KLOE: Status of Data Taking and Analysis

S. Giovannella (LNF–INFN) on behalf of the KLOE Collaboration

Current data taking

> 2 fb⁻¹ MC production / Offline status

Selected items from analysis in progress

XXXI LNF Scientific Commettee – LNF, 28–30 November 2005

Integrated luminosity (nb⁻¹/day)

Ave. period

 \succ Maximum L/day reached: 8.51 pb⁻¹

Best running conditions from September 05

9/10

8/1

6

10/20 11/29

S. Giovannella - XXXI LNF SC - 28-30 November 2005

2005 data taking

Integrated luminosity (nb⁻¹/day)

- ◆ L/day (pb⁻¹)
- Mean starting from 1st bin

KLOE integrated luminosity

 $L_{int}(2004-2005) \sim 1.9 \text{ fb}^{-1} \dots \text{ The 2 fb}^{-1} \text{ goal is approaching!}$

[97% GOOD, 96% Fully calibrated, 89% Already reconstructed]

MC production for 2 fb⁻¹ analysis

Main improvements for simulation of 2004-2005 data

- Map of 2004 machine and trigger conditions 2005 in progress
- New IR geometry in simulation
- Better parameterizations of EmC response Time, energy resolution; cluster efficiencies
- Improved simulation of nuclear interactions/regeneration in DC wall and beam pipe
- New secondary decay generators

 $K_S \rightarrow \pi^+ \pi^- e^+ e^-; \pi \rightarrow e \nu, \pi \rightarrow e^+ e^-$

- Inserted background from events acquired with random trigger
- Simulation of *dE/dx* measurement in DC

MC production plans

Averaged over entire MC sample: 0.21M evts/B80 day = 2.4 Hz 0.41 s/evt (simulation + reconstruction + DST)

2001-2002 MC production

```
\phi \rightarrow all, scale = 0.2

K_S K_L, scale = 1

K^+ K^-, scale = 1

\phi radiative, scale = 5

Other (1M evts/pb<sup>-1</sup>)
```

Total: 3.1M evts/pb⁻¹

(about same as number of ϕ decays in data)

Estimated time for 2004-2005 MC

2001-2002	2004-2005
450 pb ⁻¹	2000 pb ⁻¹
1.85G evts	8.25G evts
8800 B80 days	39000 B80 days

2004-2005 MC production ($\phi \rightarrow$ all, scale = 0.2) starting now

Offline resources: CPU

2006 offline projects	Time needed (B80 days)
Online reconstruction of 2006 data	3000
Reprocessing of 2004 data	16000
MC production for 2004-2005 data	39000
Other tasks	5000
Total	63000

Current offline farm:

200 B80 CPUs (60 typically reserved for analysis) Offline work completed in 450 days (15 months) on 140 B80s

Expansion plans:

Ordering 3 16-way 1.5 GHz Power5 servers Will add 200 B80 to offline farm \rightarrow work completed in 6 months

Tape library usage (TB)

2006 estimate includes:

- Closing of holes in datarec/DST coverage
- Off-peak running in 2006
- MC for '04-'05 data

Library capacity:

- Currently 600 TB
 - Expandable to **1400 TB** (1000/3600 slots in use in new library)

Order ready for 400 new cassettes (120 TB)

DSTs cached on nfs-mounted disks for fast analysis access

DST volumeCurrent200633 TB data40 TB data10 TB MC41 TB MC43 TB total81 TB total

Current DST cache capacity: **13 TB** Purchase of 21 TB + new controller approved Will request additional disk space (~30 TB) next year

