XCII Congresso della Società Italiana di Fisica

Caterina Bloise Torino, 20 settembre 2006

The KLOE experiment at $Da\phi ne$

Kaon physics

Bell-Steinberger relation : $K_S \rightarrow \pi e v$, $K_s \rightarrow \pi \pi$, $K_s \rightarrow \pi^0 \pi^0 \pi^0$, and $K_L \rightarrow \pi^+ \pi^ V_{us}$ extraction : K_L , K^{\pm} BRs, lifetimes and semileptonic form factor slopes

Hadron physics

Light scalar study: $f_0(980)$ η - η' mixing : BR($\phi \rightarrow \eta ' \gamma$) / BR($\phi \rightarrow \eta \gamma$)

Outlook

Physics with KLOE at Daone

Precision measurements in the kaon and eta-meson sector, of the hadronic cross section via radiative return of the light scalars f_0 and a_0

Exploiting the kinematic constraints on the events the low-background levels

at the ϕ -factory

Thanks to the experimental setup

Good tracking resolution Excellent hermeticity and time resolution of the calorimeters Excellent stability of the detector performance Open trigger

Physics at the ϕ factory

 $\phi \text{ production - Visible cross section 3.1 } \mu b \rightarrow 3 \, 10^6 \, \phi \, / \, \text{pb}^{-1}$ $\stackrel{e^+}{\stackrel{\Phi^-}{\stackrel{\Phi^-}{\stackrel{\Phi^-}{\stackrel{K^+}{\stackrel{K_s}{\stackrel{K_s}{\stackrel{\Gamma}{\stackrel{\pi^0}{\stackrel{\pi^0}{\stackrel{\dots}{\stackrel{\pi^0}{\stackrel{1}1}{10}1}\stackrel{1^1}$

Almost monochromatic kaons, η , η' Particle momenta and primary vertex position precisely measured by Bhabhascattering events Reconstruction of one kaon tags the other providing P Monochromatic γ 's tag η / η' events

Achievements limited by statistics - 2.6 10⁹ Kaons per fb⁻¹ 4 10⁷ η and 1.9 10⁵ η ' per fb⁻¹

Open trigger provides a variety of control samples for optimizing systematics thus also limited by statistics

KLOE integrated luminosity at the ϕ peak

- 2001-2005 L_{int} = 2482 pb⁻¹
- 2004-2005 L_{int} = 1990 pb⁻¹
- Best conditions: Sept/Oct/Nov 2005 ⇒ 179/189/194 pb⁻¹

stable luminosity, beam energy and backgrounds

• Dec 5th end of run at 1020 MeV, start off peak run

Off-peak data taking

	Data ac	quisitio	n Dec 5 -	Mar 16	, 2006	
√s	(MeV)	1023.	1030.	1018.	1010.	1000.
L	_{nt} (pb ⁻¹)	10.4	11.4	10.2	11.0	233.5

• 4 points (10 pb⁻¹) in the 1010-1030 MeV region:

- Calibration of KLOE energy scale, line shape
- Model dependence of the f_0 production vs \sqrt{s}
- $\sigma(e^+e^- \rightarrow \omega \pi^0)$, ϕ leptonic widths
- 200 pb⁻¹ at $\sqrt{s} = 1000$ MeV:
 - Measurement of the $\sigma(\pi^+\pi^-\gamma)$ down to $2m_{\pi}$
 - Two-photon physics with KLOE: $\gamma\gamma \rightarrow \eta$, $\pi\pi$

Kaon Physics: results from 2001-2002 data

$K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$	Quantum Interference	Submitted to PLB	
$K_S \rightarrow \pi^0 \pi^0 \pi^0$	UL on BR at 10 ⁻⁷	PLB 619 (2005) 61	PDG06
$K_S \rightarrow \pi e \nu$	BR to 1.3%, form factor slope, charge asymmetry	PLB 636 (2006) 173	PDG06
$K_S \rightarrow \pi^+\pi^-, \pi^0\pi^0$	$\Gamma(\pi^{+}\pi^{-})/\Gamma(\pi^{0}\pi^{0})$ to ~0.25%	Accepted by EPJC	PDG06
$K_L \rightarrow \pi l \nu, \pi \pi \pi$	Absolute BR's to $\sim 0.5\%$	PLB 632 (2006) 43	PDG06
	KL lifetime from Σ(BR)=1		
K _L lifetime	from $K_L \rightarrow \pi^0 \pi^0 \pi^0$ to ~ 0.5%	PLB 626 (2005) 15	PDG06
$K_L \rightarrow \pi e \nu$	Form factor slopes	PLB 636 (2006) 166	PDG06
$K_L \rightarrow \pi e \nu \gamma$	BR to $\sim 2 \%$	Preliminary	
$K_L \rightarrow \pi^+ \pi^-$	BR to 1.1%	PLB 638 (2006) 140	PDG06
$K_L \rightarrow \gamma \gamma$	$\Gamma(\gamma \gamma)/\Gamma(\pi^0 \pi^0 \pi^0)$ to 1.1%	PLB 566 (2003) 61	
$K^+ \rightarrow \pi^+ \pi^0 \pi^0$	BR to 1.4%	PLB 597 (2004) 139	
$K^{+}\!\!\rightarrow\mu^{+}\!\nu$	Absolute BR to $\sim 0.27\%$	PLB 632 (2006) 76	PDG06
$K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$	Absolute BR's to $\sim 1.5\%$	Preliminary	
K [±] lifetime	two independent measurements	Preliminary	

$$K_{\underline{S}} \rightarrow \pi ev$$
 : CPT test

1) Re *x*_: CPT viol. and $\Delta S \neq \Delta Q$

 $A_s - A_L = 4 (Re x_- + Re \delta)$

$$A_L$$
KTeV $\sigma=0.75\times10^{-4}$ Re δ CPLEAR $\sigma=3.4\times10^{-4}$

Re
$$x_{-} = (-0.8 \pm 2.5) \ 10^{-3}$$

Factor 5 improvement w.r.t. current most precise measurement (CPLEAR, $\sigma = 1.3 \times 10^{-2}$)

