in the <u>small angle</u> selection cuts: a high energy ISR photon (\approx small $M_{\pi\pi}^2$) emitted at a small angle forces the pions to be at low angles too.

 Δa_{μ}^{had} (s < 0.35 GeV²) $\approx 100.10^{-10}$ from e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}$

5th International Workshop on Chiral Dynamics

The threshold region

Kinematics do not allow to cover events with $M_{\pi\pi}^2 < 0.35 \text{ GeV}^2$ in the <u>small angle</u> selection cuts: a high energy ISR photon (\approx small $M_{\pi\pi}^2$) emitted at a small angle forces the pions to be at low angles too.

If the high-energy photon is emitted at a <u>large angles</u>, also the pions will be emitted at large angles. Thus the event will be selected.

 Δa_{μ}^{had} (s < 0.35 GeV²) $\approx 100 \cdot 10^{-10}$ from e⁺e⁻ $\rightarrow \pi^{+}\pi^{-}$

KLOE: Large Photon Angle analysis

SELECTION

✓ Pion tracks: $50^{\circ} < \theta_{\pi} < 130^{\circ}$ ✓ Photons: at least one with $50^{\circ} < \theta_{\gamma} < 130^{\circ}$ and E_y > 50 MeV

PRO & CONTRA ✓ the threshold region is accessible ✓ the ISR photon is detected (4-momentum constraints) ✓ large φ → π⁺π⁻π⁰ background contamination ✓ lower signal statistics ✓ large FSR contributions ✓ irreducible background from φ decays

Final State Radiation photon

The cross section for $e^+e^- \rightarrow \pi^+\pi^-$ has to be inclusive with respect to final state radiation events in order to evaluate a_{μ} . There are two kinds of FSR contributions:

LO-FSR: No initial state radiation, e⁺ and e⁻ collide at $M^2_{\gamma*} = M^2_{\phi}$ *NLO-FSR*: Simultaneous presence of one photon from initial state radiation and from final state radiation

In both cases the presence of γ_{FSR} results in a shift of the measured quantity $M_{\pi\pi}^2$ towards lower value:

$$\mathbf{M^2}_{\pi\pi} < \mathbf{M^2}_{\gamma*}$$

FSR for large angle and irreducible background

The presence of **FSR EVENTS** is an issue especially for the large angle selection

Under large angle cuts FSR events as $\rho \rightarrow \pi \pi (+\gamma)$, $\phi \rightarrow f_0 \gamma \rightarrow \pi \pi \gamma$ and $\phi \rightarrow \rho \pi \rightarrow \pi \gamma \pi$, all of them with $\pi \pi \gamma$ final state, are **IRREDUCIBLE BACKGROUND**

They make the threshold region non-trivial

These must be subtracted using in MC phenomenological models (interference effects unknown)

^{5&}lt;sup>th</sup> International Workshop on Chiral Dynamics

Event selection

Acceptance

LARGE ANGLE

✓ Pion tracks: $50^{\circ} < \theta_{\pi} < 130^{\circ}$ ✓ Photons: at least one with $50^{\circ} < \theta_{\gamma} < 130^{\circ}$ and $E_{\gamma} > 50$ MeV

Experimental challenge: fight background from $\phi \rightarrow \pi^+\pi^-\pi^0$ $e^+e^- \rightarrow e^+e^-\gamma$ $e^+e^- \rightarrow \mu^+\mu^-\gamma$

With large angle acceptance cuts and application of a first level filter (ppgtag): huge amount of $\phi \rightarrow \pi^+\pi^-\pi^0$

... still event selection...

Trackmass

Four momentum conservation under the hypothesis of two tracks with the same mass and a photon: M_{trk} is the charged particle (x^{\pm}) of $e^+e^- \rightarrow x^+x^-\gamma$

$$\left(\sqrt{s} - \sqrt{\vec{p}_{x+}^2 + M_{trk}^2} - \sqrt{\vec{p}_{x-}^2 + M_{trk}^2}\right)^2 - (\vec{p}_{x+} + \vec{p}_{x-})^2 = q_{\gamma}^2 = 0$$

 M_{Trk} (MeV)

Likelihood

To further clean the sample from radiative Bhabha events a particle ID estimator for each charged track based on **calorimeter information** and **time of flight** is used

... and other cuts, dedicated for the large angle...

Kinematic fit

 Ω angle

Angle between the missing momentum and the detected photon momentum 10

0.2

o

0.4

0.6

0.8

 (GeV^2)

Preliminary dN/dM $_{\pi\pi}^2$ large angle spectrum

After all the dedicated cuts

- ✓ $50^{\circ} < \theta_{\pi,\gamma} < 130^{\circ}, E_{\gamma} > 50 \text{MeV}$
- ✓ Both the particles not identified as electrons
- ✓ Cut on $\chi^2_{\pi\pi\pi}$
- ✓ Cut on TrackMass vs. $M_{\pi\pi^2}^2$
- ✓ Cut on Ω angle

The signal selection efficiency is **never below 80%** The **reducible background contribution** is **negligible**.

Still under construction

(... close to be complete)

➤ Efficiencies:

trigger, tracking, vertex \Rightarrow complete acceptance, selection cuts \Rightarrow final checks

- > FSR corrections (Phokhara 5.0 Ω)
- $> f_0$ contribution (Phokhara 5.1)
- > Systematics

In the case of a non vanishing FSR contribution the interference term between ISR and FSR is odd under the exchange of $\pi^+ \leftrightarrow \pi^-$.