Status of 2005 papers on kaons

	Last SC	Today
BR of major K _L decays	Preliminary measurements	Accepted by PLB
K _L lifetime	Preliminary measurement	PLB 626 (2005) 15-23
$\mathbf{K}_{\mathbf{L}}$ form factors		Draft in writing
$K^{}_L \to \pi^+ \pi^-$		In progress
$K_S \rightarrow \pi^0 \pi^0 \pi^0$	Submitted to Phys. Lett.	PLB 619 (2005) 61-70
${\rm K}_{\rm S}$ $ ightarrow$ $\pi^+\pi^-(\gamma)$ / ${\rm K}_{\rm S}$ $ ightarrow$ $\pi^0\pi^0$	Update with '01-'02 data	PLB draft in writing
$K_S \rightarrow \pi e \nu$	Update with '01-'02 data	PLB draft ready
$K_S \rightarrow \pi^+ \pi^- \pi^0$	In progress (also 2004 data)	
Q.M. interference	Preliminary results	
$K^{\pm} \rightarrow \mu \nu$	Preliminary measurement	Accepted by PLB
$K^{\pm} \rightarrow \pi \ \mu \ \nu, \ K^{\pm} \rightarrow \pi \ e \ \nu$	In progress	Preliminary measurement
K± lifetime	In progress	

K[±]_{ℓ3} : tag selection

- ✓ Track from IP, momentum cut: 70 MeV≤ $p_K \le 130$ MeV
- ✓ Decay vertex in fiducial volume: $40cm \le \rho_{VTX} \le 150 cm$
- \checkmark Secondary track extrapolated to EMC
- ✓ 2-body decays identified by 3σ cut in p*
- ✓ For $K_{\pi 2}$ tags, require also π^0 identification
- ✓ To reduce the dependency of "tagging" on the decay mode of the other kaon, the tag has to satisfy the trigger _____

350 pb⁻¹ from 2001-2002 data

Tag	K ⁺ _{µ2}	$K^{+}_{\pi 2}$	K ⁻ _{µ2}	K ⁻ _{π2}
N _{TAG}	21 699 562	8 466 737	22 655 426	8 233 472

$K^{\pm}_{\ell 3}$: signal selection

- ✓ 1-prong kaon decay vertex in the fiducial volume: 40cm ≤ ρ_{VTX} ≤ 150 cm
- \checkmark Secondary track extrapolated to EMC
- ✓ Rejection of two-body decays: $p*(m_{\pi}) \le 195 \text{ MeV}$
- ✓ π^0 search: 2 neutral clusters in EMC, with ToF matching the K decay vertex $(\delta(\delta t) < 3\sigma_t)$
- ✓ Spectrum of charged daughter mass, m²_{lept}, from TOF measurement imposing

$$t^{\text{decay}}_{K} = t_{\text{lept}} - L_{\text{lept}} / (\beta_{\text{lept}} c) = \langle t_{\gamma} - L_{\gamma} / c \rangle$$

 ✓ Kinematical cuts to reject non-semileptonic decays

The residual background is about $\sim 1.5\%$ of the selected $K^{\pm}_{\ l3}$ sample

$K^{\pm}_{\ell 3}$: event counting

✓ Fit m_{lept}^2 spectrum with a linear combination of K_{e3} and $K_{\mu3}$ shapes + background contribution

✓ Selected signal events in 2001/2002 data set

Tag	$K^{+}_{\mu 2}$	$K^{+}_{\pi 2}$	$K^{-}_{\mu 2}$	$K^{-}_{\pi 2}$
N _{Ke3}	62 781(321)	24 914(208)	66 657(334)	24 225(204)
$N_{K\mu3}$	37 461(264)	14 827(170)	39 988(277)	14 608(168)

$BR(K_{e3})$	$(5.047 \pm 0.046 \pm 0.080)\%$	ary
$BR(K_{\mu 3})$	$(3.310 \pm 0.040 \pm 0.070)\%$	preliminar
C (K	OEP

***** Systematic error still preliminary

- Error currently dominated by the knowledge of selection efficiency
- * Fractional accuracy (first error only) of 0.9% for K_{e3} , 1.2% for $K_{\mu3}$

$\tau_{K^{\pm}}$: present situation

2 PolykLos

- V_{us} experimental input
 0.2% fractional accuracy; 0.1% for V_{us}
- Affects BR measurements due to geometrical acceptance
- * τ_{\pm} PDG entries: discrepancies between in-flight and at-rest measurements and between different stoppers
- New high statistics τ_± measurement almost complete at KLOE, now under the review of the collaboration
- Two different methods to measure τ_{\pm} : • K decay length
 - ✓ K decay time
 - \Rightarrow cross checks on systematics