2) Re y: CPT viol. and $\Delta S = \Delta Q$

 $A_{\rm S} + A_{\rm L} = 4$ (Re ε – Re y)

Re
$$y = (0.4 \pm 2.5) \ 10^{-3}$$

Comparable with best result (CPLEAR from unitarity, $\sigma = 3.1 \times 10^{-3}$)

 $\underline{\Gamma(\mathsf{K}_{\mathsf{S}} \to \pi^{+}\pi^{-}(\gamma))}/ \Gamma(\mathsf{K}_{\mathsf{S}} \to \pi^{0}\pi^{0})$

Statistics allow 17 independent measurements, each to few per mil accuracy

 $2.2555 \pm 0.0012_{\text{stat}} \pm 0.0021_{\text{syst-stat}} \pm 0.0050_{\text{syst}}$

 $\sim 2.5 \times 10^{-3} accuracy$

 $\times 3 \text{ improvement on respect to KLOE 2002}$ $(2.236 \pm 0.003_{\text{stat}} \pm 0.007_{\text{statsyst}} \pm 0.013_{\text{syst}})$

KLOE average:

 2.2549 ± 0.0054

<u> $K_{S} \rightarrow \pi^{0}\pi^{0}\pi^{0}$: direct search</u>

Observation of K_S \rightarrow $3\pi^{0}$ signals CP violation in mixing and/or in decay: SM prediction: $\Gamma_{\rm S} = \Gamma_{\rm L} / \varepsilon + \varepsilon'_{000} /^{2}$, $=> {\rm BR}({\rm K}_{\rm S} \rightarrow 3\pi^{0}) \sim 2 \times 10^{-9}$ Previous results: ${\rm BR}({\rm K}_{\rm S} \rightarrow 3\pi^{0}) < 1.4 \times 10^{-5}$ (direct search, SND, '99) ${\rm BR}({\rm K}_{\rm S} \rightarrow 3\pi^{0}) < 7.4 \times 10^{-7}$ (interference, NA48, '04)

PLB 619 (2005) 61

Latest results: BR(K_L $\rightarrow \pi^+\pi^-$)

Kinematics for signal separation $K_L \rightarrow \pi \mu \nu$ events in the same sample for K_L counting

BR = $(1.963 \pm 0.012 \pm 0.017) \times 10^{-3}$

PLB 638 (2006) 140

$$\sigma_{\rm rel}: 1.1\% = 0.6\%_{\rm stat} \oplus 0.9\%_{\rm syst}$$

- in agreement with KTeV 2004 BR = $(1.975 \pm 0.012) \times 10^{-3}$
- it confirms the $4-\sigma$ discrepancy with old measurements $(2.080 \pm 0.025) \times 10^{-3}$
- we get:

 $|\eta_{+-}| = (2.216 \pm 0.013) \times 10^{-3}$ [BR(K_S $\rightarrow \pi\pi$) and τ_L from KLOE, τ_S from PDG04]

CPT test: the Bell-Steinberger relation

Measurements of $K_S K_L$ observables can be used for the CPT test from unitarity :

$$(1 + i \tan \phi_{SW}) [\operatorname{Re} \varepsilon - i \operatorname{Im} \delta] = \frac{1}{\Gamma_S} \sum_f A^*(K_S \to f) A(K_L \to f) = \sum_f \alpha_f$$

Semileptonic decays:

 $\alpha_{kl3} = 2\tau_S / \tau_L B(K_L l3) [\text{Re } \varepsilon - \text{Re } y - i(\text{Im } \delta + \text{Im } x_+)]$ = $2\tau_S / \tau_L B(K_L l3) [(\mathbf{A}_S + \mathbf{A}_L) / 4 - i(\text{Im } \delta + \text{Im } x_+)]$ <u> $\pi\pi decays:$ </u> <u> $\pi\pi\pi decays:</u>$ </u>

 $\alpha_{+-} = \eta_{+-} B(K_{S} \to \pi^{+} \pi^{-})$ $\alpha_{+-0} = \tau_{S} / \tau_{L} \eta_{+-0}^{*} B(K_{L} \to \pi^{+} \pi^{-} \pi^{0})$ $\alpha_{000} = \eta_{00} B(K_{S} \to \pi^{0} \pi^{0})$ $\alpha_{000} = \tau_{S} / \tau_{L} \eta_{000}^{*} B(K_{L} \to \pi^{0} \pi^{0} \pi^{0})$ $\alpha_{+-\gamma} = \eta_{+-} B(K_{S} \to \pi^{+} \pi^{-} \gamma)$

