Highlights on neutral K decays

Claudio Gatti (KLOE collaboration)

Outline

- Recent experimental inputs for CPT and the unitarity relation:
- 1. $a_{L,S}(+-,00)$

2.
$$a_{L,S}(+-\gamma)$$

- 3. $\mathbf{a}_{\mathrm{L,S}}(\pi \mathbf{l} \mathbf{v})$
- 4. $a_{L,S}(\pi \pi \pi)$
- Results
- Conclusions

QFT + Lorentz Invariance + Locality \Rightarrow **CPT** invariance

Violation from QG $\propto (E/M_{planck})^n \begin{cases} n=1,2,... \\ M_{nlanck} \equiv G_N^{-1/2} \sim 10^{19} \text{ GeV} \end{cases}$ $\mathbf{K}^{0} - \overline{\mathbf{K}}^{0}$ $i\frac{d}{dt}\left|\frac{\mathrm{K}}{\mathrm{K}}\right| = \left[\mathrm{M} - i\,\Gamma/2\right]\left|\frac{\mathrm{K}}{\mathrm{K}}\right|$ **CPT invariance** \Rightarrow $M_{11}=M_{22}$ $\Gamma_{11}=\Gamma_{22}$ $|M_{\rm K} - M_{\rm K}| < 10^{-18} \, GeV$

If n=1 CPT-violating terms exist ... very close to M_K/M_{Planck}

The eigenstates:

$$\begin{aligned} \mathbf{K}_{S} &\geq N_{S} \left[\left| + \right\rangle + \boldsymbol{\varepsilon}_{S} \right| - \right\rangle \\ \mathbf{K}_{L} &\geq N_{L} \left[\left| - \right\rangle + \boldsymbol{\varepsilon}_{L} \right| + \right\rangle \right] \end{aligned} \qquad \boldsymbol{\varepsilon}_{\mathbf{S},\mathbf{L}} \equiv \boldsymbol{\varepsilon} \pm \boldsymbol{\delta} \end{aligned}$$

where:

$$\delta = \frac{i(\mathbf{M}_{\mathrm{K}} - \mathbf{M}_{\overline{\mathrm{K}}}) + \frac{1}{2}(\Gamma_{\mathrm{K}} - \Gamma_{\overline{\mathrm{K}}})}{\Delta\Gamma} \cos \phi_{SW} e^{i\phi_{SW}} \begin{cases} \Delta\Gamma \equiv \Gamma_{\mathrm{S}} - \Gamma_{\mathrm{L}} \\ \Delta\mathbf{M} \equiv \mathbf{M}_{\mathrm{L}} - \mathbf{M}_{\mathrm{S}} \\ \tan(\phi_{\mathrm{SW}}) \equiv 2\Delta\mathbf{M}/\Delta\Gamma \end{cases}$$
$$\frac{1}{M_{\mathrm{K}}} \begin{pmatrix} \mathbf{M}_{\mathrm{K}} - \mathbf{M}_{\overline{\mathrm{K}}} \\ 1/2(\Gamma_{\mathrm{K}} - \Gamma_{\overline{\mathrm{K}}}) \end{pmatrix} = \frac{\Delta\Gamma}{M_{\mathrm{K}}\cos\phi_{SW}} \begin{pmatrix} \cos\phi_{SW} & -\sin\phi_{SW} \\ \sin\phi_{SW} & \cos\phi_{SW} \end{pmatrix} \begin{pmatrix} \Im(\delta) \\ \Im(\delta) \\ \Im(\delta) \end{pmatrix} \approx O(10^{-14}) \begin{pmatrix} \Im(\delta) \\ \Re(\delta) \end{pmatrix}$$

If
$$\Gamma_{\rm K} - \Gamma_{\overline{\rm K}} = 0 \implies \frac{M_{\rm K} - M_{\overline{\rm K}}}{M_{\rm K}} \approx 3 \times 10^{-14} \, \Im(\delta)$$

Beach 2006 Lancaster UK July 2006

The unitarity relation and CPT

$$\Re(\delta) \Longrightarrow \begin{cases} A_{CPT} = \frac{P(\overline{K} \to \overline{K}(t)) - P(K \to K(t))}{P(\overline{K} \to \overline{K}(t)) + P(K \to K(t))} = 4 \,\Re(\delta) \\ A_S - A_L = 4 \,\Re(\delta) + O(\Delta S \neq \Delta Q) \end{cases}$$