$\tau_{\mathbf{K}^{\pm}}$ measurement @ KLOE

* Self-triggering $K_{\mu\nu}$ tag

- ✤ K track on the signal side
- ✤ Decay vertex in FV

 Signal K extrapolated to the IP: dE/dx correction applied along the path

$$t_{K} = \sum \frac{L_{i}}{\beta_{i}} \sqrt{1 - \beta_{i}^{2}}$$

$$L_{i} = \text{step length}$$

- Tracking efficiency and resolution measured on data by means of neutral vertex identification
- Fit to the t_K distribution

***** 0.2% fractional error

- * Use only $K_{\pi 2}$ decays
- ★ Use tag information to estimate the t_0 of the $\phi \rightarrow K^+K^-$ decay
- ***** Identify the clusters belonging to π^0
- Measure the kaon decay time through the photon arrival time

$$t_{\mathrm{K}} = \left(\mathbf{t}_{\gamma} - \frac{\mathbf{r}_{\gamma}}{\mathbf{c}} - \mathbf{t}_{0} \right) \boldsymbol{\gamma}_{\mathrm{K}}$$

***** 0.5% fractional error

K_{Le3} form-factor slopes

Form-factor slopes for $K \rightarrow \pi l \nu$ decays needed for extraction of V_{us} (evaluation of phase-space integrals)

Parametrization:

$$t = (p_{K} - p_{\pi})^{2} / m_{\pi^{+}}^{2}$$

For K_{e3} : $f_{+}(t) = f_{+}(0) [1 + \lambda_{+}t]$ or
 $f_{+}(0) [1 + \lambda'_{+}t + \frac{1}{2}\lambda''_{+}t^{2}]$

KLOE results for $K_L \rightarrow \pi e \nu$ decays:

- 328 pb⁻¹ of '01 + '02 data
- K_L decays tagged by $K_S \rightarrow \pi^+\pi^-$ satisfying trigger ($\epsilon \sim 30\%$)
- Two tracks in fiducial volume forming vertex
- Kinematic cuts + TOF PID to reduce background ($\sim 0.7\%$ final contamination)
- Separate measurement for each charge state $(e^+\pi^-, \pi^+e^-)$ to check systematics

S. Giovannella - XXXI LNF SC - 28-30 November 2005

Fits for K_{Le3} form-factor slopes

S. Giovannella - XXXI LNF SC - 28-30 November 2005

K_{Le3} form-factor slopes

328 pb⁻¹ '01 + '02 data , $2 \times 10^6 K_{e3}$ decays

Linear fit:

	$\lambda_+ \times 10^{-3}$	χ^2/dof
$e^+\pi^-$	28.7 ± 0.7	156/181
π^+e^-	28.5 ± 0.6	174/181
All	28.6 ± 0.5	330/363

 $\lambda_{+} = (28.6 \pm 0.5 \pm 0.4) \times 10^{-3}$

Quadratic fit:

 $\begin{array}{ccccccccc} & \lambda'_{+} \times 10^{-3} & \lambda''_{+} \times 10^{-3} & \chi^{2} / \mathrm{dof} \\ e^{+} \pi^{-} & 24.6 \pm 2.1 & 1.9 \pm 1.0 & 152 / 180 \\ \pi^{+} e^{-} & 26.4 \pm 2.1 & 1.0 \pm 1.0 & 173 / 180 \\ \mathrm{All} & 25.5 \pm 1.5 & 1.4 \pm 0.7 & 325 / 362 \\ \lambda'_{+} = (\mathbf{25.5} \pm \mathbf{1.5} \pm \mathbf{1.6}) \times \mathbf{10^{-3}} \\ \lambda''_{+} = (\mathbf{1.4} \pm \mathbf{0.7} \pm \mathbf{0.3}) \times \mathbf{10^{-3}} \\ \rho(\lambda'_{+}, \lambda''_{+}) = -0.95 \end{array}$

(*) ISTRA+ corrected

BR(K_L $\rightarrow \pi^+\pi^-$)