Torino, September 20, 2006

CPT test: inputs to B-S

$$\begin{split} & B(K_{S} \rightarrow \pi^{+}\pi^{-})/B(K_{S} \rightarrow \pi^{0}\pi^{0}) = 2.2549 \pm 0.0054 \\ & B(K_{S} \rightarrow \pi^{+}\pi^{-}\gamma) < 9 \times 10^{-5} \\ & B(K_{S} \rightarrow \pi^{+}\pi^{-}\pi^{0}) = (3.2 \pm 1.2) \times 10^{-7} \\ & B(K_{S} \rightarrow \pi^{0}\pi^{0}\pi^{0}) < 1.2 \times 10^{-7} \end{split}$$

$$\begin{split} & B(K_L \rightarrow \pi l \nu) = 0.6705 \pm 0.0022 \\ & B(K_L \rightarrow \pi^+ \pi^- \pi^0) = 0.1263 \pm 0.0012 \\ & B(K_L \rightarrow \pi^+ \pi^-) = (1.963 \pm 0.021) \times 10^{-3} \\ & B(K_L \rightarrow \pi^+ \pi^- \gamma) = (29 \pm 1) \times 10^{-6} \\ & B(K_L \rightarrow \pi^0 \pi^0) = (8.65 \pm 0.10) \times 10^{-4} \end{split}$$

 $\tau_{\rm S} = 0.08958 \pm 0.00006 \text{ ns}$ $\tau_{\rm L} = 50.84 \pm 0.23 \text{ ns}$

 $A_L = (3.32 \pm 0.06) \times 10^{-3}$ $A_S = (1.5 \pm 10.0) \times 10^{-3}$

 $\phi^{SW} = (0.759 \pm 0.001)$ $\phi^{+-} = 0.757 \pm 0.012$ $\phi^{00} = 0.763 \pm 0.014$ $\phi^{000} = \phi^{+-0} = \phi^{+-\gamma} = [0, 2\pi]$

Im $x_{+}=(1.2 \pm 2.2)\times 10^{-2}$ by CPLEAR A combined fit of CPLEAR data with KLOE-KTeV ($A_{S}-A_{L}$) gives a ×3 improvement:

Im $x_{+} = (0.8 \pm 0.7) \times 10^{-2}$

CPT test from unitarity: results

Re $\varepsilon = (160.2 \pm 1.3) \times 10^{-5}$ Im $\delta = (1.2 \pm 1.9) \times 10^{-5}$

- Uncertainty on $\text{Im}\delta$ is now dominated by ϕ_{+-} and ϕ_{00}

Old: Re $\varepsilon = (164.9 \pm 2.5) \ 10^{-5}$ Im $\delta = (2.4 \pm 5.0) \ 10^{-5}$

From Im δ and Re δ it is possible to extract limits on $\Delta m = (m_{K0} - m_{\overline{K0}})$ and $\Delta \Gamma = (\Gamma_{K0} - \Gamma_{\overline{K0}})$

Unitarity test of CKM matrix: V_{us}, V_{us}/V_{ud}

• Unitarity test from 1st row:

 $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 \sim |V_{ud}|^2 + |V_{us}|^2 \equiv 1 - \Delta$

Precision test @ 10⁻³ level: from super-allowed nuclear β -decays: $2|V_{ud}|\delta V_{ud} = 0.0005$ from semileptonic kaon decays: $2|V_{us}|\delta V_{us} = 0.0009$

• $|V_{us}|$ extraction from K_{l3} decays

 $\Gamma(K \to \pi l \nu(\gamma)) \propto |V_{us} f_{+}(0)|^2 I(\lambda_t) S_{EW}(1 + \delta_{EM} + \delta_{SU(2)})$

theory uncertainty: 0.8% on $f_+(0)$

• $|\mathbf{V}_{us}|/|\mathbf{V}_{ud}|$ extraction from $\Gamma(K^{\pm} \rightarrow \mu\nu(\gamma))/\Gamma(\pi^{\pm} \rightarrow \mu\nu(\gamma))$

 $\frac{\Gamma(K \to \mu \nu(\gamma)}{\Gamma(\pi \to \mu \nu(\gamma))} \propto \frac{|V_{us}|^2}{|V_{ud}|^2} \frac{f_K^2}{f_\pi^2} \frac{1 + \alpha C_K}{1 + \alpha C_\pi} \quad theo$

theory uncertainty: 1.3% on $f_{\rm K}/f_{\pi}$

KLOE has measured all experimental inputs: BR, τ , λ

$$\tau_{\underline{L}}$$
 from $K_{\underline{L}} \rightarrow \pi^0 \pi^0 \pi^0$

- K_L momentum known from tag
- Uniform reconstruction efficiency with respect to L_K

$$\tau_L = 50.92 \pm 0.17_{stat} \pm 0.25_{syst}$$
 ns

$$\sigma_{rel} \sim 5.9 \times 10^{-3}$$

Average with result from K_L BR's:

$$\tau_L = 50.84 \pm 0.23$$
 ns
 $\sigma_{rel} \sim 4.5 \times 10^{-3}$

Measurement of the dependence of semileptonic *ff* from momentum transfer, t

• Fit to *t*-spectrum

$\underline{\mathsf{BR}(\mathsf{K}^{\pm} \rightarrow \pi^0 \mathsf{I}^{\pm} \mathsf{v})}$

• $K^+ \rightarrow \pi^0 l^+ \nu$ decays are tagged by $K^- \rightarrow \mu^- \nu$ and $K^- \rightarrow \pi^- \pi^0$

• $K^{\pm} \rightarrow \pi^{0} e^{\pm} \nu$ and $K^{\pm} \rightarrow \pi^{0} \mu^{\pm} \nu$ are separated by fitting the lepton mass spectrum, obtained from **TOF**: $t^{\text{decay}}_{K} = t_{lept} - L_{lept} / \beta(m_{lept}) c = t_{\gamma} - L_{\gamma} / c$