 $A_{S,L}$ charge asymmetry in $K_{S,L}$ semileptonic decay

Unitarity relation

$$\Im(\delta) \Longrightarrow \left[\frac{\Gamma_{S} + \Gamma_{L}}{\Gamma_{S} - \Gamma_{L}} + i \tan \phi_{SW}\right] \frac{\Re(\varepsilon) - i\Im(\delta)}{1 + |\varepsilon|^{2}} = \frac{1}{\Gamma_{S} - \Gamma_{L}} \sum_{f} a_{S}^{*}(f) a_{L}(f)$$

 $a_{S,L}(f)$ K_{S,L} decay amplitudes

Beach 2006 Lancaster UK July 2006

Experiments

Beach 2006 Lancaster UK July 2006

Experimental inputs to $Re(\delta)$

CPLEAR fit of time dependent asymmetry A_{δ} with semileptonic decays

$$\frac{\overline{N}^{+}(t) - N^{-}(t)}{\overline{N}^{+}(t) + N^{-}(t)} + \frac{\overline{N}^{-}(t) - N^{+}(t)}{\overline{N}^{-}(t) + N^{+}(t)} = f(\Re(\delta), \Im(\delta)(\Re(x_{-}), \Im(x_{+})))$$

Result improved adding as a constraint:

$$A_{S} - A_{L} = 4 \big[\Re(\delta) + \Re(x_{-}) \big]$$

$$\Re(\delta) = (3.0 \pm 3.3 \pm 0.6) \times 10^{-4}$$

$$\Im(\delta) = (-1.5 \pm 2.3 \pm 0.3) \times 10^{-2} \implies$$

$$\Re(x_{-}) = (0.2 \pm 1.3 \pm 0.3) \times 10^{-2}$$

$$\Im(x_{+}) = (1.2 \pm 2.2 \pm 0.3) \times 10^{-2}$$

 $\Re(\delta) = (3.3 \pm 2.8) \times 10^{-4}$ $\Im(\delta) = (-1.1 \pm 0.7) \times 10^{-2}$ $\Re(x_{-}) = (-0.03 \pm 0.25) \times 10^{-2}$ $\Im(x_{+}) = (0.8 \pm 0.7) \times 10^{-2}$

All correlations are taken into account

C.Gatti

Beach 2006 Lancaster UK July 2006

ΔS≠ΔQ

Experimental inputs to $Im(\delta)$

$$\pi^{+}\pi^{-}, \pi^{0}\pi^{0}, \pi^{+}\pi^{-}\gamma_{DE} \qquad \alpha_{f} = \frac{1}{\Gamma_{s}}a_{s}^{*}(f)a_{L}(f) = \eta_{f}BR(K_{s} \rightarrow f)$$
Inputs for all BR's, ϕ^{+-} , and ϕ^{00}

$$\pi^{+}\pi^{-}\pi^{0}, \pi^{0}\pi^{0}\pi^{0} \qquad \alpha_{f} = \frac{1}{\Gamma_{s}}a_{s}^{*}(f)a_{L}(f) = \frac{\tau_{s}}{\tau_{L}}\eta_{f}^{*}BR(K_{L} \rightarrow f)$$
Inputs for η_{+-0} , K_{L} BR's, and U.L. on BR($K_{s} \rightarrow 3\pi^{0}$) output
$$\pi I \vee \qquad \alpha_{kl3} = 2\frac{\tau_{s}}{\tau_{L}}BR(K_{L} \rightarrow \pi l \nu) \Re(\varepsilon) - \Re(y) + i\Im(\delta) + i\Im(x_{+})$$
Inputs for all BR's and asymmetries
$$A_{\delta} \oplus A_{s} - A_{L}$$

$$\frac{1}{4}(A_{s} + A_{L})$$

$$y \in \mathbb{P}^{T} \text{ in decays}$$

C.Gatti

 $K_{S} \rightarrow \pi^{+}\pi^{-}/K_{S} \rightarrow \pi^{0}\pi^{0}$

KLOE Over 400×10⁶ $\phi \rightarrow K_s K_L$ Pure K_s beam

KLOE
er 400×10⁶
$$\varphi \rightarrow K_S K_L$$

re K_s beam

$$\frac{\Gamma(K_s \rightarrow \pi^+ \pi^-(\gamma))}{\Gamma(K_s \rightarrow \pi^0 \pi^0)} = (2.2549 \pm 0.0054)$$

Combined with KLOE $K_S \rightarrow \pi e \nu$ to get single BR's

 $K_{I} \rightarrow \pi^{+}\pi^{-}(\gamma_{IR})$

KLOE measures the ratio BR($(K_L \rightarrow \pi \pi)/(K_L \rightarrow \pi \mu \nu)$) **Event counting from fit to:** $\sqrt{E_{miss}^2 + p_{miss}^2}$