Signal and $K_{\mu3}$ background counting from fit to different distributions

BR measurement + extraction of ϵ , δ from Bell-Steinberger relation completed... Now under the review of the collaboration

$\Gamma(\mathbf{K}_{\mathbf{S}} \rightarrow \pi^{+}\pi^{-}(\gamma))/\Gamma(\mathbf{K}_{\mathbf{S}} \rightarrow \pi^{0}\pi^{0})$

Interest in $K_S \rightarrow \pi\pi$ branching ratios:

- $R_{\pi\pi}$ fixes BR($K_S \rightarrow \pi^+ \pi^-(\gamma)$), used to normalize BR($K_S \rightarrow \pi e\nu$)
- Opportunity to push systematics for high-precision KLOE measurements
- First part of double ratio for Re ε'/ε
- Provides information on EM isospin breaking in $K \rightarrow \pi\pi$ decays
- Can extract $\delta_0 \delta_2$ if effective E_{γ} cutoff known for $\pi\pi\gamma$ channel

KLOE '02 (17 pb⁻¹ '00 data) **2.236 \pm 0.015**

Repeat analysis with various improvements:

- New simulation of machine background in MC Reproduces effects *e.g.* on selection efficiency on a run-by-run basis
- Improved K_L -crash simulation Leads to optimized choice of K_L -crash energy cut: $100 \rightarrow 300$ MeV
- Higher statistics allow stability of result to be studied

 $\rightarrow \pi^+\pi^-(\gamma))/\Gamma(\mathbf{K}_{\mathbf{S}}\rightarrow\pi^0\pi^0)$

BOLY KLOE

KLOE '02 (17 pb⁻¹ '00 data) KLOE '05 (410 pb⁻¹ '01 +'02 data)

2.236
$$\pm 0.006_{stat} \pm 0.007_{statsyst} \pm 0.013_{syst}$$

2.2555 $\pm 0.0014_{stat} \pm 0.0020_{statsyst} \pm 0.0052_{syst}$

S. Giovannella - XXXI LNF SC - 28-30 November 2005

Fractional error on $R_{\pi\pi}$			
Source	Error (%)		
Event counting	0.060		
Stat corrections	0.089		
$\pi^+\pi^-$ acceptance	0.169		
$\pi^0\pi^0$ acceptance	0.080		
Trigger	0.067		
Tag	0.051		
Background	0.010		
FILFO	0.074		
Total error	0.250		

Semileptonic K_S decays

Sensitivity to CPT violation through the charge asymmetry:

$$A^{l}_{S,L} = \frac{\Gamma(K_{S,L} \to \pi^{-}l^{+}\nu) - \Gamma(K_{S,L} \to \pi^{+}l^{-}\bar{\nu})}{\Gamma(K_{S,L} \to \pi^{-}l^{+}\nu) + \Gamma(K_{S,L} \to \pi^{+}l^{-}\bar{\nu})}$$

 $A_S \neq A_L$ signals *CPT* violation in mixing and/or in $\Delta S \neq \Delta Q$ decay amplitudes

Sensitivity to *CP* violation in K^0 - \overline{K}^0 mixing: $A_S = 2 \text{ Re } \varepsilon$, assuming *CPT* symmetry

A_S has never been measured!

 $\Gamma(K_S \rightarrow \pi l\nu)$ provides test of $\Delta S = \Delta Q$ rule: $\Gamma_S(\pi l\nu)/\Gamma_L(\pi l\nu) = 1 + 4 \text{ Re } x$

Can obtain $|V_{us}|$ from measurements of $\Gamma(K_S \rightarrow \pi l \nu)$

Analysis of $K_S \rightarrow \pi e \nu$ decays

Event selection:

- K_S tagged by K_L crash
- Two tracks from IP to EmC
- Kinematic cuts to reject background from $K_S \rightarrow \pi\pi$
- Track-cluster association required

e/π ID from TOF

Identifies charge of final state

Obtain number of signal events from a constrained likelihood fit of multiple data distributions