Preliminary results :

$$BR(K_{e3}^{\pm}) = (5.047 \pm 0.019_{stat} \pm 0.039_{syst}) \times 10^{-2}$$

BR(K_{\mu3}^{\pm}) = (3.310 \pm 0.016_{stat} \pm 0.045_{syst}) \times 10^{-2}

Improving the sensitivity of the CKM unitarity test :

- new results on charged kaons from KLOE
- better estimates of $f_K\!/f_\pi\,$ and $f_+(0)$ from lattice
- better estimates of SU(2) and rad corrections to V_{ud} from nuclear β decay (now at 1-2%) (0.047% change of V_{ud} or 0.88% change of $V_{us} \Rightarrow 1\sigma$ change of $\Delta = 1 - V_{us}^2 - V_{ud}^2$)
- KLOE 2.5 fb⁻¹ data sample should definitively clarify the *ff* picture, improve BR's and lifetimes

PLB 632 (2006) 76

Event counting in (225,400) MeV window of

the momentum distribution in K rest frame

Tag from $K^- \rightarrow \mu^- \nu$ Subtraction of $\pi^+\pi^0$, $\pi^0 l^+\nu$ background

BR(K⁺ $\rightarrow \mu^+ \nu(\gamma)$) = 0.6366 ± 0.0009_{stat.} ± 0.0015_{syst.}

400

<u>The V_{us}-V_{ud} plane</u>

- Using $f_{\rm K}/f_{\pi} = 1.198(3)(^{+16}_{-5})$ from MILC Coll. (2005) and KLOE BR(K⁺ $\rightarrow \mu^+ \nu$) we get $V_{\rm us}/V_{\rm ud} = 0.2294 \pm 0.0026$
- $V_{us} = 0.2248 \pm 0.0020$ us K_{13} KLOE, using $f_{+}(0)=0.961(8)$ 0.24 unitatity • $V_{ud} = 0.97377 \pm 0.00027$ Marciano and Sirlin Phys.Rev.Lett.96 032002,2006 0.23 KLOE K₁₃ Fit of the above results: 0.22 $V_{\rm us} = 0.2242 \pm 0.0016$ $V_{ud} = 0.97377 \pm 0.00027$ KLOE K₁₂ $P(\chi^2) = 0.8$ 0.21 Fit assuming unitarity: $V_{us} = 0.2264 \pm 0.0009$ บต $P(\chi^2) = 0.1$ 0.2 0.96 0.97 0.975 0.98 0.965 23 Torino, September 20, 2006 C. Bloise

Hadron Physics

$\phi \rightarrow \pi^+ \pi^- \pi^0$	Dalitz plot analysis	PLB 561(2003) 65
$\phi \rightarrow f_0 \gamma \rightarrow \pi^+ \pi^- \gamma$	f_0 coupling to ϕ , $\pi\pi$, KK	PLB 634(2006) 148
$\phi \rightarrow \mathbf{f_0} \gamma \rightarrow \pi^0 \pi^0 \gamma$	BR($\phi \rightarrow \pi^0 \pi^0 \gamma$) to 5%	PLB 537(2002) 21
	Dalitz plot analysis, stat/syst improvements	Submitted to EPJC
φ→η π⁰γ	BR($\phi \rightarrow a_0(980) \gamma$) to 10%	PLB 536(2002) 209
	stat/syst improvements	In progress
φ→η'γ (ηγ)	$\Gamma(\phi \rightarrow \eta' \gamma) / \Gamma(\phi \rightarrow \eta \gamma)$ to 12%, mixing angle to 5%	PLB 541(2002) 45
	stat/syst improvements	Draft in prep.
η → γγ	η mass measurement	In progress
$\eta \rightarrow \pi^+ \pi^+ \pi^0$	η mass measurement, Dalitz plot analysis	In progress, Draft in prep.
$\eta \rightarrow \pi^0 \pi^0 \pi^0$	Dalitz plot analysis	Preliminary
$\eta \rightarrow \pi^0 \gamma \gamma$	BR, $m_{\gamma\gamma}$ spectrum	In progress
η → π ⁺ π ⁻ e ⁺ e ⁻	photon coupling	In progress
$\eta \rightarrow \pi^+ \pi^-$	UL on BR to 10 ⁻⁵	PLB 606(2005) 276
$\eta \rightarrow \pi^0 \pi^0$	UL	In progress
η → γγγ	UL on BR to 10 ⁻⁵	PLB 591(2004) 49
$e^+e^- \rightarrow \pi^+\pi^- \gamma$	$a_{\mu \ had} (0.35 \le s_{\pi} \le 0.95 \text{ GeV}^2) \text{ to} \sim 1\%$	PLB 606(2005) 12
	$a_{\mu \mid had}$ down to threshold	In progress

$\frac{\pi^{+}\pi^{-}\gamma \text{ at large angle: looking for } f_{0}(980)}{P_{LR}}$

- $e^+e^- \rightarrow \pi^+\pi^-\gamma$ events with the photon at large angle (45°< ϑ_{γ} <135°)
- Main contributions: ISR (radiative return to ρ, ω) FSR
- Search for the f₀ signal as a deviation on M(π⁺π⁻) spectrum from the expected ISR + FSR shape

676,000 events selected (2001+2002)

- ▶ Peak at $M_{\pi\pi}$ ~980 MeV due to $\phi \rightarrow f_0(980)\gamma$, with negative interf. with FSR
- > In both models the $f_0(980)$ is strongly coupled to kaons and to the ϕ
- > The introduction of $\sigma(600)$ does not improve the fit