This gives rise to a non vanishing forward-backward asymmetry

Binner, Kühn, Melnikov, Phys. Lett. B 459, 1999

$$A_{FB}(M_{\pi\pi}^{2}) = \frac{N(\theta_{\pi+} > 90^{\circ}) - N(\theta_{\pi+} < 90^{\circ})}{N(\theta_{\pi+} > 90^{\circ}) + N(\theta_{\pi+} < 90^{\circ})}$$

Check the validity of the FSR model used in the Monte Carlo comparing the charge asymmetry between data and Monte Carlo in the presence of FSR

→ In a similar way, the radiative decay of the $\phi \rightarrow f_0(980) \gamma$ with $f_0 \rightarrow \pi^+\pi^-$ contributes to the charge asymmetry

Czyż, Grzelinska, Kühn, hep-ph/0412239

Possible to study the properties of scalar mesons with charge asymmetry

Charge asymmetry

 Data
 Simulation FSR+ISR
 Simulation FSR+ISR+f₀(980)
 Monte-Carlo used: hep-ph/0605244
 G. Pancheri, O. Shekhovtsova, G. Venanzoni

- \succ Clear signal at ~ 980 MeV
- > Large threshold effect, even without $f_0(600)$, can be described by $f_0(980)$ only
- > On ρ -peak (where scalar amplitude is small) very good agreement between data and simulation: precision test of the model of scalar QED for FSR

Model dependence in $f_0(980)$ amplitude represents the main limitation at threshold

Radiative Return measurements at large ISR-photon angles are limited by reducible and irreducible background from ϕ -decays

Off peak program:

- 1) Run for 3 months at $\sqrt{s} = 1.00$ GeV 225 pb⁻¹ off-peak collected (ended on March 16, 2006):
- ⇒ the ultimate background-free data sample for Radiative Return
- \Rightarrow background-free $\gamma\gamma$ physics program
- 2) ϕ scan with 4 scanning points at $\sqrt{s} = 1.030, 1.023, 1.018, 1.010 \text{ GeV}$ integrated luminosity 10 pb⁻¹ each
- \Rightarrow study the model-dependence in description of $f_0(980)$

Conclusions

1. KLOE experiment has proven that the radiative return analysis is feasible and has its own merits!

- 2. Pion form factor measured with 1.3% total precision, some disagreement with CMD-2 and SND
- 3. Update of small photon angle analysis with 2002 data in progress
- 4. Large angle analysis with tagged photon allows to access threshold region, results expected soon with improved precision of region around ρ peak

 \Box Main limitations due to contributions from $\phi \to \pi^+\pi^-\pi^0$ and $\phi \to f_0(980)\gamma$

 \Rightarrow dedicated DA Φ NE Off-Peak data at $\sqrt{s}=1000$ MeV will allow ultimate precision for $\sigma^{\pi\pi}$ at DA Φ NE

Backup slides

The radiative return

σ^{had} via ISR: a complementary way

While the Energy Scan seems the natural way to measure the σ^{had} , the experience at DA Φ NE and PEP-II has shown that the **Radiative Return via Initial State Radiation** (ISR) has to be considered as a complementary approach

Advantages

Issues

- Data comes as by-product of the standard program of the machine, dedicated runs are not needed
- Overall energy scale $\sqrt{s} = M$ well known and applies to all values of M_{had}
- Systematic errors from L, radiative corrections, etc. enter only once and studies for every point in √s are not needed

- Precise theoretical calculations of the radiator function *H* are required
- Good suppression (or good understanding) of Final State Radiation (FSR) is needed
 - find effective selection cuts
 - test model of scalar QED with data (charge asymmetry)
- High luminosity is needed

DAΦNE statistics

KLOE published result, errors

Statistical error negligible (1.5 Million events)

Acceptance	0.3%	
Trigger	0.3%	
Tracking	0.3%	
Vertex	0.3%	
Offline reconstruction filter	0.6%	
Particle ID	0.1%	
Trackmass cut	0.2%	
Background	0.3%	
Unfolding effects	0.2%	
Total experim. systematics 0.9%		
Luminosity (LA Bhabhas)	0.6%	
Vacuum polarization	0.2%	
L	0.270	
FSR corrections	0.2%	
FSR corrections Radiator function	0.2% 0.3% 0.5%	
FSR corrections Radiator function Total theoretical Error	0.2% 0.3% 0.5% 0.9%	
FSR corrections Radiator function Total theoretical Error TOTAL ERROR KLO	0.2% 0.3% 0.5% 0.9% DE 1.3%	

Comparison among e⁺e⁻ experiments

Backup slides

Muon anomaly comparison Theory - Experiment

KLOE and CMD-2 results used to evaluate the hadronic contribution and therefore the muon anomaly

Muon anomaly comparison Theory - Experiment

$\operatorname{EURIDICE}$ Meeting, Kazimierz

August 27, 2006

S.Eidelman, BINP

p.25/33

Events end up in the wrong $M^2_{\pi\pi}$ bin in the measured spectrum

LO-FSR: events with $M_{\gamma*} = \sqrt{s} = 1020$ MeV contaminate signal region with $M_{\pi\pi}^2 < 0.95$ GeV²

- subtract by means of Monte Carlo (scalar QED)
- small angle selection cuts highly suppress these events
- interference between FSR- and f_0 amplitude in large angle analysis

NLO-FSR: spectrum has to be "reweighted" in order to move events to the correct $M^2_{\pi\pi}$ bin

• reweighting function obtained by Monte Carlo (scalar QED)