Normalize using
$$K_S \rightarrow \pi^+\pi^-(\gamma)$$

events in same data set

$K_S \rightarrow \pi e \nu$: signal extraction

Fit distributions of 5 variables in data with various MC sources

Close kinematics: $E_{\text{miss}}(\pi e) - p_{\text{miss}} = 0$ MC includes $\pi e \nu \gamma$ and $\pi \pi \gamma$ processes $\delta_{PCA} = PCA_1 - PCA_2$ eliminates $\pi \rightarrow \mu$ kinks and badly reconstructed tracks

Branching ratios: 410 pb⁻¹ '01 + '02 data

 $BR(\pi^{-}e^{+}\nu) = (3.529 \pm 0.057 \pm 0.027) \times 10^{-4}$ $BR(\pi^{+}e^{-}\bar{\nu}) = (3.518 \pm 0.051 \pm 0.029) \times 10^{-4}$ $BR(\pi e\nu) = (7.048 \pm 0.076 \pm 0.050) \times 10^{-4}$

BR($\pi e\nu$) [KLOE '02, 17 pb⁻¹]: (6.91 ± 0.34 ± 0.15) × 10⁻⁴

Charge asymmetry:

$$A_S = (1.5 \pm 9.6 \pm 2.9) \times 10^{-3}$$

With 2.5 fb⁻¹: $\delta A_S \sim 3 \times 10^{-3} \sim 2 \text{ Re } \varepsilon$

Linear FF slope:

$$\lambda_{+} = (33.8 \pm 4.1) \times 10^{-3}$$

In good agreement with linear fit from K_L semileptonic form factor [(28.6 ± 0.6) \times 10^{-3}]

Test of $\Delta S = \Delta Q$ rule:

 $\Re(x_+) = (0.4 \pm 3.1 \pm 1.8) \times 10^{-3}$

Factor 2 improvement w.r.t. current most precise measurement

$\tau(K_S)$	PDG
$\tau(K_L) \\ BR(K_L \to \pi e \nu)$	PDG + KLOE '05 (avg.)

Test of CPT:

$$\Re(x_{-}) = (-0.2 \pm 2.4 \pm 0.7) \times 10^{-3}$$

Factor 5 improvement w.r.t. current most precise measurement

$$A_L$$
KTeV $\Re(\delta)$ CPLEAR

Expect from unitarity $V_{us} f_{+}(0) = 0.2181 \pm 0.0022$ $V_{ud} = 0.9739 \pm 0.0003$ Marciano, CKM '05 Hardy & Towner '04 (SFT) $f_{+}(0) = 0.961 \pm 0.008$ Leutwyler & Roos

		$K_L e3$	$K_L \mu 3$	K _s e3	K±e3	<i>K</i> ±μ3
BRs from	BR	0.4007	0.2698	0.00709	0.0505	0.0331
KLUE	δBR	0.0015	0.0015	0.00009	0.0004	0.0005

K_L lifetime from KLOE

$$\tau_L = (50.84 \pm 0.23)$$
 ns
Avg. of direct, Σ BR = 1
determinations

Quadratic form-factor parameterizations:

$$\begin{aligned} \lambda'_{+} &= 0.0221 \pm 0.0011 \\ \lambda''_{+} &= 0.0023 \pm 0.0004 \\ \lambda_{0} &= 0.0154 \pm 0.0008 \end{aligned} \right]$$

V_{us}: summary of recent measurements

Thanks to F. Mescia (see hep-ph/0411097)