C. Bloise

The $\pi^0\pi^0\gamma$ final state

Submitted to EPJC

450 pb⁻¹ from 2001 – 2002 data taking ~ 400k events Two main contributions to $\pi^0\pi^0\gamma$ final state @ M_{ϕ}:

New analysis scheme w.r.t. PLB537 (2002) 21:

- ✓ Allow for interference between $e^+e^- \rightarrow \omega \pi^0$ and $\phi \rightarrow S\gamma$
- ✓ Bi-dimensional analysis of Dalitz-plot : $M(\pi^0\pi^0)$ vs $M(\pi^0\gamma)$

27

Summary table and comparison

KL fit results:

 $\pi^0\pi^0$: $\sigma(600)$ [but with fixed values] needed to describe data, $\pi^+\pi^-$: $\sigma(600)$ is not needed

```
both channels: f<sub>0</sub>(980) strongly coupled to KK
```

NS fit results: both channels: only f₀(980) sufficient to describe data

 $\pi^0 \pi^0$ wrt $\pi^+ \pi^-$: weaker KK coupling

model	<i>f</i> ₀ (980) param.	π ⁺ π ⁻ γ	π ⁰ π ⁰ γ
Kaon	m _{<i>i</i>0} (MeV)	980 ÷ 987	976 ÷ 987
соор	g _{ÆK} (GeV)	5.0 ÷ 6.3	3.3 ÷ 5.0
	g _{/π+π-} (GeV)	3.0 ÷ 4.2	1.4 ÷ 2.0
	$R=g^{2}_{KK}/g^{2}_{h+\pi-}$	2.2 ÷ 2.8	3.0 ÷ 7.3
No	m _{,0} (MeV)	973 ÷ 981	981 ÷ 987
Structure	g _{ÆK} (GeV)	1.6 ÷ 2.3	0.1 ÷ 1.0
	$g_{f_{\pi+\pi-}}$ (GeV)	0.9 ÷ 1.1	1.3 ÷ 1.4
	$R=g^{2}_{KK}/g^{2}_{h+\pi-}$	2.6 ÷ 4.4	0.01 ÷ 0.5
	g _{₀/⁄} (GeV ⁻¹)	1.2 ÷ 2.0	2.5 ÷ 2.7

$\underline{\mathsf{BR}(\phi \to \eta' \gamma)}/\mathsf{BR}(\phi \to \eta \gamma)$

Two parameters needed to describe $\eta_1\text{-}\eta_8$ mixing in χPT

The angles are almost equal when mixing is expressed in the flavour basis

$$\eta = \cos\varphi_{\rm P} \frac{1}{\sqrt{2}} \left| u\overline{u} + d\overline{d} \right\rangle - \sin\varphi_{\rm P} \left| s\overline{s} \right\rangle$$
$$\eta' = \sin\varphi_{\rm P} \frac{1}{\sqrt{2}} \left| u\overline{u} + d\overline{d} \right\rangle + \cos\varphi_{\rm P} \left| s\overline{s} \right\rangle$$

From the ratio we extract the mixing angle, ϕ_p (Bramon et al., Eur. Phys. J. C7 (1999) 271):

$$R = \frac{BR(\phi \to \eta' \gamma)}{BR(\phi \to \eta \gamma)} = \cot g^2 \varphi_P \left(1 - \frac{m_s}{\overline{m}} \frac{tg \varphi_V}{\sin 2\varphi_P} \right)^2 \left(\frac{p_{\eta'}}{p_{\eta}} \right)^3 \quad ; \quad \left(\frac{m_s}{\overline{m}} = 1.45 \right)$$

We evaluate the gluonic content of η ' in the approximation of small gluonic contribution

The analysis is based on 427 pb⁻¹ and

a MC sample for efficiency and background evaluation

5 times bigger, containing also details of the

machine bck extracted from data control samples.

Draft in preparation

BR($\phi \rightarrow \eta' \gamma$)/BR($\phi \rightarrow \eta \gamma$) analysis

•
$$\phi \rightarrow \eta' \gamma, \eta' \rightarrow \pi^+ \pi^- \eta, \eta \rightarrow 3\pi^0$$

 $\eta' \rightarrow \pi^0 \pi^0 \eta, \eta \rightarrow \pi^+ \pi^- \pi^0$
• $\phi \rightarrow \eta \gamma, \eta \rightarrow 3\pi^0$
Circular the formula of the set o

Signal selection for $\phi \rightarrow \eta' \gamma$:

- 1. Two tracks vertex near I.P.
- 2. Seven neutral clusters with:
 - $|T_{cl} R_{cl}/c| < 5 \sigma_T$
 - $21^{\circ} < \theta_{cl} < 159^{\circ}$
- Kinematic fit imposing global
 4-momentum conservation

 γ 's from ϕ and π^0 decays overlap

$\phi \rightarrow \eta' \gamma / \eta \gamma$ selection

Background to $\phi \rightarrow \eta' \gamma$ from $K_s \rightarrow \pi^+ \pi^-(\gamma)$, $K_L \rightarrow \pi^0 \pi^0 \pi^0$ and $K_s \rightarrow \pi^0 \pi^0$, $K_L \rightarrow \pi^+ \pi^- \pi^0$

Tracking efficiency and vertex reconstruction studied on $\phi \rightarrow \pi^+ \pi^- \pi^0$ control sample Systematics on neutrals and

on background subtraction controlled changing the analysis cuts contribution from neutral-efficiency knowledge cancels out in the ratio