Combining with $K_L \rightarrow \pi \mu \nu$ BR from KLOE

$$\Gamma(K_L \to \pi^+ \pi^- (\gamma^{IB+DE})) = (1.963 \pm 0.021) \times 10^{-3}$$

Beach 2006 Lancaster UK July 2006

C.Gatti

 $K_{I} \rightarrow \pi^{+}\pi^{-}\gamma_{DE}$

KTeV χ^2_{dof} = 85.8/85Sample $10^5 \pi \pi \gamma$ with E_y>20 MeV hep-ex/0604035 Stronitted to PRL **Contribution from:** Electric amplitude $\propto (p_1 \cdot \epsilon - p_2 \cdot \epsilon)$ Magnetic amplitude $\propto (\epsilon^{ijkl} p_1 p_2 q \epsilon)$ $\frac{d\Gamma}{dE_{\gamma}} \propto \left(\left| E_{BR} + E_{direct} \right|^2 + \left| M_{direct} \right|^2 \right)$ Direct Emission No inteference between E and M when summing over photon helicity Inner $|g_{E1}| \le 0.21 \, (90\% \, CL)$ Bremsstrahlung 0.025 0.050 0.075 0.125 0.150 0 $|\tilde{g}_{M1}| = (1.198 \pm 0.093)$ **Photon Energy (GeV)** $a_1/a_2 = (-0.738 \pm 0.019) \, GeV^2$ Combining with U.L. for K_s DE (E731)

 $\alpha(\pi^+\pi^-\gamma_{DE}) \times 10^3 = (0.000 \pm 0.002) + i(0.000 \pm 0.002)$

C.Gatti

Previous measurement from NA48 (EPJC30) with ~1000 $K_{\rm L}$ (also measured $K_{\rm S}$ decay)

New measurements from KLOE, KTeV and NA48

KLOE BR(Ke3), BR(K μ 3) \Leftarrow we use this for $\alpha(\pi l \nu)$

KTeV BR(Ke3), BR(Kµ3)

NA48 BR(Ke3)

See Antonelli's talk

 $K_s \rightarrow \pi e \nu$

Beach 2006 Lancaster UK July 2006

New measurements from KLOE, KTeV and NA48

KLOE BR($\pi^+\pi^-\pi^0$), BR($3\pi^0$) \Leftarrow we use this for $\alpha(\pi\pi\pi)$

KTeV BR($\pi^+\pi^-\pi^0$), **BR**($3\pi^0$)

NA48 BR($3\pi^0$)

See Antonelli's talk

$$K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0}$$

C.Gatti

 $K_S \rightarrow \pi^0 \pi^0 \pi^0$

CP violating decay BR~10⁻⁹ Before NA48 and KLOE measurements, $\Im(\delta)$ was limited by the poor knowledge of η_{000}

Two different ways for measuring η_{000}

NA48

Measures $K \rightarrow 3\pi^0$ rate as a function of proper time, with $5 \times 10^6 K_{S,L} \rightarrow 3\pi^0$ from 'near target', in normalized to the rate of $10^8 K_L \rightarrow 3\pi^0$ from 'far target'

$$f_{3\pi^0}(t) \propto 1 + \left|\eta_{000}\right|^2 e^{-(\Gamma_S - \Gamma_L)t}$$

$$+2D(p)\left[\Re(\eta_{000})\cos(\Delta mt) - \Im(\eta_{000})\sin(\Delta mt)\right]e^{-\frac{1}{2}(\Gamma_{S}-\Gamma_{L})t}$$
$$\eta_{000} = (-0.002 \pm 0.019) + i(-0.003 \pm 0.021)$$

Beach 2006 Lancaster UK July 2006

Results

C.Gatti

Results

Beach 2006 Lancaster UK July 2006

Results

Beach 2006 Lancaster UK July 2006

Conclusions

The unitarity relation allows us to test CPT symmetry close to the scale M_K/M_{planck} .

We have done a new determination of the CP and CPT parameters combining the results from CPT asymmetries of CPLEAR with the unitatiry relation.

We obtain an accuracy improvement of ~2.5 for both $\Re(\varepsilon)$ and $\Im(\delta)$. The improvement is due both to the measurement of η_{000} and A_S .

The limiting quantities are now:

- $\mathfrak{I}(\mathbf{x}_{+})$ and ϕ_{+-} for $\mathfrak{I}(\delta)$
- η_{+} and η_{00} for $\Re(\epsilon)$

KLOE has analyzed only 1/5 of its data sample (2.5 fb⁻¹). The full sample should allow us to further reduce the uncertainty on these fundamental parameters.