The V_{us}–V_{ud} plane

Status of 2005 papers on \$\$\$ decays

	Last SC	Today
$\phi \rightarrow a_0(980) \gamma \rightarrow \eta \pi^0 \gamma$	Update in progress	
$\phi \rightarrow f_0(980) \gamma \rightarrow \pi^0 \pi^0 \gamma$	Update in progress	Int. documentation in writing
$\phi \rightarrow f_0(980) \gamma \rightarrow \pi^+\pi^- \gamma$	Update in progress	Submitted to PLB
$\phi \rightarrow \eta' \ \gamma \ / \ \phi \rightarrow \eta \ \gamma$	Preliminary measurement	
$\eta \to \pi^0 \gamma \gamma$	Preliminary measurement	
Dalitz plot $\eta \to \pi^+ \pi^- \pi^0$	Preliminary measurement	Int. documentation ready
Dalitz plot $\eta \rightarrow \pi^0 \pi^0 \pi^0$	Preliminary measurement	Int. documentation in writing
Upper limit BR($\eta \rightarrow \pi^{+}\pi^{-}$)	PLB 606 (2005) 276	
η mass measurement		Preliminary measurement
$\phi \rightarrow \omega \pi^0 \rightarrow \pi^+ \pi^- \pi^0 \pi^0$	In progress	Waiting for scan data
ϕ leptonic widths	PLB 608 (2005) 199-205	
Hadronic cross section	PLB 606 (2005) 12-24	Update in progress + LA analysis

Status of η mass measurement

M_n measurement @ KLOE

- ***** Kinematic fit applied on $\phi \rightarrow \gamma \gamma \gamma$ events
- * η and π^0 selected by looking at different Dalitz plot regions

S. Giovannella - XXXI LNF SC - 28-30 November 2005

, measurement (a) KLOE **KLOE preliminary** Data set divided in 8 periods 547.95 M_n (MeV) 547.90 135.1 M_{π} (MeV) 135 547.85 134.9 547.80 $M(\pi^{0}) = (134990 \pm 6_{stat} \pm 30_{syst}) \text{ keV}$ 547.75 $M(\pi^0)_{PDG} = (134976.6 \pm 0.6) \text{ keV}$ 547.70 Run period $M(\eta) = (547822 \pm 5_{stat} \pm 69_{syst}) \text{ keV}$

> Syst just from \sqrt{s} and vertex position – EMC linearity in progress

 \succ NA48 compatibility: 0.24 σ

> New measurement in progress using $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay

Light scalar mesons @ KLOE

- ★ $f_0(980)$ and $a_0(980)$ produced @ KLOE through $\phi \rightarrow S\gamma$
- $f_0(980)$ and $a_0(980)$ scalar mesons not easily interpreted as $q\overline{q}$ states
- ✤ Other interpretations suggested:
 - \Rightarrow **qqqq states** [*Jaffe 1977*]
 - \Rightarrow **K** $\overline{\mathbf{K}}$ **molecule** [Weinstein, Isgur 1990]

Both $BR(\phi \rightarrow S\gamma)$ and scalar mass spectra are sensitive to their nature [*Achasov, Ivanchenko 1989*] We use two models:

1) Kaon Loop

[Achasov-Ivanchenko, NPB315 (1989) 465]

2) "No Structure"

[Isidori-Maiani, private comunication]

$\pi^0\pi^0\gamma$ final state: VMD vs scalar

~ 400k events

450 pb⁻¹ from 2001 – **2002 data taking I** Two main contributions to $\pi^0\pi^0\gamma$ final state (*a*) M_{ϕ} :

Differently from the past, we will not subtract the VMD contribution... WE FIT IT

$\pi^0\pi^0\gamma$ final state: Dalitz fit results

p₂₍₁₎

γ

p₁₍₂₎

VMD diagrams

 $\phi/\omega/\omega$

p₂₍₁₎ *e*

ω

p₁₍₂₎

ρ/ρ'/ρ

Dalitz plot projections:

S. Giovannella - XXXI LNF SC - 28-30 November 2005

K loop fit results: $f_0(980) + \sigma(600)$

Data-MC comparison in Dalitz slices

S. Giovannella - XXXI LNF SC - 28-30 November 2005

photon at large angle $(45^{\circ} < 9_{\gamma} < 135^{\circ})$

Main contributions:

• $e^+e^- \rightarrow \pi^+\pi^-\gamma$ events with the

- > ISR (radiative return to ρ , ω)
- > FSR
- Search for the f_0 signal as a deviation on M ($\pi^+\pi^-$) spectrum from the expected ISR + FSR shape
- **♦ 676,000 events selected** (2001+2002)
- ***** Expected interference pattern of $\sigma_{vis} vs \sqrt{s}$ in the signal region $M_{\pi\pi} \in [900 \div 1000 \text{ MeV}]$