<u>BR($\phi \rightarrow \eta' \gamma$)/BR($\phi \rightarrow \eta \gamma$) : results</u>

$R = \frac{BR(\phi \to \eta' \gamma)}{BR(\phi \to \eta \gamma)} = \frac{N(\eta' \gamma) \varepsilon_{\eta \gamma} BR(\eta \to \pi^0 \pi^0 \pi^0)}{N(\eta \gamma) [BR_{crg} \varepsilon_{crg} + BR_{ntr} \varepsilon_{ntr}]}$	$ \begin{array}{c} \mathbf{K}_{\rho} \\ \mathbf{\phi}_{\rho} \\ \rho \end{array} $	erf. → η/η΄γ → η/η΄γ
$BR_{crg} = BR(\eta' \to \pi^{+}\pi^{-}\eta) BR(\eta \to \pi^{0}\pi^{0}\pi^{0})$ $BR_{-} = BR(\eta' \to \pi^{0}\pi^{0}\eta) BR(\eta \to \pi^{+}\pi^{-}\pi^{0})$ from PDG	Source	Syst. Err.
	Filfo-Evcl	1%
$R = (4.74 + 0.09 + 0.20) \times 10^{-3}$	TRK	1%
$R(\phi \rightarrow n'\nu) = (6.17 + 0.12 + 0.28) \times 10^{-5}$	VTX	1%
$DI(\psi - 1)) (0.17 \pm 0.12 \pm 0.20) \times 10$	Bkg	0.1%
Systematics dominated by the knowledge of n n' BR's	/ /	0.40/

Systematics dominated by the knowledge of η, η BR's

In agreement with previous KLOE result, PLB541 (2002) 45:

$$R = (4.70 \pm 0.47_{stat} \pm 0.31_{sys}) \cdot 10^{-3}$$
$$BR(\phi \to \eta' \gamma) = (6.10 \pm 0.61 \pm 0.43) \cdot 10^{-5}$$

 TRK
 1%

 TRK
 1%

 VTX
 1%

 Bkg
 0.1%

 $\epsilon\eta$ / $\epsilon\eta'$ 0.4%

 χ^2 1.5%

 BR's
 3%

 K_{ρ} 1%

 Total
 4%

C. Bloise

η/η' mixing and η' gluon content

The η/η' mixing angle in the quark flavour basis, ϕ_P , can be extracted from the ratio R using the formula [Bramon et al., Eur. Phys. J. C7 (1999) 271]

$$R = \frac{BR (\phi \rightarrow \eta' \gamma)}{BR (\phi \rightarrow \eta \gamma)} = \cot^{2} \varphi_{P} \left(1 - \frac{m_{s}}{\overline{m}} \cdot \frac{Z_{NS}}{Z_{S}} \cdot \frac{\tan \varphi_{V}}{\sin 2\varphi_{P}}\right)^{2} \cdot \left(\frac{p_{\eta'}}{p_{\eta}}\right)$$

Torino, September 20, 2006

 $\varphi_{\rm P} = (41.5 \pm 0.3_{\rm stat} \pm 0.7_{\rm syst} \pm 0.6_{\rm th})^{\circ}$

Combined analysis to evaluate a possible gluon content of η'

$$\eta' = X \frac{1}{\sqrt{2}} | u\overline{u} + d\overline{d} > +Y | s\overline{s} > +Z | glue >$$

 $Z^2 > 0 \Leftrightarrow X^2 + Y^2 < 1$

 $X^2 + Y^2 = 0.93 \pm 0.06$

C. Bloise

Summary and Outlook

KLOE has obtained new results, mostly based on 20% of the data sample, including

- Measurements of the $K_{S}\text{-}K_{L}$ and K^{\pm} decay channels with precision $\sim 1\%$ or better
- Best limit on $K_S\!\to\pi^0\pi^0\pi^0$
- First measurement of K_S semileptonic charge asymmetry
- Evidence for $\phi \rightarrow f_0 \gamma$ from $M_{\pi\pi}$ and f-b asymmetry in the channel $\pi^+\pi^-\gamma$
- η/η' mixing with $\eta' \rightarrow \pi^+\pi^- 7\gamma$
- Dalitz plot analysis of $\eta \rightarrow \pi^+\pi^- \pi^0$
- η mass

With the analyses of the 2.5 fb⁻¹ data sample we can address/improve:

- QM interference studies
- BR(K_S $\rightarrow \gamma\gamma$), BR(K_S $\rightarrow \pi^+\pi^-\pi^0$), BR(K_S $\rightarrow \pi^+\pi^-e^+e^-$)
- UL(K_S $\rightarrow \pi^0 \pi^0 \pi^0$), UL(K_S $\rightarrow e^+e^-$)
- Semileptonic BR's, lifetimes, *ff* slopes
- **BR**(K_L $\rightarrow \pi\pi$) to few 10⁻³
- $\Gamma(K^{\pm} \rightarrow e^{\pm}\nu)/\Gamma(K^{\pm} \rightarrow \mu^{\pm}\nu)$ to few 10⁻²
- Combined fit of both, charged and neutral, $\pi\pi\gamma$ final states and searches for $f_0/a_0 \rightarrow KK$
- Search for $\sigma(600)$ with off-peak data using the reaction $\gamma\gamma \rightarrow \pi^0\pi^0$
- $\eta \to \pi^+\pi^- e^+ e^-$, $\eta \to \pi^0 \gamma \gamma$, $\eta \to \pi^+\pi^- \gamma$, $\mu^+\mu^- \gamma$, η' decays

Spares slides

CPT test from charge asymmetry

Sensitivity to CPT violating effects through charge asymmetry

$$\boldsymbol{A}_{S,L} = \frac{\Gamma(\mathbf{K}_{S,L} \to \pi^{-} e^{+} \nu) - \Gamma(\mathbf{K}_{S,L} \to \pi^{+} e^{-} \overline{\nu})}{\Gamma(\mathbf{K}_{S,L} \to \pi^{-} e^{+} \nu) + \Gamma(\mathbf{K}_{S,L} \to \pi^{+} e^{-} \overline{\nu})}$$

Status of n mass measurement

The two most recent and precise measurements show a 8σ 's discrepancy on η mass :

GEM [COSY, Julich] $M_n = (547.311 \pm 0.028 \pm 0.032) \text{ MeV/c}^2$ WEIGHTED AVERAGE [M. Abdel-Bary et al., Phys. Lett. B 619 (2005) 281] Reaction used: $p + d \rightarrow {}^{3}He + \eta$ **NA48** $M_{\eta} = (547.843 \pm 0.030 \pm 0.041) \text{ MeV/c}^2$ [A. Lai et al., Phys. Lett. B 533 (2002) 196] Using $\eta \rightarrow 3\pi^0$ from $\pi^- + p \rightarrow \eta + n$

Torino, September 20, 2006

- ★ Analysis of φ → γγγ final state including φ → πγ and φ → ηγ events
- ***** Kinematic fit applied to $\phi \rightarrow \gamma \gamma \gamma$ events
- * η and π^0 in different Dalitz plot regions

M_{η} - resolution

The kinematic fit with constraints from energy and momentum conservation improves $M_{_{\!Y\!Y}}$ resolution to 3 MeV

Momentum-direction from position measurements Photon energies from kinematic constraints Bhabha-scattering events provide precise measurement of

 $(E_{e^+} + E_{e^-}, \mathbf{P}_{e^+} + \mathbf{P}_{e^-})$ calibrated by a fit to the ϕ lineshape with M_{ϕ} = (1019.483 ± 0.011±0.025) MeV from CMD-2 Phys. Lett. B575, 285

39

$\underline{M}_{\underline{\eta}}$ - preliminary result

Evaluation of systematics from

 \sqrt{s} , Dalitz plot selection, Detector geometry, EMC linearity, in progress

Current estimate : 69 keV/c²

$$\begin{split} \mathbf{M}(\pi^0) &= (\ 134990 \pm 6_{stat} \pm 30_{syst}) \ keV/c^2 \\ \mathbf{M}(\pi^0)_{PDG} &= (\ 134976.6 \pm 0.6 \) \ keV/c^2 \end{split}$$

$$M(\eta) = (547822 \pm 5_{stat} \pm 69_{syst}) \text{ keV/c}^2$$

$$\uparrow$$
In agreement with the NA48 result

In agreement with the preliminary result of the cross-check using $\eta \rightarrow \pi^+\pi^-\pi^0$:

 $M(\eta) = (547.95 \pm 0.15) \text{ MeV/c}^2$

Decay sensitive to light-quark mass difference

Dynamics through Dalitz plot analysis to fix high-order contributions

 $\Gamma(\eta \rightarrow \pi^+ \pi^- \pi^0) = (Q/Q_D)^4 \overline{\Gamma}$

 $\mathbf{Q}^2 \equiv \frac{\mathbf{m}_s^2 - \hat{\mathbf{m}}^2}{\mathbf{m}_d^2 - \mathbf{m}_u^2}$

and
$$Q_D = 24.2$$
, with $(m_{\pi^+}^2 - m_{\pi^0}^2)_{em} = (m_{K^+}^2 - m_{K^0}^2)_{em}$

[B.Martemyanov, V.Sopov, PRD 71 (2005) 017501]

$\eta \rightarrow \pi^+ \pi^- \pi^0$ event selection

2-tracks from the interaction region 3 prompt neutral clusters E>10 MeV, $\theta_{\gamma} > 21^{\circ}$ Kinematic fit imposing 4-momentum conservation improve photon-energy resolution Loose cuts on fit quality, E_{γ}^{ϕ} , $E_{\pi^{+}}^{\eta} + E_{\pi^{-}}^{\eta}$, $M_{\gamma\gamma}^{\eta}$ to reject background from $K_{S}K_{L}$, $\phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$, $\eta \rightarrow \pi^{+} \pi^{-} \gamma$

$\eta \rightarrow \pi^+ \pi^- \pi^0$ efficiency evaluation

Efficiency flat in the X,Y plane, $\varepsilon \sim 36\%$

Tracking, vertex efficiency from $\phi \rightarrow \pi^+ \pi^- \pi^0$ control sample MC correction of the efficiency for low-energy photons applied