In both models R>1

> The introduction of $\sigma(600)$ does not improve the fit

$\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ from $\pi^+\pi^-\gamma$ events

KLOE has shown, for the first time, that is possible to measure $\sigma(e^+e^- \rightarrow \pi^+\pi^-\gamma)$ at fixed \sqrt{s} with high accuracy:

$$(s' = s - 2 E_{\gamma} \sqrt{s})$$

Exploit ISR to extract $\sigma(e^+e^- \rightarrow \pi^+\pi^-)$ for $\sqrt{s'}$ from $2m_{\pi} \rightarrow \sqrt{s}$

 \Box Luminosity from $e^+e^-(\gamma)$ counts, $55^\circ < \theta_e < 125^\circ$, σ at 0.5% (th) 0.3%(exp)

\BoxRadiator function **H**(**M**_{$\pi\pi$}²), defined as:

$$M_{\pi\pi^{2}} \frac{d\sigma(\pi\pi\gamma, M_{\pi\pi^{2}})}{dM_{\pi\pi^{2}}} = H(M_{\pi\pi^{2}}) \sigma(\pi\pi, M_{\pi\pi^{2}}),$$

with inclusion of radiative effects, from QED MC calculation (PHOKHARA, Karlsuhe Theory Group, Kühn et al.)

S. Giovannella - XXXI LNF SC - 28-30 November 2005

Two data samples for $\pi^+\pi^-\gamma$ **events**

Photons at small angles ($\theta_v < 15^\circ$ or $\theta_v > 165^\circ$)

→ Photon NOT DETECTED

- ✓ High Statistics for **ISR** Photons
- ✓ Low relative contribution of **FSR** <0.5% in entire $M_{\pi\pi}$ range
- \checkmark Small amount of other background

Photons at large angle $(50^{\circ} < \theta_{\gamma} < 130^{\circ})$

- → Photon detection required
- \checkmark High amount of **FSR** and background
- \checkmark Allows measurement at threshold
- ✓ Allows measurement of charge asymmetry → Test of FSR

S. Giovannella - XXXI LNF SC - 28-30 November 2005

Prospects for small angle analysis

Analysis of the new data (2 fb⁻¹): take advantage of larger statistics! Change strategy \longrightarrow normalizing to $\mu^+\mu^-\gamma$

$$\sigma_{\pi\pi}^{Born}(s') \approx \frac{d\sigma_{\pi\pi\gamma}^{obs}/ds'}{d\sigma_{\mu\mu\gamma}^{obs}/ds'} \sigma_{\mu\mu}^{Born}(s')$$

Differently from the old analysis statistics is an issue, due to the small µµy cross section in some S bins

Many systematics cancel out on the theory side:

Luminosity, VP, radiator or reduce to small corrections on the

experimental side

tracking, vtx efficiencies

and trigger veto

Improvements also on Filter/ECL strategies

Small angle analysis: $\pi^+\pi^-\gamma$ vs $\mu^+\mu^-\gamma$

Program for off-peak runs

✓ <u>¢ scan</u>

4 points of 10 pb⁻¹ in the 1010-1030 MeV region

- Calibration of KLOE energy scale, line shape
- Studying the model dependence of the f₀
- BR($\phi \rightarrow \omega \pi^0$), ϕ leptonic widths, ...

✓ <u>Off-peak data</u>

200 pb⁻¹ at 1000 MeV c.m. energy

- Measurement of the $\sigma(\pi^+\pi^-\gamma)$ down to threshold
- Two-photon physics with KLOE: $e^+e^- \rightarrow e^+e^-(\gamma\gamma \rightarrow \eta,\sigma)$

Conclusions

- The analyses of 2001-2002 data are at a mature stage 8 PLBs published/submitted + 4 in pipeline... hope to break the wall of 10 PLB/year!
- * We have (almost) reached the goal of 2 fb⁻¹ for 2004-2005 data taking at M_{ϕ}
- ***** Off-peak data taking and energy scan will follow
- These two new data sets will allow to extend our physics program
- We are preparing our MC/OFFLINE tools for the analysis of new data