%

Deviations of the fit values to evaluate systematics

%

-12

+12

-12

+1.8

-21

+0.0

$ A(X,Y) ^2 = 1$	N (1 + a	aY + bY	² + dX	2 + †Y3	^{\$})
	∆a/a	∆b/b	∆d/d	∆f/f	

%

-6.4

+4.8

-4.8

+4.8

-0.0

+4.0

%

-0.09

+0.55

-0.73

+0.55

-1.55

+0.00

Background

subtraction

Dalitz plot

binning

Event

Selection

$\eta \rightarrow \pi^+ \pi^- \pi^0$ fit results

A third-order expansion necessary to describe data distribution

 $|A(X,Y)|^2 = N (1 + aY + bY^2 + cX + dX^2 + eXY + fY^3)$

The amplitude must be symmetric in X (C conservation) c=0, e=0

ndf	P_{χ^2}	a	b	c	d	e	f
147	73%	$-1.090 {\pm} 0.005$	$0.124 {\pm} 0.006$	$0.002 {\pm} 0.003$	$0.057 {\pm} 0.006$	$-0.006 {\pm} 0.007$	$0.14{\pm}0.01$
149	74%	$-1.090 {\pm} 0.005$	$0.124{\pm}0.006$		$0.057 {\pm} 0.006$		$0.14{\pm}0.01$
150	$< 10^{-6}\%$	$-1.069 {\pm} 0.005$	$0.104{\pm}0.005$				$0.13{\pm}0.01$
150	$< 10^{-8}\%$	$-1.041 {\pm} 0.003$	$0.145 {\pm} 0.006$		$0.050 {\pm} 0.006$		
151	$< 10^{-6}\%$	$-1.026 {\pm} 0.003$	$0.125{\pm}0.006$				

Quadratic term in $X \neq 0$ Cubic term in $Y \neq 0$

<u>η $\rightarrow \pi^+ \pi^- \pi^0$ result comparison</u>

$|A(X,Y)|^2 = N (1 + aY + bY^2 + dX^2 + fY^3)$

	Nev	а	b	d	f
KLOE	1.39 10 ⁶	-1.090±0.005 +0.008 -0.019	0.124±0.006 +0.010 -0.010	0.057±0.006 +0.007 -0.016	0.14±0.01 ^{+0.020} -0.020
Layter 73	8.09 10 ⁴	-1.08 ± 0.14	0.034±0.027	0.046±0.031	
Gormley 70	3.00 10 ⁴	-1.17 ± 0.02	0.21±0.03	0.06±0.04	
Crystal Barrel 95	1.08 10 ³	-0.94 ± 0.15	0.11±0.27		
Crystal Barrel 98	3.23 10 ³	-1.22 ± 0.07	0.22±0.11	0.06 fixed	
tree		-1.00	0.25	0.00	
one-loop		-1.33	0.42	0.08	

BR(η \rightarrow π⁰γγ)

Sensitive to $O(p^6)$ calculations in χPT

Challenging measurement for the background from $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^0 \pi^0 \pi^0$

Unsatisfactory experimenta	al situation:	$\mathbf{P}_{\mathbf{r}}(\mathbf{r}) \rightarrow \boldsymbol{\sigma}^{0} \cdot \boldsymbol{\sigma}^{0}$
AGS/Crystal Ball Phys. Lett. B 589 (2004) 14	$N_{\eta} = 3x10^{7}$	$(2.7 \pm 0.9_{\text{stat}} \pm 0.5_{\text{syst}}) 10^{-4}$
<mark>SND – Novosibirsk</mark> Nucl. Phys. B600 (2001) 3	$N_{\eta} = 2.6 \times 10^5$	< 8.4 ×10 ⁻⁴
<mark>GAMS2000</mark> Z. Phys. C25 (1984) 225	$N_{\eta} = 6 \times 10^5$	$(7.2 \pm 1.4) \times 10^{-4}$

KLOE preliminary results on the basis of $N_{\eta} = 1.8 \times 10^7$ KLOE (all statistics) $N_{\eta} = 10^8$ MC production in progress for simulating 2004-2005 data sample with machine bck from random triggers

<u>η $\rightarrow \pi^0 \gamma \gamma$ analysis</u>

$$\phi \rightarrow \eta \gamma$$

 $\int 5 \gamma \text{ final state}$
 $\pi^0 \gamma \gamma$

 σ = 3 (8) pb from AGS/CB (GAMS) measurement

Background from

Channel	σ (pb)	
$\omega \pi^{o}, \omega \to \pi^{o} \gamma, \ \pi^{o} \to \gamma \gamma$	450	
$f^0\gamma, f_0 \to \pi^0\pi^0, \pi^0 \to \gamma\gamma$	300	Rejected with cuts on ω , η , π^0
$a^{0}\gamma, a_{0} \rightarrow \eta\pi^{0}, \eta \rightarrow \gamma\gamma, \pi^{0} \rightarrow \gamma\gamma$	260	
$\eta\gamma,\eta o\gamma\gamma$	17000	
$\eta\gamma,\eta ightarrow3\pi^{0}$	13000	

Drastically reduced by energy-momentum conservation and by the analysis of cluster topology to identify merged clusters to $\leq 10 \text{ pb}$

C. Bloise

Cluster shape variables are used to identify merged clusters

<u>η $\rightarrow \pi^0 \gamma \gamma$ - Background evaluation</u>

Preliminary result on BR($\eta \rightarrow \pi^0 \gamma \gamma$)

Background + signal distribution of $M_{4\gamma}$ after fixing bckg components from the analysis of the entire 5 γ sample is in agreement with DATA

$$\begin{split} P_{bkg} &= 0.907 \pm 0.049 \\ P_{sig} &= 0.093 \pm 0.031 \\ N_{DATA} &= 735 \\ N_{bkg} &= 667 \pm 36 \qquad N_{sig} = 68 \pm 23 \\ \epsilon(\eta {\rightarrow} \pi^0 \gamma \gamma) &= 4.63 \pm 0.09 \text{ (only stat)} \\ N(\eta {\rightarrow} 3\pi^0) &= 2288882 \\ \epsilon(\eta {\rightarrow} \pi^0 \pi^0 \pi^0) &= 0.378 \pm 0.08_{syst} \pm 0.01_{stat} \end{split}$$